
Abstract: The goals of classical statistical sampling (e.g. estimation of population means using simple random sampling,
stratified random sampling, etc.) and geostatistics (e.g. estimation of population means using block kriging) can be identical.
For example, both can be used to estimate the average value, or total amount, of a variable of interest in some area. The most
fundamental difference between classical sampling and geostatistics is that classi,cal sampling relies on design-based
inference while geostatistics relies on model-based inference. These differences are illustrated with examples. Classical
sampling usually considers sampling for finite populations, but.in the spatial context, it is easily adapted to infinite popUlations.
Geostatistics has only considered infinite populations, but methods for finite populations have been developed recently. To
compare classical sampling to geostatistics for both infinite and finite populations, 1 consider the following data sets: 1) a
fabricated fixed spatial pattern from an infinite population of a spatially-continuous variable; 2) a single, fixed, real data set
from a finite population on a grid of spatial locations; and 3) simulated random patterns from an autocorrelated model
from a finite population on a grid of spatial locations. For each dataset, 1 select samples randomly; Then 1 use classical
sampling estimators andgeostatistical estimators of the mean values. Results show that both methods provide unbiased
estimates and have variances and confidence intervals that are valid, but in general the geostatistical methods are more
efficient, having estimates closer to the true values.
Keywords: block kriging, finite populations, model-based inference, simulations.

Resume: Les buts poursuivis par I'echantillonnage statistique classique (e.g. estimation des moyennes de population en
utilisant I'echantillonage aleatoire simple, I'echantillonage aleatoire stratifie, etc.) et la geostatistique (e.g. estimation des
moyennes depopulation utilisant Ie krigeage ordinaire d'un bloc) peuvent etre identiques. Par exemple, les deux approches
peuvent etre utilisees pour estimeda valeur moyenne, ou la quantite totale d' une variable pour un secteur donne. 11 existe
neanmoins une difference importante entre ces deux methodes. L'echantillonnage classique repose sur I'inference basee sur
la theorie de I'echantillonnage alors que la geostatistique classique repqse sur l'inference basee sur un modele. Cette
difference est illustree 11 I'aide d'exemples. En general, l'echantillonnage classique est approprie pour des populations de
taille finie. Toutefois, dans un contexte spatial, il peut etre facilement adapte pour I'etude de populations de taille infinie.
Jusqu'1I tout recemment, la geostatistique analysait uniquement des populations de taille infinie. nest maintenant possible de
les utiliser pour l'etude des populations de taille finie. Afin de comparer I'efficacite de I'echantillonnageclassique et de la
geostatistique, trois ensembles de donnees des populations de taille finie et infinie ont ete employes : I) un patron spatial
fixe, fabrique 11 partir d'une population de taille infinie d'une variable continue au niveau spatial, 2) un ensemble de donnees
reelles issu d'une population de taille finie examinee grace 11 une grille de localisations spatiales et 3) des patrons aleatoires
simules 11 I'aide d'un modele autocorrele d'une population de taille fin ie, elle aussi examinee griice Ii une grille de localisations
spatiales. J'ai choisi, de fa90n aleatoire, des echantillons pour chaque ensemble de donnees. J'ai ensuite utilise les estimateurs
de I' echantillonnage classique et des geostatistiques pour calculer les valeurs moyennes. Les deux methodes ont perrnis
d'obtenir des estimations correctes dont les variances et les intervalles de confiance sont valides. Toutefois, les methodes
geostatistiques sont en general plus efficaces que celles de l'echantillonnage classique. En effet, elles produisent des estimations
plus proches des valeurs reelles.
Mots-eMs: krigeage ordinaire d'un bloc, populations de taille finie, inference basee sur un modele, simulations.
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taken collectively, will be called the sample. The statistical
theory that relates to randomly choosing sample units and
making estimates of the population from the sample will be
called "classical sampling." This is consistent with most
statistical texts on the subject (e.g., Cochran, 1977, or
Thompson, 1992).

First consider the case of a spatially continuous popula­
tion. An example' would be the estimation ofthe total vol­
ume of snow in a study area. Conceptually, our sample units
will be points. There are an infinite number of points for the
spatially continuous population, so the population is infi­
nite. From classical sampling, we would obtain our estimate
by selecting n sample units (points) at random, mesuring the
depth of snow at the n sites, taking their average, and multi­
plying by the area of the field. Classical sampling theory
also allows us to obtain the variance of this estimate. We
can accomplish the same task by using geostatistics.
Geostatistics began as a way to estimate the amount of gold
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Introduction
For the most part, the geostatistical method of kriging

is considered a method of spatial interpolation (Robertson,
1987', primarily used for making maps. However, the goals
of classical statistical sampling and geostatistics can be
identical. For example, both can be used to estimate the
average value, or total amount, of a variable of interest in
some area. In fact, it was this goal for mining that led
Matheron (1963) and others (Joumel & Huijbregts, 1978) to
develop kriging (for a historical review, see Cressie, 1990).

Classical statistical methods of sampling can also be
used to estimate the average, or total amount, of a variable.
The word sample can be confusing, so I will give defini­
tions here. The physical unit that is measured or observed
will be called the sample unit. All possible sample units will
be called the population. All sample units that are observed,
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TABLE I. Classification of methods based on type of population
and type of statistical theory.

Some questions that ecologists might ask are: Which of
these methods should I use? What are the differences
between the methods? What are the assumptions of each
method? Which method is more powerful? This paper
attempts to answer some of these questions. The objectives
of this paper are to compare classical sampling methods
with block kriging geostatistical methods through simula­
tion and example. Some of this is review, but I will also
introduce finite population block kriging and compare it to
classical sampling methods for finite populations.

Design-based versus model-based statistics

One of the questions that I asked above was: What are
the assumptions of each methods? The most fundamental
difference between classical sampling and geostatistics is
the underlying assumption about what is random and what
is fixed. This is best illustrated with an example in one
dimension. On the left side of figure I, a fixed pattern is
generated from the function

z(x) = cxs,sin(ps,x) + cxs2sin(ps2x) +

cxclCOS(PcIX) + cxc2COS(Pc2X) + cxe(exp(x) -I)

is random, changing from panel to panel. The random pattern
was generated from a first order autoregressive process,

z(x) = PZ(Xi_ I )+ e(x)

for x;=O.O, 0.001, 0.002, ... ,1.0, where P = 0.95 and e(x) is
an independent, normally distributed random variable with
mean 0 and standard deviation 2.5. To start the process, we
set z(xo) = O. Statistical inference based on a random mecha­
nism governing the way that data are generated, as given on
the right of figure I, is called model-based inference.
Kriging is an example of model-based inference. For
model-based inference, we obtain estimators from the
assumptions that we make about the model that generated
the data. Further discussion of design versus model based
inference is provided by Sarodal (1978), de Groijter and Ter
Braak (1990) and Bros and de Groijter (1993).

Finite and infinite populations in a spatial context

Texts on classical sampling (Cochran, 1977; Thompson,
1992) typically consider sampling for finite populations.
However, we may be estimating quantities that are spatially
continuous. For spatially continuous data, if we use sample
units that are points, then the population is infinite; see for
example Cordy (1993) and Stevens (1997). We rarely have
sample units that are true points. For example, when investi­
gating pollution the sample unit might be a cubic cm of air at
100 locations throughout a state. Because the sample unit
has some volume (a cubic centimeter), there are a finite
number of sample units, but for a whole state, that number is
very large. It is often impossible to enumerate millions of
sample units and then chose a sample randomly from among
them. In this case, we consider the population to be infinite.
Other ecological populations that could be considered spa­
tially continuous are biomass, soil moisture, etc. The popula­
tions can be made finite if we use sample units that have
areas that are large enough relative to the study area to make
it reasonable to label all possible sample units and thus
choose randomly from among them.

Taking a simple random sample from a finite popula­
tion is easy. We make a list of all the N samples and choose
n at random. This is usually done without replacement. To
take a simple random sample for a spatially continuous
variable, an infinite population, we randomly choose an
x-coordinate and then a y-coordinate from a uniform distrib­
ution over the area of interest and repeat this process n
times.

Inference for infinite populations

Let us consider the case of a spatially continuous, or
infinite population, for a fixed pattern. First, we use classi­
cal sampling ideas. As an example, again consider the depth
of snow in a small study area. Mathematically, the total Vol­
ume of snow in the study area is the integral of the snow
depth-over the whole field (equation [1] in the Appendix 1);
let us denote this as 'to The average snow depth is the inte­
gral divided by the area (equation [2] in the appendix); let
us denote this as 0,. If we take a random sample uniformly
over the field, then the estimate of the average snow depth
is the sample mean, &. RS= Z , and the estimate of the total
snow volume is iRs=IAI Z, where IAI denotes the area of the
field. The sample variance is calculated as an average sum
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in an area, which is similar to estimating the amount of
snow in a study area. This is known as block kriging.

Next, consider the case of a spatially discrete population.
Suppose that a small study area has been partitioned into a
finite set of samples of, say, N plots that are I m by I m,
and we wish to estimate the average biomass in the study
area. We randomly select n of N plots, clip and weigh the n
samples, and then use the mean of the samples to estimate
the mean value of the study area. Surprisingly, there has
been no geostatistical counterpart to this until recently (Ver
Hoef, 2001). The statistical estimation methods and types of
data can be classified into a simple table (Table I).

whereasl=l, asz=8, acl=3, o'cz=6, o'e=IO, psl=2n, psz=22n,
pcl =8n and pcz=58n. For this pattern, 10 samples were
drawn at random. This was done three times. Notice in fig­
ure I, on the left, that the spatial pattern is fixed - it does
not change - but the samples do. Statistical inference based
on random samples, as given on the left of figure 1, is called
design-based inference. Classical methods of statistical
sampling as given, for example, by Cochran (1977) and
Thompson (1992), are examples of design-based inference.
For design-based inference, we obtain estimators from the
way in which the sample was taken, using, for example,
Horvitz-Thompson (1952) estimation.

Now consider the right side of figure 1. Here, the sam­
ples are fixed at locations x =0.03, 0.07, 0.10, 0.13, 0.16,
0.20,0.30,0.55, and 0.87. For each of the three panels on the
right, the sample locations do not change. Instead, the pattern
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depends only on the spatial relationship, between variables,
not their exact locations. Together mean stationarity and
C(h) form a second-order stationarity assumption. It is also
possible to model autocorrelation using variograms, but in
this paper I will use autocovariances. The autocovariance
given by C(h) needs a particular parametric form. In this
paper I use an isotropic exponential model,

where IlhII denotes Euclidean distance and l(j) denotes the
indicator function, which is equal to 1 iff is true, otherwise
it is O. This is an isotropic model because the autocovari-

C(h) = cov(Z(s), Z(s + h)),

random variable at location s, where s is a vector of the x- and
y-coordinates. The assumption that all random variables have
a common mean is called mean stationarity; E[Z(s)]=,u. An
additional assumption is that the autocovariance, given as
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VER HOEF: SAMPLING AND GEOSTATISTICS

FIGURE I. A comparison of design-based inference and model-based inference. On the left are 3 panels where the spatial pattern remains fixed and the
samples are from randomly chosen locations. On the right are 3 panels where the spatial pattern is from an autocorrelated random process and the samples
are from fixed spatial locations. The circles show the locations of the samples.'

of squares, often denoted as S2 (equation [4] in the Appendix).
Then the estimated variance of a. RS is S2 / n, and the esti­
mated variance of iRS is 1.412 S2 / n.

Next, let us consider block kriging for predicting a and
or, where now we are assuming that the pattern is the result
of a random process, and the samples unit locations are
fixed. Let us denote the block kriging predictor of a as a. BK;'
the formula is given by equation [5] in the Appendix. The
block kriging predictor for or is i BK=1A1 a. BK' For a. BK we
have an estimate of the prediction variance, denoted
var(a. BK) (equation [6] in the Appendix). The estimated pre­
diction variance for "r is var(iRS)=IAI2 var(a. BK)' More details
on these formulas are given in the Appendix.

Estimating spatial autocorrelation
Before proceeding with block kriging, we need models

for spatial autocorrelation and ways to estimate the parame­
ters of the spatial models. A common assumption for spatial
data is that they come from a stationarity model. Let Z(s) be a
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Distance (LAG)

FIGURE 2. A generic autocovariance function, showing the nugget, sill
and partial sill, and range.

Comparison of random sampling and block kriging
for infinite spatial populations

Similar to the fixed pattern seen in figure 1 in one
dimension, I created a fixed pattern in two dimensions with

ance depends only on the distance between two locations
lind not on the directional orientation between them. The
model depends on three parameters: en' which is often
called the nugget effect; es' which is often called the partial
sill; and er, which is a range parmeter. The exponential
lIutocovariance function is shown in figure 2.

If the parameters of the autocovariance function are
known, then we can use the block kriging equations direct­
ly. However, the autocovariance function is rarely known,
so it must be estimated from the data. In this paper, I will
use restricted maximum likelihood (REML). REML was
developed by Patterson and Thompson (1971, 1974), and
used in the spatial context by Kitanidis (1983). Zimmerman
(1989) gives computational details. For a general discussion
of REML for spatial data, see Cressie (1993, p. 91), and for
ecological applications, see Ver Hoef and Cressie (2001)
lind Ver Hoef et al. (2001). For the Gase of independent data
(no autocorrelation) with a single common variance para­
meter 82 for all variables, the REML estimate of 82 is given
by 52, which is equation [4] in the appendix and the same as
for classical sampling. Note that this has less bias than full
maximum likelihood, where 82 is estimated by

8~LE = L :1 (z(s;) - z)z In.

For the spatial case, REML also has less bias than full max­
imum likelihood (Mardia & Marshall, 1984). Some authors
claim that REML requires strictly Gaussian data (e.g.,
Chiles & Delphiner, 1999, p. 110), but this is not true. It is
true that REML was developed for Gaussian data, but both
Heyde (1994) and Cressie and Lahiri (1996) show that
REML estimates solve unbiased estimating equations, so
they work much more generally than for Gaussian data.
This should be evident from the example given above. For
independent data with a common variance 82, the REML
estimate of 82 is given by 52, but 52 is well known to be unbi­
ased for 82 for more general situations than Gaussian data.

There are some advantages to using REML. The main
advantage is that it is more automatic than using a least
squares method. The main alternative to REML is weighted
least squares (Cressie, 1985). Weighted least squares gener­
ally requires that you to bin the lags (distances) between
locations, so you must select the number of bins and size of
the bins. In this paper, I make use of simulations, so REML
is desirable because it does not require binning the lags.
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Z(x,y) = o.xslsin(,BxsIX) +axszsin(,Bxszx) +

aXclcOS(,Bxclx) + axczcos(,Bxczx) + axe (exp(x) -1) +

ays1sin(,BysIY) +ayszsin(,ByszY) +

ayc1cos(,ByclY) + ayczcos(,ByCzY) + ayqy
Z

,

where axsJ=I, axs2=8, axel=3, axc2=6, axe=IO, ,Bxsl=2n,
,Bxs2=22n, ,Bxcl=8n, ,Bxc2=58n and o.ysl=2, o.YS2=7, aycJ =4,
o.yc2=5, a =-30(e-2), ,Bysl=4;r, ,Bys2=36;r, ,B ci=6;r, and
,Byc2=66;r. ~otice that for the region bounded by 0 :0:;; x :0:;;1
and 0 :0:;; Y :0:;;1, from equations [1] and [2] in the Appendix,
the true values are -.=0 and a=O. From this fixed surface, I
took random samples of size 100. To take a single random
sample I chose the x- and y-coordinates randomly from a
uniform distribution. Figure 3 shows the fixed continuous
surface along with the sample unit locations for 2 different
random samples. For a sample of size 100, I computed the
classical sampling estimate of the mean &. RS' I estimated the
variance of &. RS with var (a. RS)' Similarly, I computed the
block kriging estimate a. BK given by [5] in the Appendix
and its variance estimate v3.r (a. BK) given by [6] in the
Appendix, where I used REML to estimate the parameters
of the exponential covariance model Ce(lIhll). I repeated this
for 1,000 random samples of size 100.

From the 1,000 estimates of both a. RS and a. BK' and
their estimated variances, I computed the following valida­
tion statistics:

1) bias, as the average ofa.m-a. , where m is RS or BK;
2) root mean squared error (RMSE), as the square-root

of the average of ( a. m-a. )2;

3) root average estimated variance (RAEV), as the
square-root of the average of var(a. m); and

4) 80% confidence interval coverage, as the proportion
of times that the confidence interval,

am ± 1.28~var(am)

contained the true value.
The results of the simulation are given in table II.

Notice that there is no evidence of bias for either method
because the bias value is very small compared to RMSE.
Also notice that for this fixed pattern, block kriging has a
smaller RMSE than classical sampling, indicating that the
block kriging estimate is, on average, closer to the true
value than the classical sampling estimate. If the estimated
variances are valid, then the RAEV should be close to
RMSE, which, from table II, appears to be true for both
methods. Finally, the 80% confidence interval should con­
tain the true value 80% of the time, and from table II it
appears that both methods have valid confidence intervals.

Inference for finite populations

Now consider the finite population case. Suppose that
for some spatial area A, there are N total sample units. The
population total is the sum of the variable of interest over all
N units; call it t (equation [7] in the Appendix). Let us
denote the population mean as a (a =tiN, equation [8] in the
Appendix). For a simple random sample without replace­
ment, the estimators of the mean and the total are
{iRS =z and FRS =N Z, respectively, where zis the sample
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TABLE II. Comparison of random sampling and block kriging. One
thousand random samples were generated from a fixed continuous
spatial pattern. Sample sizes were 100. For each simulation an
isotropic exponential covariance model was estimated from the
sample data using REML for FPBK.

llIean. As for infinite populations, the sample variance is S2
(equation 141 in the Appendix). Then the estimated variance
of II NS is var((/N.S·) = (S2In)(1-nlN), and the estimated vari­
ance of (NS is var( fRS ) =N2(SZln)(1-n/N). Notice that the
main diffcrcnce in the variances between the finite case and
the infinite case is due to the finite population correction
factor, (I-nlN), which goes to 0 as n goes to N. That is, if
you observe every sample in a finite population, the vari­
ance of your estimate is 0 - you know the value exactly.

Next, consider a finite version of block kriging for esti­
mating a and t, where now we are assuming that the pattern
is the result of a random process, and the samples are fixed.
An important but subtle point is that when estimating a, it is
the average value of the actual pattern, not the mean over
many simulations of the random process. Going back to the
panels on the right side of figure 1, if we simulated spatial
patterns an infinite number of times, we would find that the
average value of a is 0, but for anyone of the patterns a will
not be O. We want to estimate a for an actual, realized pat­
tern. Let the vector z contain all sample units, with the data
arranged so that z = (z'$' z'u)" where the subscript s indi­
cates those sample units that are sampled and the subscript
u indicates those sample units that are not sampled. The
vector b contains weights for the quantity that we wish to
estimate. For example, if b = (l, I ,... ,1)', then t = b'z. If b =
(lIN, l/N, ... ,l/N)' then a = b'z. In addition, we can consider
small area estimates where the vector b contains mostly
zeros, but with ones or other weights in positions that indi­
cate weighting for particular samples. For an example of
small area estimation, see Ver Hoef (2001). Then the finite
population block kriging (FPBK) estimates of a and t are
denoted a FPBK and fpPBK' and their formulas are given by
equation [9] in the Appendix. The prediction variances are
denoted as var(aFPBK) and var (fFPBK) and the formulas are
given by equation [II] in the Appendix. More details of
these formulas are given by Ver Hoef (2001).

Comparison of classical sampling and FPBK for
fixed populations

To compare classical sampling to FPBK, a set of
species diversity values from a grid of 200 plots that mea­
sured 70 cm x 70 cm are shown in figure 4. These data are
the number of different vascular plant species, and they
come from glades in the Ozarks of southeastern Missouri
(Ver Hoef, Reiter & Glenn-Lewin, 1993). Glades are grassy
openings, usually caused by shallow, draughty soils in a
predominantly forested landscape (Kucera & Martin, 1957).
From this fixed pattern (Figure 4), I took random samples
without replacement of size n = 100. For each random sam­
ple, I computed the classical sampling estimate &. RS =Z. I
estimated the variance of &. RS with var(~s) =(S2In)(l-nlN).
Similarly, I computed the FPBK estimate &.FPBK given by
[9] in the Appendix and its variance estimate var( &. FPBK)

given by [II] in the Appendix. I used REML to estimate the
parameters of the exponential covariance model Cillhll). I
repeated this for 1,000 random samples of size n = 100.
From the 1,000 estimates of both aRS and aFPBK, and their
estimated variances, I computed the same statistics as given
for table II: bias, RMSE, RAEV, and the 80% confidence
interval coverage.
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FIGURE 3. A fixed continuous spatial pattern. The darker areas are
lower values, and the lighter areas are higher values. The white circles
show the locations of random samples. The top figure shows the fixed sur­
face with one random sample, and the bottom shows the fixed surface with
another random sample.
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X

FIGURE 4. A fixed discrete spatial pattern. The values show the number
of different vascular plant species in a 20 x 10 grid of 70-cm )( 70-cm plots
for a glade in the Ozark area of southeastern Missouri.

The results of the simulation are given in table III.
Notice that there is no evidence of bias for either method
because the bias values are very small compared to RMSE.
Also notice that for this fixed pattern, FPBK has a smaller
RMSE than classical sampling, indicating that the FPBK
estimate is, on average, closer to the true value than the
classical sampling estimate. If the estimated variances are
valid, then the RAEV should be close to RMSE, which,
from table III, appears to be true for both methods. Finally,
the 80% confidence interval should contain the true value
80% of the time, and from table III it appears that both
methods have valid confidence intervals.

Comparison of classical sampling and FPBK for
random populations

The previous example used random samples from a
fixed population. We can also produce data rando'mly; then
we can use fixed sample designs. I generated data on a
l5xl5 grid, with the x-coordinates and y-coordinates given
as the integers from 1 to 15, as shown in figure 5. To simu­
late spatially autocorrelated data, I used the Cholesky
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15 •••••• 00•••••••
•••00 ••••••• 00.
00••• • ••• 00 ••••
•••••• 00 •••••••
••• 00 •••••••00.

10 00•••••••00••••
•••••• 00 •••••••
••• 00•••• • •• 00.
00••••••• 00••••
••••••00•••••••

5 •••00•••••••00.
•••••••00••••
••••00 •••••••

00•••• ···00.
••••••• 00 ••••

x

15 ••••••00•••••••
•••00•••••••00.
00•••••••00 ••••
••••••00•••••••
•••00•••••••00.

10 00•••••••00••••
••••••00•••••••
•••00•••••• ·00.
00•••••••00 ••••
•••••• 00••••• ••

5 ••• 00•••••••00.
00 ••••••• 00 ••••
•• ••••00 •••••••
••• 00•••••••00.
00 ••• • ••• 00 ••••

Validation statistics
Bias
RMSE3
RAEV4
80%C}5

I Simple Random Sampling
2 Finite Population Block Kriging
3 Root Mean Squared Errors
4 Root Average Estimated Variance
5 80% Confidence Interval Coverage

TABLE III. Comparison of random sampling and finite population
block kriging. One thousand random samples were. generated for
the fixed spatial pattern given by the species diversity data.
Sample sizes were 100. For each simulation an isotropic exponen­
tial covariance model was estimated from the sample data using
REML for FPBK.

X

FIGURE 5. Two discrete spatial patterns were randomly simulated from
a spatially autocorrelated process. The· larger and lighter the circle, the
higher the simulated value. The small solid white squares show the loca­
tions of the fixed samples.
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XO% of the time, so from table IV it appears that all three
methods have valid confidence intervals.

TABLE V. Classification of simulations based on population conti­
nuity and origin.

Discussion and conclusion

In this paper, I presented comparisons of classical sam­
pling to block kriging for 3 different types of data, which
can be seen in the following table (Table V).

Population origin

Fixed Stochastic
Table II
Table III Table IV

Infinite (Spatially continuous)
Finite (Spatially discrete)

PopUlation continuity

It is difficult to randomly simulate an autocorrelated
surface that is spatially continuous and where we know the
value at every location, which would be necessary to com­
pute a or r, so those simulations were not attempted.
However, for the other 3 cases, block kriging (finite and
infinite) had valid confidence intervals and an RMSE that
was from about 20% to 40% smaller than classical sam­
pling. This means that confidence intervals are 20% to 40%
shorter, while remaining valid.

Classical sampling methods have been popular for
good reason. They make virtually no assumptions about the
data because all inference comes from the sampling design.
Because the estimators are based on a mean, they tend to be
normally distributed, as guaranteed by the central limit the­
orem. Thus, for almost any type of data, the estimates are
unbiased and the confidence intervals are valid. So, why
does block kriging seem to work? In the first two simula­
tions (Figures 3 and 4, and tables II and III), the data were
not produced as the result of a random process, and they are
not normally distributed. Because of this, block kriging is
not appropriate for these data. Yet, over repeated sampling,
block kriging does better than classical sampling (based on
smaller RMSE), and the variances and confidence intervals
are valid. Like the simple mean, block kriging also makes a
linear combination of the data, but with unequal weights.
There are versions of the central limit theorem for correlat­
ed data, although the rate of convergence is not as fast as for
independent data (Davidson, 1994). A similar effect occurs
here; the weighted summing of block kriging makes the pre­
dictions tend toward a normal distribution over repeated
samplings, so prediction intervals are approximately cor­
rect, just as for classical sampling. Of course, in this paper, I
only gave one fixed continuous surface and one fixed finite
population. For other situations, with the surface or finite
population composed of highly skewed data, the block krig­
ing results might not be so favorable.

It seems that for many ecological applications, a strong
case can be made for using the infinite (continuous) and
finite (discrete) versions of block kriging in situations that
would usually call for classical sampling estimates. The
advantages of block kriging are numerous. Besides having
smaller prediction variances (as seen in Tables II, III, and
IV), block kriging makes no assumption about how you
sample data. Random sampling is necessary for classical
sampling because it makes the random variables (from the

Validation statistics SRSI FPBKr2 FPBKf3
Bias 0.522 -0.181 0.127
RMSE4 28.0 20.7 17.3
RAEV5 28.0 20.3 17.5
80%CI6 0.801 0.791 0.796
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1 Simple Random Sampling
2 Finite Population Block Kriging from random sample
3 Finite Population Block Kriging from fixed sample
4 Root Mean Squared Errors
5 Root Average Estimated Variance
6 80% Confidence Interval Coverage

VER HOEF: SAMPLING AND GEOSTATISTICS

TABLE IV. Comparison of random sampling and finite population
block kriging. One thousand patterns were generated using a spa­
tially autocorrelated stochastic process, and fixed and random
samples were taken. Sample sizes were 50. For each simulation an
isotropic exponential covariance model was estimated from the
sample data using REML for FPBK.

decomposition method (see Cressie, 1993, p. 20 I), with an
exponential covariance model as given in Ci"hll). The
covariance parameters for the simulation were 8n=0.I,
8s=1.0, and 8,=15. A total of 1,000 different spatially auto­
correlated data sets were simulated (two of them are shown
in figure 5), and for each data set a random sample without
replacement of size 50 was drawn. In addition to the ran­
dom samples, I used a fixed systematic sample of size 50;
see figure 5. For the fixed sample, I used pairs of locations
that were close to each other, but then spread the pairs out
as much as possible. This was used for two reasons. First, it
is well known that it is most important to characterize the
spatial autocovariance at small distances (Stein, 1988).
However, once the covariance is obtained, the optimal design
is to have the data locations spread out as much as possible.
The design in figure 5, of systematically placed pairs, seems
like a sensible design. Other issues in the optimization of
sampling designs can be found in Matern (1986), Van
Groenigen et aI. (1999) and Van Groenigen (2000). For
each sample of size 50, I computed the classical sampling
estimate aRS = z . I estimated the variance of aRS with
var(aRS) = (S2/n)(1-n/N). Similarly, I computed the finite
population block kriging estimate aFPBK, given by [9] in the
Appendix, and its variance estimate var(a. FPBK)' given by
[11] in the Appendix. I used REML to estimate the parame­
ters of the exponential covariance model Ce(lIhll). This was
repeated for 1,000 different data sets and samples of size
50. From the 1,000 estimates of both aRS and a FPBK' and
their estimated variances, I computed the same statistics as
given for table II: bias, RMSE, RAEV, and the 80% confi­
dence interval coverage.

The results of the simulation are given in table IV.
Notice that there is no evidence of bias for either method
because the bias values are very small compared to RMSE.

.Also notice that for this simulation, FPBK has a smaller
RMSE than classical sampling, indicating that the FPBK
estimate is, on average, closer to the true value than the
classical sampling estimate. Also notice that for this simula­
tion, FPBK for the fixed sample has a smaller RMSE than
for the random sample, indicating that the FPBK estimate
with the fixed sample is, on average, closer to the true value
than the FPBK estimate from the random sample. For all
estimates, the RAEV is close to RMSE (Table IV). Finally,
the 80% confidence interval contains the true value about



sampling design) nearly uncorrelated (actually, a small
amount of negative correlation when sampling with replace­
ment; see Thompson, 1992, p. 22). For block kriging, auto­
correlation is modeled, so random sampling is not neces­
sary. This allows ecologists to choose sampling designs that
are both more powerful (e.g., the fixed design of Figure 5
and Table IV) and more convenient. Another important rea­
son to choose block kriging is for small area estimation. For
example, you may want to make population estimates for
your whole area and many smaller areas. To make estimates
in the small areas, classical sampling requires that there be
sufficient numbers of sampled units within the small area to
compute a mean and variance. Block kriging makes better
use of all of the data.

In summary, the design-based methods of classical
sampling are freer from assumptions because the estimates
arise from the way the data are sampled. The model-based
geostatistical methods make more assumptions, requiring
the ecologist to model the autocorrelation, but can allow for
more flexible designs and more powerful inferences. This is
true for spatially continuous, infinite populations, which has
been demonstrated before (Brus and de Gruijter, 1993) and
shown with a simulation in this paper. It is also true for spa­
tially discrete, finite populations, which has been demon­
strated here for the first time. Some care should be taken if
one suspects that stationarity does not apply throughout the
estimation region (McBratney and Webster, 1983); in that
case Stratification methods can be used (Ver HQef, 2001).
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VER HOEF: SAMPLING AND GEOSTATISTICS

ApPENDIX 1. Mathematical details of estimators.

CLASSICAL SAMPLING FOR A SPATIALLY CONTINUOUS POPULATION

For some spatial area A, the total for a spatially continuous variable is defined to be

r = Lz(s)ds [I]

where S is a vector of the x- and y-coordinates and z is the variable of interest, so z(s) is the value at location s.
Similarly, the mean is

where IAI is the area of A. The estimators of the mean and the total are aRS =zand ~s=lAlz, respectively, where z. is the
sample mean. The variance of a continuous spatial pattern is ~

i
-...:

[3]

[4]

[2]

[6]

[8]

[7]

[5]

a = Lz(s)ds IIAI.

and the variance of the mean estimator aRS is 821n, where 82 is estimated with

S2 = ±(z(Sj) - Z)2 I (n -1).
j=1

" , -I ,., "...
a 8K =cAI. (z-m)+,uA'

wherec A = [cj(A), c2(A), ...cn (A)]' with cJA) = fA C(u-s)du IIAI for i = 1,2, ... ,n;

m =X/hs and [LA =x~ Ihs with Ihs =(X'I.-IXrIX'I.-lz and x A =[x l (A),x2 (A), ...xn (A))' with

x/A) = Lx/u)du/l A I for} = 1, 2, ... ,p.

The prediction variance is given by £( aRS - a?, which I denote as

CLASSICAL SAMPLING FOR A SPATIALLY DISCRETE POPULATION

Suppose that for some spatial area A, there are N total sample units. The population total is

t = I:I z(Sj)'

where Si is a vector of the x- and y-coordinates for the ith sample unit, so z(s) is the value at location Si.

Similarly, the mean is

( ~) 2 , ",-I d' (X,,,,-IX)-I dvara 8K =(J'A.A-CA'" C A + A '" A'

where (J'~.A =LLC(s-u)dsdu/IA/2 and d A = x A -X'I.-I CA ·

The estimators of the mean and the total are ~s =zand ~s =N·z, respectively, where zis the sample mean.
The variance of a discrete spatial pattern is,

82 = (11 N)I:I (z(Sj) - a)2,

and the variance of the mean estimator is aRS =(82In)(1-nlN), where 82 is estimated with82 as given by [4].
Similarly, the variance of the total estimator is

var(rRS) = N 2 (8 2 I n)(1- n IN).

SimIlarly, the variance of the total estimator is var ( ~s) =1A12S2ln.

BLOCK KRIGING

Let the data be contained in the vector z, and assume that it follows a linear model z=X~ +£, where ~ is a px 1 parameter
vector, X is the nxp design matrix, and £(£)=0 and var(£) =L. Then the block kriging estimator of [2] is
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ApPENDIX I. Continued.

161

[9]

[10]

[11]

~su)
~"" .

~ ~ b' b' ~a FPBK or tFPBK = sZs + "z",

var(aFPBK ) or var(iFPBK ) == E(l'ZS - b"z)2 = b'Lb - C~L;sICb + d~(X~L;Xs r' db'

depending on b, where cb = Lssbs + LSlIbu and db = X~bs + X;,b u - X~L;sICb'

FINITE POPULATION BLOCK KRIGING

Let the finite population be contained in the vector z=(z'sZ'u)" and assume that it follows a linear model

ECOSCIENCE, VOL. 9 (2), 2002

The vector b contains weights for the quantity that we wish to estimate. Then the block kriging estimator of a is

withfus = XA~GLS and fu u = Xu13GLS and 13GLs= (X' sL-\sXs)-IX'sL-1sszs.The predictor b'szs+b'" i u is linear in the data and
can be written as 'A'z

S
' and the prediction variance is given by

where the subscript s indicates those units that are sampled and the subscript u indicates those units that are not sampled,
~ is a px I parameter vector, Xs is the nxp design matrix, Xu is the (N-n)xp design matrix, E(E) = 0 and

depending on b. Equation [9] shows that we apply the weights bs to Zs (those units that were sampled and thus observed)
and then use kriging to predict all of the unobserved units i u and apply weights bu to these predictions.

The predictions are given by


