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Modelling forest inventory variables is

challenging

* Spatial correlation: locations close to each other “share” information
* each plot does not represent a “full” unit of information.
* the “shared” information can be used to improve prediction (i.e., kriging)

* Zero-inflated: a large proportion of the values of the variable are 0
* Non-forest land, harvested areas, species not present...
* The proportion of Os increases as the domain becomes more restricted

e Often positive, very skewed

* This precludes using traditional modelling approaches based on the
normal distribution



Example: timber volume in NW Oregon
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* Not only it is zero-inflated, but the distribution is highly skewed
* No simple transformation / solution can deal with those problems



What is a copula model?

« A copula is a multivariate distribution function for which the marginal
probability distribution of each variable is uniform.

* Take advantage of the probability integral transformation
* If V is a random variable with cumulative distribution function Fy (v), then the
variable U = F,(v) is uniformly distributed on (0,1) [i.e., P(U < u) = u]

* The marginal distributions and the copula can be examined separately
and fitted either separately or jointly using maximum likelihood.

* Main result (Sklar): every multivariate distribution function can be
expressed in terms of its univariate marginal distributions and a copula
describing the dependence among them.



Marginal distribution
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e A cubic root transformation of the non-zero volumes worked best



Marginal distribution: zero-inflated gamma

« Zero-inflated gamma model to account for the excess Os

* The observed volume (V, cube root) is a Bernoulli mixture of a 0 and a
Gamma random variable:

B~Bernoulli(7) : probability of volume >0

W ~gammal(a, ) W volume (cube root), given that it is not O

V=@0-B)-0+B-W

 Modelled the mean of B and W as a function of an indicator of
forestland (based on of NLCD forest cover classes), Landsat tesseled cap
"wetness" variable (tsc3), and their interaction



Gaussian copula: double transformation

e First transformation: estimate the cumulative distribution function of
this marginal distribution, U = F,, (v)

e Second transformation: univariate standard normal, CD‘l(FV(v)) [D is
the standard normal cumulative distribution function]

* Join together in a multivariate standard normal distribution
* Model the spatial dependence structure via a (rank) correlation matrix
C(w; %) = dg| D" HF (v1)), ..., 2 (F ()]
[®s multivariate normal with mean 0 and correlation matrix X]
* Use the normal distribution tools for analysis /prediction (kriging)
* Reverse the transformations to the original scale



Transformation to Normal
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These steps are reversible.



Results

* For total volume, once we include the covariates, the spatial
correlation becomes negligible
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Total volume predictions

* Since spatial correlation is very weak, we can use a simple

zero-inflated gamma model
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Hemlock volume - semivariograms
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Hemlock volume predictions
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Conclusions and future work

* Gaussian copulas allow us to build realistic models for forest
inventory variables, incorporating spatial correlation and
non-standard distributions.

* Add covariates to build operational models

* Small area estimation: how to compute measures of uncertainty in
the original scale

* High dimensional dataset, computational difficulties.



