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Maximum Likelihood Estimation of
Regression Parameters With Spatially

Dependent Discrete Data
L. MADSEN

Generalized estimating equations (GEEs) have been successfully used to estimate
regression parameters from discrete longitudinal data. GEEs have been adapted for spa-
tially correlated count data with less success. It is convenient to model correlated counts
as lognormal-Poisson, where a latent lognormal random process carries all correlation.
This model limits correlation and can lead to negative bias of standard errors. Moreover,
correlation is not the best dependence measure for highly nonnormal data. This article
proposes a model which yields maximum likelihood (ML) estimates of regression pa-
rameters when the response is discrete and spatially dependent. This model employs a
spatial Gaussian copula, bringing the discrete distribution into the Gaussian geostatisti-
cal framework, where correlation completely describes dependence. The model yields
a log-likelihood for regression parameters that can be maximized using established nu-
merical methods. The proposed procedure is used to estimate the relationship between
Japanese beetle grub counts and soil organic matter. These data exhibit residual corre-
lation well above the lognormal-Poisson correlation limit, so that model is not appro-
priate. The data and MATLAB code are available online. Simulations demonstrate that
negative bias in GEE standard errors leads to nominal 95% confidence coverage less
than 62% for moderate or strong spatial dependence, whereas ML coverage remains
above 82%.

Key Words: Continuous extension; Correlated count data; Dependent count data;
Gaussian copula; Spatial copula.

1. INTRODUCTION

Dependent discrete data arise in many disciplines. Medical studies record clustered cat-
egorical responses. Meteorological data include time series of counts of extreme events or
numbers of times a threshold is exceeded. Environmental scientists observe spatially de-
pendent counts of organisms. Dependent binary data are ubiquitous in many fields. A com-
mon inferential goal is to estimate the relationship between a clustered or otherwise de-

L. Madsen is Assistant Professor of Statistics, Oregon State University, Corvallis, OR 97331 (E-mail:
madsenL@onid.orst.edu).

375

© 2009 American Statistical Association and the International Biometric Society
Journal of Agricultural, Biological, and Environmental Statistics, Volume 14, Number 4, Pages 375–391
DOI: 10.1198/jabes.2009.07116



376 L. MADSEN

pendent discrete response and a set of explanatory variables. This article proposes a max-
imum likelihood estimator for regression parameters from a spatially dependent discrete
response.

When a spatially dependent response can reasonably be assumed to be Gaussian, the
regression problem falls into the geostatistical framework, and techniques such as weighted
least squares or maximum likelihood are natural procedures for estimating the regression
coefficients (Schabenberger and Gotway 2005, section 6.2). When the response is discrete,
researchers typically turn to the generalized estimating equation (GEE) methodology of
Liang and Zeger (1986) and Zeger and Liang (1986). Some authors have adapted GEEs for
nonnormal spatial data (Albert and McShane 1995; Gotway and Stroup 1997; McShane,
Albert, and Palmatier 1997).

The GEE approach is unsatisfactory for three reasons. First, spatial GEE models typ-
ically assume that, conditional on a spatially correlated latent variable, the responses are
independent. For count data a lognormal-Poisson latent process model is commonly used
(Albert and McShane 1995; Gotway and Stroup 1997; McShane, Albert, and Palmatier
1997) wherein the latent process carries the spatial correlation. Specifically, let ε(·) be a
lognormal isotropic stationary spatial process. Let x(s) denote a covariate vector at loca-
tion s and let β be a vector of regression parameters. The ε process is designed to model
spatial dependence, so it is convenient to set E{ε(s)} = 1 and to model

cov{ε(s), ε(s + h)} = σ 2
ε ρε(h; θ)

for some spatial correlation function ρε depending on distance h and a vector of covari-
ance parameters θ . Conditional on the ε(s), let Y(s) be independent Poisson with mean
depending on x′(s)β:

E{Y(s)|ε(s)} = exp{ε(s) · x′(s)β}.
These assumptions induce marginal moments:

E{Y(s)} = exp{x′(s)β} ≡ μ(s),

var{Y(s)} = μ(s) + σ 2
ε μ2(s), (1.1)

corr{Y(s), Y (s + h)} = ρε(h; θ)

[{
1 + 1

σ 2
ε μ(s)

}{
1 + 1

σ 2
ε μ(s + h)

}]−1/2

.

Marginally, this lognormal-Poisson model closely resembles a negative binomial model,
as suggested by the mean-variance relationship given in Equation (1.1) which has the fa-
miliar form:

var{Y(s)} = μ(s) + r · μ(s)2. (1.2)

However, the correlation structure between the two models is very different. As discussed
in Section 3, the latent process lognormal-Poisson model imposes limits on correlations
that are well below the theoretical maximum for marginal negative binomial random vari-
ables. When the model limits the degree of dependence below that in the data, variance
estimates will be negatively biased because the model assumes more independent infor-
mation than actually exists. Section 6 illustrates a situation where the lognormal-Poisson
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latent variable model yields nominal 95% confidence intervals with actual coverage prob-
abilities of less than 40%.

Yasui and Lele (1997) developed an estimating function approach for estimating re-
gression parameters from a lognormal-Poisson latent variable model. Diggle, Tawn, and
Moyeed (1998) proposed a Bayesian estimation method for this model. These methods are
subject to the limits on correlation imposed by the lognormal-Poisson model.

The second problem with GEE methodology is that it models correlation, i.e., linear
dependence. For normal random variables linear dependence is equivalent to dependence,
whereas correlation may not be the right measure of dependence for highly nonnormal data.
Spatial discrete data are often small-mean counts which have highly skewed distributions
that cannot be approximated with a normal distribution.

Lin and Clayton (2005) developed a quasi-likelihood approach to spatially correlated
binary data. Diggle, Tawn, and Moyeed (1998) introduced a binary latent variable model.
Neither of these models limit correlations below the theoretical limits for binary random
variables. However, both these approaches seek to model dependence between Bernoulli
responses by correlation, which is not particularly appealing.

The third problem with GEE estimators is that they are not asymptotically efficient.
McCullagh and Nelder (1989) gave an example where the quasi-likelihood estimator is
considerably less efficient than the maximum likelihood estimator. Song (2007, section 6)
gave three cases where the GEE estimator is less efficient than a vector generalized linear
model.

This article introduces a maximum likelihood (ML) approach to estimation from a spa-
tially dependent discrete response. Dependent discrete data are brought into the geostatis-
tical framework by means of a Gaussian copula model where dependence is modeled as
correlation, so that well-known geostatistical correlation structures can be used (see, e.g.,
Cressie 1993, section 2.3.1). The Gaussian copula places no artificial limits on dependence
and can model correlations up to the theoretical maximum. Furthermore, the Gaussian
copula yields a likelihood for the regression parameters which can be maximized to obtain
estimates of those parameters. Simulations suggest that the ML estimators are as efficient
as the latent process lognormal-Poisson GEE estimators for weak spatial dependence, and
the ML estimators become more efficient than the GEE estimators as spatial dependence
increases.

Copula models (Joe 2001; Nelsen 2006) are founded in the work of Hoeffding (1940)
and have been used to model dependence and to construct multivariate distributions (Fisher
1997). Recent work by Pitt, Chan, and Kohn (2006) and Hoff (2007) explored Bayesian
estimation using the Gaussian copula to link dependent observations with given marginal
distributions. Pitt, Chan, and Kohn (2006) focused on estimating parameters of the mar-
ginal distributions whereas Hoff (2007) was concerned with estimating the dependence
parameters. Song, Li, and Yuan (2008) illustrated a maximum likelihood estimation ap-
proach using the Gaussian copula model applied to longitudinal data.

Although the focus of this article is to analyze spatially dependent discrete data, the
method is general and can be applied to other dependent discrete data including space-
time problems and longitudinal data.
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2. MOTIVATING EXAMPLE

Dalthorp (2004) discussed a study relating counts of Japanese beetle (Popillia japonica)
grubs to soil organic matter on a golf course near Geneva, New York. A grub density
exceeding 8 to 12 grubs per square foot can cause turfgrass damage. Effective control is
expensive and must be done before damage occurs, therefore, modeling grub counts as a
function of a covariate such as soil organic matter, a proxy for soil moisture, temperature,
and thatch thickness, could be useful to turfgrass managers as well as informative for insect
ecologists.

Figure 1 shows smoothed aerial views of organic matter and grub counts for the 142
observations in the dataset. A relationship between the two measurements is visible, with
high grub counts generally occurring with lower organic matter levels.

(a) (b)

Figure 1. Smoothed aerial views of the soil organic matter (a) and grub counts (b) on the observed fairway.
Dark colors represent smaller values. Higher grub counts tend to occur at lower levels of organic matter, but there
is clustering among the grubs that is not explained by the spatial pattern in organic matter.
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Figure 2. Histogram of observed grub counts. The distribution is quite skewed, with more than half of the
observations equal to zero, so the data cannot be made symmetric with a transformation.

Figure 2 shows that the distribution of the counts is extremely skewed with zeros com-

prising over half of the observations, so no simple normalizing transformation is available,

and a standard regression analysis is inappropriate.

The negative binomial model is a flexible probability model for overdispersed counts

and can be used to model ecological count data under different biological assumptions

(Solomon 1983). When the data are independent and the parameter r in Equation (1.2) is

assumed constant, a generalized linear model approach can be used to estimate regression

parameters (Venables and Ripley 2002).

The independence assumption is unreasonable for the grub data. Figure 1 shows clus-

tering in the grub counts that is not explained by the spatial pattern in organic matter. This

residual spatial dependence can be explained by the aggregation behavior of the adult bee-

tles (Dalthorp, Nyrop, and Villani 2000) and should be modeled in the estimation procedure

to avoid erroneous inference.

Using a GEE approach to account for the spatial correlation, Dalthorp (2004) found

that the exponential of a cubic function of soil organic matter fits the observed mean grub

counts. Madsen and Dalthorp (2007) observed that the sample correlations of these data are

as high as 0.19, whereas the lognormal-Poisson model cannot accommodate correlations

higher than 0.11. Details of the correlation limits are given in Section 3. The data are

small-mean counts (the sample mean is 0.66 and the sample maximum is 6), so modeling

correlation would be inappropriate regardless of correlation limits. In Section 5, the data

are analyzed using the method proposed in this article. The data may be obtained from the

JABES Data and Program Archive at http://www.amstat.org/publications/ jabes.
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3. LIMITS TO CORRELATION

Because correlation describes linear dependence between random variables, it is most
appropriate as a measure of dependence between Gaussian random variables or those
whose distribution may be well-approximated by a normal distribution. For binary ran-
dom variables with means close to 0 or 1, or for small-mean count random variables, a
normal approximation is not reasonable, and modeling correlation becomes complicated.

Correlation between nonnormal random variables is bounded above by a limit that may
be strictly less than 1. For random variables Y1 and Y2 with marginal distributions Y1 ∼
F and Y2 ∼ G, the limits on corr(Y1, Y2) can be calculated from the Fréchet–Hoeffding
bounds (Nelsen 2006, p. 11). If the Yi are discrete random variables, the upper limit is

ρU =
∑

(y1,y2)∈A1
[1 − G(y2)] + ∑

(y1,y2)∈A2
[1 − F(y1)] − μY1μY2

σ1σ2
, (3.1)

where μi = E(Yi), σ 2
i = var(Yi), A1 = {(y1, y2) :F(y1) ≤ G(y2)}, and A2 = {(y1, y2) :

F(y1) > G(y2)}.
Prentice (1988) noted that for marginally binary random variables Y1 and Y2 with

P(Yi = 1) = pi ,

corr(Y1, Y2) ≤ min

[{
p1(1 − p2)

p2(1 − p1)

}1/2

,

{
p2(1 − p1)

p1(1 − p2)

}1/2]
.

Madsen and Dalthorp (2007) observed that latent process lognormal-Poisson random vari-
ables are maximally correlated when the latent lognormal random variables are maximally
correlated. For latent process lognormal-Poisson random variables Y1 and Y2 with means
and variances μYi

and σ 2
Yi

, respectively, the upper bound is

corr(Y1, Y2) ≤ μY1μY2

σY1σY2

[
exp{√log(c1) log(c2)} − 1

]
, (3.2)

where ci = 1 +μ−2
Yi

(σ 2
Yi

−μYi
). Madsen and Dalthorp (2007) gave two ecological datasets

with sample moments that violate this bound. One of these datasets is the Japanese beetle
data introduced above in Section 2.

As mentioned in Section 1, the lognormal-Poisson distribution closely resembles the
negative binomial if only the marginal distributions are considered. However, marginally
negative binomial random variables can achieve much higher correlations than latent
process lognormal-Poisson random variables (Madsen and Dalthorp 2007). Figure 3 com-
pares the maximum possible correlation between two latent process lognormal-Poisson
random variables [Figure 3(a)] and between two negative binomial random variables [Fig-
ure 3(b)] with means and variances similar to those observed in the Japanese beetle grub
data of Section 2. The correlation limit for latent process lognormal-Poisson random vari-
ables is given in Equation (3.2), whereas that for negative binomial random variables is
from Equation (3.1). Empirical residual correlation in the grub data exceeds the latent
process lognormal-Poisson upper bounds. Intuitively, Equation (3.2) is small because the
conditionally independent Poissons add too much variance onto the correlated conditional
means. When the maximum correlation allowed by the model is smaller than the correla-
tion occurring in the data-generating process, standard errors may be too small because the
model does not allow the proper correction for the lack of independence.
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(a) (b)

Figure 3. Maximum corr(Y1, Y2) for (a) lognormal-Poisson Yi and (b) negative binomial Yi as a function of
means E(Yi). The ranges for E(Yi) are from the Japanese beetle data example of Section 2. E(Yi) ranges between
0.26 and 2.5, and variances are var(Yi ) = 1.228{E(Yi)}1.148 (Madsen and Dalthorp 2007). Observed correlations
in these data exceed the lognormal-Poisson bounds. The bounds in (a) are given by (3.2) and the bounds in (b)
are given by (3.1).

4. A NEW MODEL FOR DEPENDENT DISCRETE DATA

Given random variables Y1 and Y2 with continuous marginal distributions F1 and F2,
respectively, the maximum possible correlation between Y1 and Y2 can be achieved via a
Gaussian copula

C(y1, y2; δ) = �δ

[
�−1{F1(y1)},�−1{F2(y2)}

]
, (4.1)

by setting δ = 1, where � is the standard normal cdf and �δ is the bivariate normal cdf
with correlation δ (Joe 2001, pp. 140–141). C(y1, y2; δ) gives a joint distribution function
of Y1 and Y2 with marginal distributions F1 and F2 and dependence determined by the
parameter δ. Song (2007, p. 130) called δ the “normal scoring” between nonnormal Y1

and Y2 and discusses the connection between δ and two other measures of association,
Spearman’s ρ and Kendall’s τ .

Unlike many bivariate copula models, the Gaussian copula easily generalizes to the
multivariate setting. Let Y1, . . . , Yn be random variables with continuous marginal distrib-
utions Fi and density functions fi . Let � be a nonnegative definite matrix with diagonal
entries equal to 1, a valid correlation matrix. Then a joint distribution of Y1, . . . , Yn with
the specified marginals is

C(y;�) = ��

[
�−1{F1(y1)}, . . . ,�−1{Fn(yn)}

]
, (4.2)

where �� is the multivariate normal cdf with covariance matrix �. Differentiating
C(y1, . . . , yn) yields joint density function

c(y;�) = |�|−1/2 exp

{
−1

2
z′(�−1 − In)z

}
·

n∏
i=1

fi(yi), (4.3)

where z = [�−1{F1(y1)}, . . . ,�−1{Fn(yn)}]′ and In denotes the n × n identity matrix.
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If the Yi are discrete, the joint probability mass function of Y1, . . . , Yn is

g(y;�) = P(Y1 = y1, . . . , Yn = yn)

(4.4)

=
2∑

j1=1

· · ·
2∑

jn=1

(−1)j1+···+jn��

[
�−1{u1j1

}
, . . . ,�−1{unjn

}]
,

where ui1 = Fi(yi) and ui2 = Fi(yi−), the limit of Fi at yi from the left (Song 2000). For
count or binomial random variables, Fi(yi−) = Fi(yi − 1).

Equation (4.4) contains 2n terms and is intractable for n larger than 4 or 5. However,
the n-fold summation in Equation (4.4) can be avoided by using a continuous extension of
the Yi proposed by Denuit and Lambert (2005). Associate with discrete Yi a continuous
random variable

Y ∗
i = Yi − Ui, (4.5)

where Ui follows a continuous uniform distribution on (0,1) independent of Yi and of Uj

for j �= i. Then Y ∗
i is a continuous random variable with distribution function

F ∗
i (y) = Fi([y]) + (y − [y])P (Yi = [y + 1]),

and density

f ∗
i (y) = P(Yi = [y + 1]), (4.6)

where [y] denotes the integer part of y ∈ R.
Note that no information is lost by continuously extending Yi in Equation (4.5) since Yi

can be recovered from Y ∗
i as

Yi = [Y ∗
i + 1].

Furthermore, Denuit and Lambert (2005) proved that the continuous extension preserves
Kendall’s τ , and Kruskal (1958) gave Kendall’s τ in terms of the parameter δ in Equa-
tion (4.1). Thus Y ∗

i and Y ∗
j have the same dependence relationship as Yi and Yj .

If Y(·) is an isotropic discrete random spatial process observed at locations s1, . . . , sn,
then the multivariate Gaussian copula can be used to model the joint distribution of
(Y1, . . . , Yn) = [Y(s1), . . . , Y (sn)] by giving the copula correlation matrix � a spatial form.
Let ρ(h) be an isotropic parametric correlogram (Cressie 1993, p. 67) depending on a vec-
tor of parameters θ and a distance h. Define �(θ) to be the n × n correlation matrix with
ij th element

�ij (θ) = ρ(‖si − sj‖). (4.7)

Let Y ∗
i be the continuous extension of Yi given in Equation (4.5). The joint distribution

of Y ∗
1 , . . . , Y ∗

n can be modeled via the multivariate Gaussian copula of Equation (4.2) with
correlation matrix �(θ). Because �(θ) has a spatial form, the copula model accounts for
the spatial dependence among Y1, . . . , Yn.

The density found in Equation (4.3) forms a likelihood for correlation parameters θ ,
regression parameters β , and, if necessary, a scale parameter φ of the marginal densities
f ∗

i . From Equation (4.6), β and φ are exactly the parameters of the marginal distributions
of (Y1, . . . , Yn). Because Equation (4.3) depends on the ancillary Ui , we integrate over
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U = (U1, . . . ,Un) and take expected likelihood

L(β, θ , φ;y) = E

{
exp[−(1/2)z∗′(�−1 − In)z∗]∏n

i=1 f ∗
i (y∗

i )

(2π)n/2|�|1/2

∣∣∣y}
, (4.8)

where z∗ = [�−1{F ∗
1 (y∗

1 )}, . . . ,�−1{F ∗
n (y∗

n)}]′ and y denotes the data vector. It can be
shown that Equation (4.8) is equal to the true copula joint probability mass function of
Equation (4.4). Parameter vector ξ = (β, θ , φ) can be estimated by maximizing the log of
Equation (4.8):

(β̂, θ̂ , φ̂) = arg max
β,θ ,φ

log{L(β, θ , φ;y)}. (4.9)

Under regularity conditions (see, e.g., Mardia and Marshall 1984), the MLEs β̂ , θ̂ , and φ̂

will be consistent and asymptotically normal with asymptotic covariance matrix given by
the Fisher information −{E(H)}−1 where the ijth element of H is Hij = ∂2L/(∂ξi ∂ξj ).

Some authors noted difficulty in estimating covariance parameters (Berger, de Oliveira,
and Sansó 2001; Zhang 2004; Irvine, Gitelman, and Hoeting 2007) using the Gaussian
geostatistical model. Lee, Nelder, and Pawitan (2006) devoted much attention to estimating
the dispersion parameter in the generalized linear model framework. Because the purpose
of this article is to estimate the regression parameters β , covariance parameters θ and
dispersion parameter φ are nuisance parameters, and are only used to account for spatial
dependence and overdispersion, respectively. Section 6 includes a brief discussion of how
well the residual dependence is estimated by θ̂ and the excess variability by φ̂.

5. EXAMPLE

The Japanese beetle grub data, introduced in Section 2, were analyzed using the pro-
posed method. Details of the implementation and results are given here. MATLAB code is
available in the Supplemental Materials

The observed grub counts y1, . . . , y142 are overdispersed counts, so we assume a mar-
ginal negative binomial distributions with means

μi = exp(β0 + β1xi + β2x
2
i + β3x

3
i ),

where xi is the observed percent soil organic matter content at the ith location, as in
Dalthorp (2004). The probability mass function of Yi is

p(y,φ,μi) = �(y + φμi)

y!�(φμi)
· φφμi

(1 + φ)y+φμi
, (5.1)

where �(·) is the gamma function and φ is the “overdispersion” parameter, i.e.,

var(Yi) = μi · 1 + φ

φ
. (5.2)

The usual parameterization of the negative binomial probability mass function leads
to mean-variance relationship in Equation (1.2). The parameterization in Equation (5.1)
is discussed in McCullagh and Nelder (1989, p. 199). Parameters φ and r are related as
r = φ · μ.
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Using Taylor’s Power Law (Taylor 1961), Dalthorp (2004) concluded that var(Yi) =
aμb

i , where a is between 1.23 and 2.10, and b is between 1.15 and 1.24. The mean-variance
relationship in Equation (5.2) assumes that b = 1. This is done for simplicity, since the
focus is estimating β . A more flexible model could be obtained by letting φ vary, either
spatially or as a function of the covariates (Hilbe 2007).

The correlogram ρ(h) is assumed to be exponential with two parameters so that the ij th
element of the correlation matrix �(θ) in Equation (4.7) is

�ij (θ) =
{

θ0 exp(−hij θ1), i �= j

1, i = j ,
(5.3)

where hij is the distance between the locations of yi and yj , 0 < θ0 ≤ 1 is the “nugget”
parameter, and θ1 > 0 is the “decay” parameter.

The inferential goal is to estimate the βk . Maximum likelihood estimates (MLEs) of
βk , φ, and θj are obtained by numerically maximizing the log of expected likelihood of
Equation (4.8) with respect to β , θ , and φ. The log expected likelihood is approximated as

logL(β, θ , φ;y) ≈ log

(
1

m

m∑
j=1

[exp{−(1/2)z∗
j
′(�−1 − I142)z∗

j }
∏n

i=1 f ∗
i (y∗

i )

(2π)n/2|�|1/2

])
,

where z∗
j = [�−1{F ∗

1 (y1 −u1,j )}, . . . ,�−1{F ∗
n (yn −un,j )}]′, and the ui,j are independent

uniform on (0,1) for i = 1, . . . ,142 and j = 1, . . . ,m. In general, m can be chosen by
comparing estimates and standard errors from repetitions of the estimation procedure with
various m. For example, if repeated estimates and standard errors are approximately equal
for m = 1000, this suggests that m = 1000 is sufficient for the data. To obtain the results
reported here, m was taken to be 1000, since the coefficient of variation for point estimates
and standard errors were all less than 0.02 among 10 runs of the estimation algorithm with
m = 1000.

The computational intensity of this estimation procedure increases with m. The average
time for m = 1000 was just under 2 min on a quad core 2.4 GHz desktop computer. The
computational burden is primarily in calculating the z∗

i,j = �−1{F ∗
i (yi − ui,j )} and their

derivatives, though these operations may be vectorized in languages such as MATLAB and
R. Note that the dimension of � does not change and �−1 only needs to be calculated
once, regardless of m. Further research may yield ways to streamline the computation.
For example, faster approximations of �−1(·) and Fi(·) might be used initially and more
precise approximations used as the optimization approaches convergence.

Variance estimates are obtained by numerically approximating the Hessian matrix H at
the MLE and taking v̂ar(ξ̂) = −Ĥ−1, so that v̂ar(ξ̂) is a numerical approximation of the
observed information matrix.

Figure 4 shows the data with the fitted mean functions from ML estimation and GEE
estimation. The two curves are very similar; the average squared difference in fitted values
is (142)−1 ∑142

i=1(ŷML − ŷGEE)2 = 0.0035. Point estimates and standard errors of the βk

for both ML and GEE are given in Table 1. ML point estimates of the βk are all slightly
smaller than the GEE point estimates, but the GEE standard errors are only about 80% of
the ML standard errors. The simulation study in Section 6 suggests that the GEE standard
errors are too small.
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Figure 4. Plot of observed grub counts as a function of percent soil organic matter. Superimposed is the fitted
mean function from both estimation procedures.

Individual hypotheses H0 :βk = 0 may be tested via a Wald statistic W = β̂k/SE(β̂k),
where W follows an approximate standard normal distribution under the null hypothesis
(Lee, Nelder, and Pawitan 2006, p. 22). Except for β3 under ML estimation, all |W | > 2
so, with a significance level of α = 0.05, the GEE analysis would conclude that a cubic
function of organic matter is necessary, whereas the ML analysis would conclude that a
quadratic function is sufficient. Of interest to turfgrass managers is the expected number
of grubs given a particular percent organic matter x0. A nominal 95% confidence interval
for mean grub count for a given x0 is

μ̂0 ± 1.96
√

x′
0v̂ar(β̂)x0

where x0 = [1, x0, x
2
0 , x3

0 ]′ and v̂ar(β̂) is the submatrix of v̂ar(ξ̂) corresponding to β .
Fitted correlation parameters gave a residual correlogram comparable to that in Dalthorp

(2004, figure 9). The point estimate of overdispersion parameter φ was 51.02, which gave

Table 1. Estimates and standard errors for mean function parameters from the Japanese beetle data using both
estimation procedures.

Estimate (SE)

Parameter ML GEE

β0 −24.34 (11.63) −25.07 (9.49)

β1 11.96 (5.71) 12.36 (4.66)

β2 −1.84 (0.91) −1.91 (0.74)

β3 0.09 (0.05) 0.09 (0.04)
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var(Yi) = 1.02μi . For fitted means below about 0.2 this was comparable to the mean-

variance relationship in Dalthorp (2004), whereas for larger fitted means, corresponding

variances were up to 22% smaller than those in Dalthorp (2004). Note that underestimat-

ing the variances will tend to lead to overestimating correlations, so the model used is

conservative, since we are concerned about adequately accounting for dependence.

6. SIMULATION STUDY

A simulation study was performed to assess the performance of the proposed ML esti-

mator compared to a GEE estimator. Three sample sizes were simulated (n = 144, n = 225,

and n = 484). Spatial locations were on a regular square grid with 1-unit spacing. For each

sample size, four levels of spatial dependence (weak, low, moderate, and strong) and three

sample sizes were simulated. Spatial dependence is described as effective range, the dis-

tance at which correlation drops to 0.05. The weakly correlated datasets have effective

range R = 1.2, and datasets with low, moderate, and strong dependence have effective

ranges R = 3.1, R = 5.3, and R = 8.3, respectively. Target means are taken to be constant

exp(β) where β = 1, so all dependence in the data is due to spatial proximity, not spa-

tial pattern of covariates. Because the GEE procedure depends on the lognormal-Poisson

model which cannot model high correlations, it is expected that the ML estimator will

outperform the GEE estimator for data with moderate or high spatial dependence. Table 2

gives the percentage of elements of the correlation matrix exceeding the lognormal-Poisson

upper bound for each scenario. Samples with weak correlation fell within the lognormal-

Poisson upper bound. A larger percentage of pairs exceeding the lognormal-Poisson upper

bound is found when either dependence increases or sample size decreases.

N = 500 simulated datasets were generated for each scenario using the model given

in Equation (5.1). ML estimates β̂ML were obtained using the procedure described in

Section 5. GEE estimates β̂GEE were obtained using the algorithm of McShane, Albert,

and Palmatier (1997). Both algorithms used the exponential correlation model from Equa-

tion (5.3), though � represents different quantities in each model. In the lognormal-Poisson

model, � is the correlation matrix of the latent lognormal vector, whereas in the Gaussian

copula model it is the copula correlation matrix.

Table 2. Percentage of pairs exceeding the latent process lognormal-Poisson upper bound for the twelve simu-
lation scenarios.

Effective
range

% pairs above L-P bound

n = 144 n = 225 n = 484

R = 1.2 0 0 0
R = 3.1 4.9 3.2 2.6
R = 5.3 19.6 15.2 7.4
R = 8.3 40.2 29.1 16.1
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Figure 5. Observed relative efficiency of GEE estimator to MLE. Points plotted are the ratio of Monte Carlo
sample variances (6.1) for each scenario. All but two of the ratios exceed one, so the ML estimator appears to be
more efficient than the GEE estimator. When spatial dependence is low, the relative efficiency is approximately
one.

Figure 5 plots the observed relative efficiency

(N − 1)−1 ∑N
i=1(β̂GEE − β̂GEE)2

(N − 1)−1
∑N

i=1(β̂L − β̂ML)2
, (6.1)

versus the effective range. In all but 2 of the 12 simulation scenarios, the observed relative
efficiency exceeds 1, suggesting that the ML estimator is more efficient than the GEE
estimator. For weak spatial dependence the observed relative efficiencies are all within 0.02
of 1. As the effective range increases, the observed relative efficiency increases, though for
n = 484 the observed relative efficiency is smaller for R = 8.3 than it is for R = 5.3.

Figure 6 gives nominal 95% confidence coverage for the two estimators under the two
simulation scenarios. Both estimators perform best under weak dependence, and confi-
dence coverage declines as dependence increases. This decline may be attributed to the
fact that both estimators’ standard errors are obtained from asymptotic variance estimators,
and the effective sample size declines as dependence increases. ML confidence coverage
exceeds GEE coverage in 11 of the 12 simulation scenarios. GEE coverage is particularly
poor when spatial dependence is high. This is due to the inability of the latent process
lognormal-Poisson model to account for high correlations among the data.

ML estimates of correlation parameters θ̂0 and θ̂1 were found to be correlated, espe-
cially for data with weak dependence. Intuitively, this is because near-independence can
be modeled as in Equation (5.3) either by a large nugget parameter θ0 or a large decay
parameter θ1. Observed correlations between θ̂0 and θ̂1 were between 0.83 and 0.94 for
the three simulations with effective range 1.2 and dropped to between 0.25 and 0.51 for
the three simulations with effective range 8.3. This correlation made estimation of these
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Figure 6. Comparison of nominal 95% confidence coverage for GEE and ML interval estimators. The dotted
horizontal reference line is at coverage = 0.5. Coverage declines as dependence increases, particularly for GEE
estimators.

parameters difficult. However, estimates of the θi are used here only to account for spatial

dependence, characterized by θ0 exp(−hθ1).

It should be emphasized that θ0 exp(−hθ1) is not the correlation between counts sepa-

rated by a distance h. Rather, this quantity is the “normal scoring,” �ij =
corr[�−1{Fi(Yi)},�−1{Fj (Yj )}], where Yi and Yj are located h units apart. The relation-

ship between corr[�−1{Fi(Yi)},�−1{Fj (Yj )}] and corr(Yi, Yj ) is not known precisely

(unless Yi and Yj are jointly normal, see Kruskal 1958), but it is monotone and when

�ij = 0, Yi , and Yj are independent, and as mentioned in Section 4, when �ij = 1, Yi and

Yj are maximally correlated.

A comparison of θ̂0 exp(−hθ̂1) with the truth θ0 exp(−hθ1) reveals that normal scoring

�ij is underestimated. This underestimation has little effect on the fitted spatial depen-

dence of the data with effective range R = 1.2, since these data are nearly independent.

Comparison of plots of empirical variograms from the simulated data with analogous plots

from data simulated with correlation parameters chosen by eye to match the observed mean

of θ̂0 exp(−hθ̂1) showed slightly dampened spatial dependence. This may explain the drop

in confidence coverage for these simulation scenarios. Improving estimates of � is a topic

of future research.

Estimates of φ were highly variable, but estimates of overdispersion factor φ−1(1 + φ)

were stable. Observed mean squared error M̂SE ≡ 500−1 ∑500
i=1{φ̂−1(1 + φ̂) − φ−1(1 +

φ)}2 increased with spatial dependence and decreased with sample size. For sample size

n = 484 and effective range R = 1.2, M̂SE = 0.024, and for n = 144 and R = 8.3, M̂SE =
0.118.
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7. CONCLUSIONS AND FUTURE RESEARCH

The spatial Gaussian copula model can be used to estimate the relationship between a set
of covariates and a spatially dependent discrete response. The ML estimator presented here
appears to be more efficient than the GEE estimator. Furthermore, in 11 out of 12 simula-
tion scenarios, coverage of nominal 95% confidence intervals is closer to 95% for ML than
for GEE. When the data are moderately or highly dependent, coverage of GEE intervals is
well below 70%. GEE intervals’ coverage is substantially lower for highly dependent data
because the model cannot account for the high degree of correlation. Coverage of both
ML and GEE interval estimators decline as spatial dependence increases. This decline is
likely due to the reduction of effective sample size in samples with higher dependence.
Further research is needed to obtain better ML estimates of spatial dependence when that
dependence is strong.

Though the motivation for this research is to analyze spatially correlated discrete data,
particularly count data, the model is general and can be applied to other correlated dis-
crete data including space-time problems and longitudinal data. In the spatial setting, the
Gaussian copula correlation matrix is modeled using a spatial correlation function. In other
settings, other correlation models would be appropriate. Furthermore, without the contin-
uous extension, the method applies to nonnormal continuous distributions as well.

APPENDIX

The first derivatives of log expected likelihood

l(β, θ , φ;y) = log

(
E

{
exp[−(1/2)z∗′(�−1 − In)z∗]∏n

i=1 f ∗
i (y∗

i )

(2π)n/2|�|1/2

∣∣∣y})
(A.1)

are given.
For simplicity, ignore the constant (2π)n/2. Note that Equation (A.1) can be rewritten

as

l(β, θ , φ;y) = log

(
E

[
exp

{
−1

2
z∗′

(�−1 − In)z∗
}∣∣∣y])

+
n∑

i=1

log[f ∗
i (y∗

i )] − 1

2
log |�|.

Let ξ be a parameter of the marginal distribution of Yi , e.g., ξ = βj or ξ = φ for the model
in this article. Then

∂l

∂ξ
= E[exp{−(1/2)z∗′(�−1 − In)z∗}{−(∂z∗′/∂ξ)(�−1 − In)z∗}|y]

E[exp{−(1/2)z∗′(�−1 − In)z∗}|y]

+
n∑

i=1

∂f ∗
i (y∗

i )/∂ξ

f ∗
i (y∗

i )
,

where

∂z∗
i

∂ξ
= 2π

exp(−(1/2)z2
i )

· ∂

∂ξ
F ∗

i (y∗
i ).
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For correlation parameter θi ,

∂l

∂θi

= E[exp{−(1/2)z∗′(�−1 − In)z∗}{(1/2)z∗′(�−1(∂�/∂θi)�
−1)z∗}|y]

E[exp{−(1/2)z∗′(�−1 − In)z∗}|y]

− 1

2
trace

(
�−1 ∂�

∂θi

)
.

SUPPLEMENTAL MATERIALS

Functions for estimation: Contains main function “GrubEstimation.m” and negative log
expected likelihood function “NegLogEL.m” used to estimate parameters in Section 5.
The data analyzed are also included in a text file. (Grubs.zip)
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