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Modern Robust Statistical Methods
An Easy Way to Maximize the Accuracy and Power of Your Research

David M. Erceg-Hurn University of Western Australia
Vikki M. Mirosevich Government of Western Australia

Classic parametric statistical significance tests, such as
analysis of variance and least squares regression, are
widely used by researchers in many disciplines, including
psychology. For classic parametric tests to produce accu-
rate results, the assumptions underlying them (e.g., nor-
mality and homoscedasticity) must be satisfied. These as-
sumptions are rarely met when analyzing real data. The
use of classic parametric methods with violated assump-
tions can result in the inaccurate computation of p values,
effect sizes, and confidence intervals. This may lead to
substantive errors in the interpretation of data. Many mod-
ern robust statistical methods alleviate the problems inher-
ent in using parametric methods with violated assumptions,
yet modern methods are rarely used by researchers. The
authors examine why this is the case, arguing that most
researchers are unaware of the serious limitations of clas-
sic methods and are unfamiliar with modern alternatives. A
range of modern robust and rank-based significance tests
suitable for analyzing a wide range of designs is intro-
duced. Practical advice on conducting modern analyses
using software such as SPSS, SAS, and R is provided. The
authors conclude by discussing robust effect size indices.

Keywords: robust statistics, nonparametric statistics, effect
size, significance testing, software

Null hypothesis significance testing is the work-
horse of research in many disciplines, including
medicine, education, ecology, economics, soci-

ology, and psychology. A recent study of 10 leading inter-
national psychology journals found that null hypothesis
significance testing was used in 97% of articles (Cumming
et al., 2007). The most widely used null hypothesis tests are
classic parametric procedures, such as Student’s t, analysis
of variance (ANOVA), and ordinary least squares regres-
sion. For classic parametric tests to produce accurate re-
sults, the assumptions underlying them must be sufficiently
satisfied. However, these assumptions are rarely met when
analyzing real data. The use of classic parametric tests
when assumptions are violated can lead to the inaccurate
calculation of p values. This can result in an increased risk
of falsely rejecting the null hypothesis (i.e., concluding that
real effects exist when they do not). In contrast, power to
detect genuine effects is often substantially reduced. An
additional problem is that common measures of effect size
(e.g., Cohen’s d) and confidence intervals may be inaccu-
rately estimated when classic parametric assumptions (e.g.,

normality) are violated. The miscomputation of p values,
coupled with the inaccurate estimation of effect sizes and
confidence intervals, can lead to substantive errors in the
interpretation of data. Several prominent statisticians and
researchers have described the use of classic parametric
statistics in the face of assumption violations as invalid
(e.g., Kezelman et al., 1998; Leech & Onwuegbuzie, 2002;
Wilcox, 2001; Zimmerman, 1998).

Modern robust statistical procedures exist that can
solve the problems inherent in using classic parametric
methods when assumptions are violated. Many modern
statistical procedures are easily conducted with widely used
software such as SPSS, SAS, and R. Despite the advan-
tages of modern methods and the ease with which these
procedures can be conducted, they are rarely used by
researchers. In the first part of this article, we examine why
this is the case. We argue that most researchers are unaware
of the limitations of classic methods and do not realize that
modern alternatives exist. In the second half of the article,
we provide a practical, nontechnical introduction to some
modern methods.

Problems With Classic Parametric
Methods

Classic parametric methods are based on certain as-
sumptions. One important assumption is that the data being
analyzed are normally distributed. In practice, this assump-
tion is rarely met. Micceri (1989) examined 440 large data
sets from the psychological and educational literature, in-
cluding a wide range of ability and aptitude measures (e.g.,
math and reading tests) and psychometric measures (e.g.,
scales measuring personality, anxiety, anger, satisfaction,
locus of control). None of the data were normally distrib-
uted, and few distributions remotely resembled the normal
curve. Instead, the distributions were frequently multimo-
dal, skewed, and heavy tailed. Micceri’s study indicated
that real data are more likely to resemble an exponential
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curve than a normal distribution. Micceri’s findings are
consistent with other research. Bradley (1977) identified
several examples of asymmetrical and skewed distributions
in the social science literature. For example, reaction time
is often used as a dependent variable in psychological
research, and it is well-known that reaction time data are
frequently skewed (Miller, 1988; Taylor, 1965).

Another important assumption underlying classic
parametric tests is that of equal population variances (also
called homogeneity of variance, or homoscedasticity). The
assumption can be framed in terms of a variance ratio
(VR). If two populations have similar variances, their VR
will be close to 1:1. For example, if the variance of Pop-
ulation A is 120 and the variance of Population B is 100,
their VR would be 120:100, or 1.2:1. When real data are
analyzed, the VR often strays markedly from the 1:1 ratio
required to fulfill the assumption. Keselman et al. (1998)
conducted a comprehensive review of ANOVA analyses in
17 educational and child psychology journals. For each
study, a sample VR was calculated by dividing the largest
variance by the smallest variance. In studies using a one-
way design, the median VR was 2.25:1, and the mean VR
was 4:1. In factorial studies, the median VR was 2.89:1 and
the mean VR was 7.84:1. Keselman et al. identified several
extreme VRs, the largest being 566:1. Large variance ratios
have also been found in reviews of studies published in
clinical and experimental psychology journals. Grissom
(2000) examined one issue of the Journal of Consulting
and Clinical Psychology and identified sample ratios of
4:1, 6:1, 7:1, and 8:1 on more than one occasion. Ratios of
25:1 and 281:1 were also found. We examined two recent
issues of the Journal of Experimental Psychology: General
and the Journal of Experimental Psychology: Human Per-
ception and Performance. We identified 28 studies in

which data were analyzed using ANOVA. In these studies,
sample VRs between 2:1 and 4:1 were common. Several
VRs exceeding 10:1 were identified, including VRs of
39:1, 59:1, 69:1, and 121:1. These sample VRs are subject
to considerable sampling error; nevertheless, the magnitude
of the VRs and the consistency with which they are re-
ported suggest that it is not unusual for the homoscedas-
ticity assumption to be violated.

The presence of heteroscedasticity in real data is not
surprising, given the nature of the research designs and
samples psychologists typically use. Researchers are often
interested in comparing the performance of preexisting
groups (e.g., men and women) on some dependent variable.
Groups defined using a preexisting factor can have differ-
ent variances (Keppel & Wickens, 2004). For example, the
performance of older adults on measures of cognitive func-
tioning is more variable than that of younger adults
(Hultsch, MacDonald, & Dixon, 2002). Heteroscedasticity
can also occur in completely randomized experiments as a
result of the experimental variable causing differences in
variability between groups. Consider a trial investigating
the efficacy of a novel psychotherapy for depression. Par-
ticipants in the trial are randomly allocated to either (a) an
experimental group that receives the novel treatment or (b)
a control group that receives no treatment. Participants’
depressive symptoms are measured at the start of the trial
and 12 weeks later. Because of random allocation, the
variances of the two groups at the start of the trial should
be roughly equivalent. However, the groups’ variances at
the end of the trial may be significantly different as a result
of the effects of the experimental variable. There may be
great variability in the response of participants in the novel
psychotherapy group. Some participants may find that their
symptoms completely remit, others may have a partial
response, some may experience no change, and a few may
experience worsening of their symptoms. In contrast, the
majority of the participants in the control group may ex-
perience comparatively little change in their depressive
symptoms. If this is the case, the variances of the two
groups at the end of the trial will be heterogeneous. See
Grissom and Kim (2005) for additional discussion about
why heteroscedasticity occurs in real data.

Violation of the normality and homoscedasticity as-
sumptions can have a substantial influence on the results of
classic parametric tests, in particular on rates of Type I and
Type II error. A Type I error occurs when the null hypoth-
esis is falsely rejected. In other words, one concludes that
a real effect exists when it does not. In contrast, a Type II
error occurs when the null hypothesis is not rejected even
though it is false. The power of a test is the probability that
a Type II error will not occur.

Violation of the normality and homoscedasticity as-
sumptions can cause the Type I error rate to distort. Usu-
ally, the Type I error rate (also known as the alpha rate, or
�) is set at .05. This means that if a result is deemed
statistically significant, there should be less than a 5% risk
that a Type I error has been made. However, when classic
parametric tests are used to analyze nonnormal or het-
eroscedastic data, the true risk of making a Type I error
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may be much higher (or lower) than the obtained p value.
Consider performing an ANOVA on data when variances
and sample sizes are unequal. An ANOVA is run in SPSS
or SAS, and the p value reported is .05. This should mean
that if the null hypothesis is rejected, there is less than a 5%
chance that a Type I error has been made. However, the
true risk of committing a Type I error may be closer to 30%
(Wilcox, Charlin, & Thompson, 1986). Contrary to popular
belief, equal sample sizes offer little protection against
inflated Type I error when variances are heterogeneous
(Harwell, Rubinstein, Hayes, & Olds, 1992). Conducting a
regression analysis with violated assumptions can also lead
to inflated rates of Type I error. The probability of a Type
I error when testing at an alpha rate of .05 can exceed 50%
when data are nonnormal and heteroscedastic (Wilcox,
2003). Researchers need to be aware that the p values
reported by statistical packages such as SPSS may be
extremely inaccurate if the data being analyzed are non-
normal and/or heteroscedastic; The inaccuracy may lead
researchers to unwittingly make Type I errors.

An additional problem is that the power of classic
parametric tests can be substantially lowered when the
assumptions of normality or homoscedasticity are violated.
See Wilcox (1998) for an example in which only a small
departure from normality reduces the power of the t test
from .96 to .28. Wilcox (1998) summarized the effect on
power of violating the normality and homoscedasticity
assumptions as follows:

As hundreds of articles in statistical journals have pointed out and
for reasons summarized in several books . . . arbitrarily small
departures from normality can result in low power; even when
distributions are normal, heteroscedasticity can seriously lower
the power of standard ANOVA and regression methods. The
practical result is that in applied work, many nonsignificant results

would have been significant if a more modern method, developed
after the year 1960, had been used. (p. 300)

As noted by Wilcox (1998), modern robust statistics
exist that can solve many of the problems caused by vio-
lating the assumptions of classic parametric tests. The term
robust statistics refers to procedures that are able to main-
tain the Type I error rate of a test at its nominal level and
also maintain the power of the test, even when data are
nonnormal and heteroscedastic (see Wilcox, 2005, for a
more detailed discussion of statistical criteria for judging
robustness). Countless studies have shown that, in terms of
Type I error control and statistical power, modern robust
statistics frequently offer significant advantages over clas-
sic parametric methods, particularly when data are not
normally distributed or heteroscedastic. However, modern
robust methods are rarely used by researchers. We now
examine why most researchers do not make use of the wide
array of robust statistics that have been developed over the
past 50 years.

Why Are Modern Methods
Underused?
Lack of Familiarity With Modern Methods

Most researchers do not realize that modern robust statis-
tical methods exist. This is largely due to lack of exposure
to these methods. For example, the psychology statistics
curriculum, journal articles, popular textbooks, and soft-
ware are dominated by statistics developed before the
1960s. This problem is not limited to psychology but also
exists in many other disciplines (e.g., medicine, ecology).
The field of statistics has progressed markedly since 1960,
yet most researchers rely on outdated methods. We are not
trying to blame researchers for not being familiar with
modern statistical methods. Researchers are busy in their
own areas of expertise and cannot be expected to be famil-
iar with cutting-edge developments within statistics. At the
same time, it is essential that researchers are made aware of
important developments within statistics that have the po-
tential to improve research in domains such as psychology.

Assumption Testing Issues

Another reason why modern methods are underused is that
researchers frequently fail to check whether the data they
are analyzing meet the assumptions underlying classic
parametric tests (Keselman et al., 1998). This may be due
to forgetfulness or not knowing how to check assumptions.
A related problem is that, due to low power, statistical
assumption tests built into software such as SPSS often do
a poor job of detecting violations from normality and
homoscedasticity (Jaccard & Guilamo-Ramos, 2002). For
example, Levene’s test is often used to test the homosce-
dasticity assumption. A p value greater than .05 is usually
taken as evidence that the assumption has not been vio-
lated. However, Levene’s test can yield a p value greater
than .05, even when variances are unequal to a degree that
could significantly affect the results of a classic parametric
test. This is particularly true when small samples are being
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analyzed. Another problem is that assumption tests have
their own assumptions. Normality tests usually assume that
data are homoscedastic; tests of homoscedasticity assume
that data are normally distributed. If the normality and
homoscedasticity assumptions are violated, the validity of
the assumption tests can be seriously compromised. Prom-
inent statisticians have described the assumption tests (e.g.,
Levene’s test, the Kolmogorov–Smirnov test) built into
software such as SPSS as fatally flawed and recommended
that these tests never be used (D’Agostino, 1986; Glass &
Hopkins, 1996). The take-home message is that researchers
should not rely on statistical tests to check assumptions
because of the frequency with which they produce inaccu-
rate results.

The Robustness Argument

Researchers often claim that classic parametric tests are
robust to violations of the assumptions of normality and
homoscedasticity, negating the need to use alternative pro-
cedures. Robust in this sense is generally taken to mean that
the tests maintain rates of Type I error close to the nominal
level. Note the difference between this definition of robust
and the definition of robust statistics given earlier. Robust
statistics control Type I error and also maintain adequate
statistical power. In contrast, claims that classic parametric
tests are robust usually only consider Type I error, not
power. An overview of the robustness argument can be
found in Sawilowsky (1990).

The origin of the robustness argument can be traced back
to several key articles and books, including Boneau (1960);
Box (1953); Lindquist (1953); and Glass, Peckham, and Sand-
ers (1972). These widely cited studies concluded that classic
parametric methods are exceedingly robust to assumption
violations. These claims of robustness found their way into
introductory statistical textbooks, and researchers quickly
came to accept as fact the notion that classic parametric tests
are robust. See Bradley (1978) for an excellent summary of
how this occurred. Today, the belief that classic parametric
tests are robust is widespread (Wilcox, 1998). Most research
methods textbooks used by researchers continue to claim that
classic tests are generally robust, at least for balanced designs.
However, there are several problems with the robustness
argument. The early studies cited previously only examined
the impact of small deviations from normality and homosce-
dasticity, not the large deviations that are often found when
analyzing real psychological data. Therefore, the early studies
do not provide a valid assessment of how classic parametric
tests perform under real-world data analytic conditions. Also,
the studies generally investigated the impact of violating nor-
mality and homoscedasticity in isolation, whereas in practice
it is often the case that both assumptions are concurrently
violated (Bradley, 1980; Keppel & Wickens, 2004). Further-
more, several authors (e.g., Bradley, 1978; Harwell, 1992)
have noted that a careful reading of the early studies allows for
very different conclusions about robustness to be reached.
Bradley pointed out that the authors of the early studies
downplayed evidence that did not support their arguments and
overextended assertions of robustness beyond their data,

claiming that classic parametric tests are robust in a wide
range of circumstances.

Considerable research indicates that classic parametric
tests are only robust in a limited number of circumstances, not
the vast majority as is widely believed. For example, Saw-
ilowsky and Blair (1992) found that the t test is relatively
robust to violation of the normality assumption when the
following four conditions hold: (a) variances are equal, (b)
sample sizes are equal, (c) sample sizes are 25 or more per
group, and (d) tests are two-tailed. This combination of con-
ditions is not reflective of most real data analytic circum-
stances, where unequal sample sizes are common and vari-
ances are often heterogeneous. Sawilowsky and Blair found
that when one-tailed tests were used, the Type I error rate
would become conservative. Several researchers have shown
that the t test is not robust when the homogeneity of variance
assumption is violated, nor is it robust when the normality and
homogeneity of variance assumptions are concurrently vio-
lated (e.g., Ramsey, 1980; Zimmerman, 1998). In most situ-
ations—particularly when analyzing real-world data—robust-
ness is the exception rather than the rule.

Proponents of the robustness argument have typically
focused their attention on Type I error but have not considered
the power of classic parametric tests when data are non-
normal or heteroscedastic. Countless studies have shown
that even when classic parametric tests are robust to Type
I errors, they are usually considerably less powerful than
their modern robust counterparts. For example, Akritas,
Arnold, and Brunner (1997) demonstrated that when the
normality assumption is violated, a modern version of
ANOVA can be more than three times as powerful as the
classic ANOVA used by most researchers. Even if re-
searchers insist that classic parametric tests are robust, this
does not preclude the use of alternate procedures. Modern
methods are also robust and more powerful when data are
not normally distributed and/or heteroscedastic.

Transformations
Rather than using modern methods, researchers sometimes
opt to transform their data. In these cases, a transformation
such as the square root or logarithm is performed, and
classic parametric tests are used to analyze the transformed
data. The use of transformations is problematic for numer-
ous reasons, including (a) transformations often fail to
restore normality and homoscedasticity; (b) they do not
deal with outliers; (c) they can reduce power; (d) they
sometimes rearrange the order of the means from what they
were originally; and (e) they make the interpretation of
results difficult, as findings are based on the transformed
rather than the original data (Grissom, 2000; Leech &
Onwuegbuzie, 2002; Lix, Keselman, & Keselman, 1996).
We strongly recommend using modern robust methods
instead of conducting classic parametric analyses on trans-
formed data.

Classic Nonparametric Statistics
Several classic nonparametric statistics are built into
widely used software such as SPSS and SAS. Some re-
searchers elect to use these classic nonparametric statistics
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rather than modern methods. As with classic parametric
techniques, classic nonparametric tests were developed be-
fore the 1960s and suffer from many limitations. For ex-
ample, classic nonparametric statistics are not robust when
used to analyze heteroscedastic data (Harwell et al., 1992;
Lix et al., 1996; Sawilowsky, 1990; Zimmerman, 1998,
2000). Another major limitation is that classic nonparamet-
ric tests are only appropriate for analyzing simple, one-way
layouts and not factorial designs involving interactions.
Modern robust methods (which include modern nonpara-
metric procedures) are not susceptible to these limitations.

Misconceptions About Modern Methods

Some researchers have misconceptions about modern
methods that have contributed to the underuse of these
procedures. One misconception is that software to perform
modern statistical analyses is not readily available. This
belief may stem from the fact that modern robust statistics
are not built into widely used statistical software such as
SPSS and SAS. This has made modern methods invisible to
many researchers. Fortunately, proponents of modern
methods have created special software add-ons that allow
researchers to conduct analyses using SPSS and SAS.
Furthermore, a vast array of alternative, free software is
available that can conduct modern analyses.

Another misconception held by some researchers is that
modern methods should not be used because they sometimes
involve trimming or ranking procedures that discard valuable
information. Wilcox (2001) noted that it is somewhat coun-
terintuitive that a test could be more accurate by removing
information—hence why some researchers are suspicious of
modern methods. However, take the cases of outliers (highly
unusual data points) and trimmed means. Consider a data set
containing the following values:

1, 1, 1, 2, 2, 5, 5, 5, 6, 20, 40.

The mean of the values is 8. However, the mean is distorted
by two outlying values (20 and 40). All of the other values
in the data set are less than or equal to 6. Consequently, the
mean does not accurately reflect the central values of the
data set. Instead of using the mean as a measure of central
tendency, we could instead use the median, which in this
case is 5. The median is an extreme form of a trimmed
mean, in the sense that all but the middle score is trimmed.
However, calculating the median discards a lot of informa-
tion, as every value above and below the middle point of
the data set is removed. A compromise between the mean
and the median is the 20% trimmed mean. To obtain the
20% trimmed mean, we remove the lowest and highest
20% of the values from the data set, leaving

1, 2, 2, 5, 5, 5, 6.

The mean of the remaining values is then calculated. In this
case, the 20% trimmed mean is 3.71, which reflects the
central values of the original data set more accurately than
the untrimmed mean of 8. The trimmed mean is an attrac-
tive alternative to the mean and the median, because it
effectively deals with outliers without discarding most of

the information in the data set. Research has shown that the
use of trimming (and other modern procedures) results in
substantial gains in terms of control of Type I error, power,
and narrowing confidence intervals (Keselman, Algina,
Lix, Wilcox, & Deering, 2008; Wilcox, 2001, 2003, 2005).
Furthermore, if data are normally distributed, the mean and
the trimmed mean will be the same.

A Practical Introduction to Modern
Methods
What follows is a practical, nontechnical introduction to
some modern robust statistical methods. Modern robust
methods are designed to perform well when classic as-
sumptions are met, as well as when they are violated.
Therefore, researchers have little to lose and much to gain
by routinely using modern statistical methods instead of
classical techniques. An alternative strategy is to analyze
data using both classic and modern methods. If both anal-
yses lead to the same substantive interpretation of the data,
debate about which analysis should be trusted is moot. If
classic and modern analyses lead to conflicting interpreta-
tions of data, the reason for the discrepancy should be
investigated. Differences will often be due to nonnormality,
heteroscedasticity, or outliers causing classic techniques to
produce erroneous results. Consequently, analyses con-
ducted using modern methods should usually be trusted
over those conducted using classic procedures. However,
each situation needs to be assessed on its own merits.
Because of the serious limitations of assumption tests noted
earlier, researchers should not use assumption tests as a
basis for deciding whether to use classic or modern statis-
tical techniques.

The defining feature of robust statistics is that they are
able to maintain adequate Type I error control and statis-
tical power, even when data are nonnormal or heterosce-
dastic. Essentially, robust methods work by replacing tra-
ditional regression estimators (i.e., ordinary least squares),
measures of location (e.g., the mean) and measures of
association (e.g., Pearson’s r) with robust alternatives. Hy-
pothesis testing can be performed using these robust mea-
sures. For example, Keselman et al. (2008) proposed a
robust approach to hypothesis testing that involves trimmed
means, Winsorized variances, and bootstrapping. Ke-
selman et al. recommend the use of 20% trimmed means,
although on some occasions a smaller or larger amount of
trimming may be desirable (see Wilcox, 2005, p. 57).

Winsorized Variance
Keselman et al.’s (2008) robust approach to hypothesis
testing involves the replacement of a distribution’s variance
with a robust alternative, the Winsorized variance. The
benefit of the Winsorized variance is that it is more resis-
tant to outliers than the variance is. The use of Winsorizing
can result in the estimation of more accurate standard errors
than if classic methods are used.

To understand the calculation of a Winsorized vari-
ance, imagine that a study is conducted with 10 partici-
pants, who have the following scores on the dependent
variable:
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3, 1, 75, 10, 5, 6, 11, 7, 75, 12.

The first step in computing the Winsorized variance is to
reorder the scores from lowest to highest:

1, 3, 5, 6, 7, 10, 11, 12, 75, 75.

The second step in Winsorizing (if 20% trimming is being
used) is to remove the lowest and highest 20% of scores
from the data set. In this case, the scores 1, 3, 75, and 75
will be removed, leaving

5, 6, 7, 10, 11, 12.

Next, the removed scores in the lower tail of the distribu-
tion are replaced by the smallest untrimmed score, and the
removed scores in the upper tail of the distribution are
replaced by the highest untrimmed score. The untrimmed
and replaced scores are known as Winsorized scores. For
our data set, the Winsorized scores are

5, 5, 5, 6, 7, 10, 11, 12, 12, 12.

The mean of the Winsorized scores is then calculated:

X� w �
1

10
�5 � 5 � 5 � 6 � 7 � 10 � 11 � 12 � 12 � 12�

� 8.5. (1)

Finally, the variance of the Winsorized scores is calculated
by using the same formula that is used to calculate the
(ordinary least squares) variance, except that the Win-
sorized scores and Winsorized mean are used in place of
the original scores and mean. Therefore, any software
program that can calculate variance can also be used to
calculate Winsorized variance. For the present data set, the
Winsorized variance is 90.5.

Bootstrapping

Bootstrapping is a computer-intensive resampling tech-
nique. All bootstrap methods involve generating bootstrap
samples based on the original observations in a study.
Consider a study in which the following scores on the
dependent variable are observed:

2, 3, 3, 4, 5, 6, 7, 8, 9, 9, 9, 10.

The sample size is 12, and the sample mean is 6.25. In
calculating a bootstrap sample, a computer is used to ran-
domly sample with replacement 12 observations one at a
time from the original scores. Sampling with replacement
means that each individual score remains in the original
data set before the selection of the next score rather than
being removed from the original data set. As a result,
observations can occur more (or fewer) times in the boot-
strapped sample than they did in the original sample. A
bootstrap sample generated from the original observations
in this example might be

3, 3, 3, 3, 4, 4, 7, 8, 8, 9, 10, 10.

The mean of this bootstrap sample is 6. The process of
generating bootstrap samples from the original scores is
repeated hundreds or thousands of times. With modern
computers, this can be accomplished in seconds.

Bootstrapping is often used to get a better approxima-
tion of the sampling distribution of a statistic (e.g., the t
distribution) than its theoretical distribution provides when
assumptions are violated. In other words, instead of assum-
ing that the data collected follow the t, chi-square, or some
other distribution, bootstrapping is used to create a sam-
pling distribution, and this bootstrapped distribution can be
used to compute p values and test hypotheses. Bootstrap-
ping can also be used to generate confidence intervals. For
example, imagine that we want to create a 95% confidence
interval around a mean. We could accomplish this using the
percentile bootstrap method. Imagine that a study is con-
ducted and that the mean of participants on the dependent
variable is 6.50. We use the participants’ scores to generate
1,000 bootstrap samples. For each bootstrap sample, a
mean is calculated. The 1,000 bootstrapped means are then
put in order, from lowest to highest, and the central 95% of
values are used to form the confidence interval. If the
central 95% of values fall between 4.70 and 7.80, these
values would form the lower and upper limits of the 95%
confidence interval around the mean. Software is available
that will conduct analyses based on bootstrap samples (see
below).

Robust Hypothesis Testing, Software, and
Resources
The robust approach to hypothesis testing proposed by
Keselman et al. (2008) uses trimmed means, Winsorized
variances, and bootstrapping to calculate a test statistic and
p value, which they term the adjusted degrees of freedom
(ADF) solution. The ADF solution can be used to evaluate
hypotheses analogous to those tested using classic paramet-
ric tests. The only difference is that the hypotheses evalu-
ated using Keselman et al.’s approach concern trimmed
means rather than means. For example, the null hypothesis
tested using the classic independent groups t test is that two
population means are equal, whereas in Keselman et al.’s
approach, the null hypothesis is that two population-
trimmed means are equal. Keselman et al. have developed
a free SAS/IML program that can be used to perform
hypothesis testing using the ADF solution. The program
can also compute robust estimates of effect size. The pro-
gram and instructions are available from the American
Psychological Association Web site, http://dx.doi.org/
10.1037/1082-989X.13.2.110.supp. The instructions out-
line how the SAS program analyzes data for one-way and
factorial designs.

The ADF solution is just one of many robust hypoth-
esis testing methods developed over the past 40 years.
Readers interested in a short introduction to some modern
methods may benefit from consulting Wilcox and Ke-
selman (2003). There are also several excellent books
about robust methods that researchers will find useful.
Wilcox (2001) is an eminently readable, nontechnical in-
troduction to the fundamentals of robust statistics. For a
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clear, comprehensive, and practical overview of a wide
variety of robust methods, see Wilcox (2003). More ad-
vanced coverage is found in Wilcox (2005). Wilcox has
written code for R to conduct the analyses described in his
2003 and 2005 texts. R is a powerful statistical software
package, free to download from http://www.R-project.org.
R uses a command line (similar to SPSS’s syntax) rather
than a graphical user interface. Wilcox’s code can estimate
numerous measures of location and scale; detect outliers;
calculate confidence intervals; analyze data from one-way,
factorial, repeated measures, split plot, and multivariate
designs; and perform multiple comparison procedures, cor-
relations, and robust regression. The latest version of Wil-
cox’s code is available as a free download from http://
www-rcf.usc.edu/�rwilcox.

Researchers who prefer to work with a graphical user
interface may be interested in ZumaStat, an easy-to-use and
relatively inexpensive software package developed by
James Jaccard. ZumaStat allows users to conduct robust
analyses from within SPSS or Microsoft Excel. ZumaStat
adds a toolbar to SPSS or Excel that allows users to point
and click to select robust statistical procedures. The soft-
ware then feeds instructions into R, which performs the
relevant analyses. The ZumaStat software can perform
most of Wilcox’s R functions. For further information, visit
http://www.zumastat.com.

SAS/STAT 9 includes some inbuilt capability for per-
forming robust analyses. The ROBUSTREG procedure can
perform a limited number of robust regression techniques,
such as M estimation and least trimmed squares. These
procedures can also be used for ANOVA (SAS Institute,
2004, pp. 3971–4030).

Modern Rank Statistics
The modern robust methods discussed thus far can be
thought of as modern day versions of classic parametric
procedures, such as ANOVA and least squares regression.
These techniques revolve around robust measures of loca-
tion and scale, such as trimmed means and Winsorized
variances. Another set of modern techniques have been
developed that revolve around ranked data. These rank-
based techniques can be thought of as modern versions
(and extensions) of classic nonparametric statistics. Mod-
ern rank-based procedures are robust in the sense that they
produce valid results when analyzing data that is nonnor-
mal and/or heteroscedastic. We now briefly introduce some
prominent modern rank-based methods.

Rank Transform

Conover and Iman (1981) proposed a simple, two-step
procedure known as the rank transform (RT). RT is only
mentioned here so that researchers know to avoid it. The
RT procedure involves (a) converting data to ranks and (b)
performing a standard parametric analysis on the ranked
data instead of original scores. The appeal of RT is that it
is easily conducted using software such as SPSS and SAS.
In fact, official SAS user documentation encourages the use
of RT (SAS Institute, 2004). Early research into the tech-

nique was promising; however, by the late 1980s, numer-
ous problems with RT had emerged. See Fahoome and
Sawilowsky (2000), Lix et al. (1996), Sawilowsky (1990),
and Toothaker and Newman (1994) for concise reviews of
this research. RT can perform well, but in many circum-
stances it is nonrobust and can be less powerful than classic
parametric and nonparametric methods. The consensus in
the literature is that RT should not be used.

ANOVA-Type Statistic

An alternative to the RT is the ANOVA-type statistic
(ATS; Brunner, Domhof, & Langer, 2002; Brunner & Puri,
2001; Shah & Madden, 2004). As its name suggests, the
ATS can be used in data analytic situations in which
ANOVA is traditionally used. The hypotheses tested by
ANOVA and the ATS are similar. An ANOVA assumes
that the groups being compared have identical distributions
and tests the null hypothesis that the means of the groups
are the same. The ATS tests the null hypothesis that the
groups being compared have identical distributions and that
their relative treatment effects (p̂i) are the same. A relative
treatment effect is the tendency for participants in one
group to have higher (or lower) scores on the dependent
variable, compared with the scores of all participants in a
study. Relative treatment effects can range between 0 and
1 (if the null hypothesis is true, all groups should have a
relative treatment effect of .50).

To understand the computation and interpretation of
relative treatment effects, consider a study in which a
researcher is interested in comparing three groups (A, B, C)
on some dependent variable. There are four participants in
each group. Their scores and the following calculations are
shown in Table 1. First, convert the scores to ranks, ignor-
ing group membership. That is, the smallest score in the
entire data set is assigned a rank of 1, the second smallest
score a rank of 2, and so on until all scores have been
converted to ranks. Tied scores are assigned midranks (i.e.,
the second and third score in this data set are both 11, so the
assigned ranks would be 2 and 3, but they are given an
average rank, or midrank, of (2 � 3)/2 � 2.5. Next, the
ranks in each group are summed and then divided by the
number of observations in the group to calculate each
group’s mean rank. For example, the sum of the ranks in
Group A is 21.5, and there are four observations. There-
fore, the mean rank of Group A is simply 21.5/4 � 5.375.
Finally, the relative treatment effect of each group is com-
puted using the following equation:

p̂i �
R� i• � .50

N
, (2)

where p̂i is the ith group’s estimated relative treatment
effect, R� i• is the group’s mean rank, and N is the total
number of observations in the study. Given that in the
present study N � 12, the estimated relative treatment
effect of Group A would be (5.375 � .5)/12 � .41.

The interpretation of relative treatment effects is sim-
ilar to the interpretation of means. If the groups being
compared have similar relative treatment effects, this can
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be interpreted as indicating that the groups do not differ
much (in terms of participants’ typical response on the
dependent variable). In contrast, large differences in rela-
tive treatment effects suggest that the groups differ signif-
icantly. Relative treatment effects for the current data set
are shown in Table 1. Participants in Group C (p̂C � .83)
tend to have higher scores on the dependent variable than
do participants in Groups A (p̂A � .41) or B (p̂B � .26).
The ATS can be used to determine whether these differ-
ences are statistically significant. In the present case, the
null hypothesis that the groups have equivalent relative
treatment effects is rejected, ATS(1.81, 7.42) � 11.38, p �
.006. The values in parentheses (1.81 and 7.42) refer to the
degrees of freedom for the test.

The ATS can analyze data from independent groups,
repeated measures, and mixed designs. Brunner et al.
(2002) developed macros that allow the easy generation of
the ATS in SAS. Most of the macros are now also available
for R. They can be downloaded from http://www.ams
.med.uni-goettingen.de/de/sof/ld/makros.html. The Web page
is written in German; however, the macros are clearly
labeled and downloading them is straightforward. Brunner
et al. (2002) provided instructions for using the SAS mac-
ros. Shah and Madden (2004) is another useful source of
information, targeted at applied researchers unfamiliar with
the ATS rather than statisticians. The article is accompa-
nied by a comprehensive electronic supplement that illus-
trates how to use the SAS macros to generate and interpret
the ATS and relative treatment effects. Wilcox (2003,
2005) also provided coverage of the ATS, which he re-
ferred to as the Brunner, Dette, and Munk (BDM) method.
Wilcox discussed code for calculating the ATS using R. He
also discussed how to follow up significant ATS main
effects and interactions with multiple comparison proce-
dures.

Other Rank-Based Methods
The ATS is just one of many modern robust rank-based
methods. A prominent rank-based approach to ANOVA
and regression is that of Hettmansperger and McKean
(1998). Their approach is sometimes called Wilcoxon anal-
ysis (WA). WA evaluates hypotheses analogous to those
assessed by classic parametric methods. For example, the
null hypothesis tested in regression (i.e., no relationship
between the predictors and the criterion variable; beta

weights of zero) is exactly the same in WA as it is in
ordinary least squares regression. The difference between
the two procedures is that they use different methods to fit
the regression line. In ordinary least squares regression, the
regression line minimizes the sum of the squared residuals.
A single outlier can substantially alter the slope of the
regression line, reducing its fit to the data. In contrast, WA,
which involves ranking residuals, minimizes the impact
that extreme criterion (y-axis) scores have on the regression
line. The result is that the WA line often provides a better
fit to data than does the least squares line. It is important to
note that although WA is robust to outliers in the y-space,
it is not robust to extreme predictor (x-axis) values (neither
is ordinary least squares regression). In such situations, a
modified version of WA called weighted Wilcoxon tech-
niques (WW) can be used. WW ensures that analyses are
robust to outliers in both the x- and y-spaces. However, it
is preferable to use WA in situations where there are no
outliers in the x-space, as WA is more powerful than WW.
See Hettmansperger and McKean (1998) and McKean
(2004) for more details.

Free Web-based software known as RGLM can con-
duct WA via the Internet. RGLM is located at http://
www.stat.wmich.edu/slab/RGLM. To conduct an analysis,
a user uploads data to RGLM or enters data into a form.
Analysis options are selected, and RGLM then conducts
the analysis and outputs the results. The interface can
perform WA simple and multiple regression, as well as
WA alternatives to the single and paired samples t tests,
one-way and factorial ANOVAs, and analysis of covari-
ance. An appealing aspect of RGLM is that both WA and
classic parametric analyses are reported side-by-side. This
allows users to observe whether the two procedures pro-
duce equivalent or conflicting results. Abebe, Crimin, and
McKean (2001) and Crimin, Abebe, and McKean (in press)
provided a guide to conducting robust analyses using
RGLM. It is important to note that the RGLM interface
only conducts WA. Users wishing to conduct WW analyses
should make use of the experimental site http://www.stat
.wmich.edu/slab/HBR2. It is also possible to conduct WA
and WW analyses using R. Terpstra and McKean (2005)
provided instructions for carrying out WW analyses using
R. R code for WA and WW is available for download from
http://www.jstatsoft.org/v14/i07 and http://www.stat.wmich
.edu/mckean/HMC/Rcode.

Table 1
Example Calculations of Relative Treatment Effects for the Analysis-of-Variance-Type Statistic

Group A Group B Group C

Original scores 11 12 17 18 10 11 13 15 20 21 23 25
Corresponding rank scores 2.5 4 7 8 1 2.5 5 6 9 10 11 12
Sum of ranks 21.50 14.50 42.00
Mean rank 5.38 3.63 10.50
Relative treatment effect 0.41 0.26 0.83
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Readers interested in further information about rank-
based methods may like to consult Higgins (2004). Jour-
nals that regularly feature articles about modern robust
methods include Psychological Methods, Educational and
Psychological Measurement, and the Journal of Modern
Applied Statistical Methods. Articles in these journals are
sometimes accompanied by useful software and instruc-
tions. For example, Serlin and Harwell (2004) published an
article in Psychological Methods containing SPSS syntax
that researchers can use to conduct a range of nonparamet-
ric approaches to regression.

Effect Size
The Publication Manual of the American Psychological
Association (American Psychological Association, 2001)
and many journals encourage researchers to report esti-
mates of effect sizes in addition to statistical significance
tests. Effect size provides information about the magnitude
of an effect, which can be useful in determining whether it
is of practical significance. Unfortunately, the most com-
monly reported effect sizes (e.g., Cohen’s d, �2) are pred-
icated on the same restrictive assumptions (e.g., normality,
homoscedasticity) as classic parametric statistical signifi-
cance tests. Standard parametric effect sizes are not robust
to violation of these assumptions (Algina, Keselman, &
Penfield, 2005a; Grissom & Kim, 2001; Onwuegbuzie &
Levin, 2003). Furthermore, using classic methods to cal-
culate a confidence interval around the point estimate of an
effect size with violated assumptions can lead to inadequate
probability coverage (Algina, Keselman, & Penfield,
2005b, 2006b). In other words, a researcher may believe
that he or she has formed a 95% confidence interval around
the point estimate of an effect size, when in fact the degree
of confidence may be lower (e.g., 85%). The take-home
message is that researchers should not report estimates of
standard effect sizes (nor confidence intervals around these
estimates) if parametric test assumptions are violated, as
the estimates and associated confidence intervals could be
misleading. Fortunately, several robust alternatives to clas-
sic effect size indices exist.

A popular measure of effect size in the population is
the standardized mean difference:

	 � (
A – 
B) / �, (3)

which is estimated by

(MA – MB)/SD, (4)

where MA is the mean of Group A and MB is the mean of
Group B. Variants of the standardized mean difference
include Cohen’s d, Glass’s �, and Hedges’s g (each variant
uses a slightly different method to calculate the standard
deviation). Robust analogues of the standardized mean
difference exist to calculate the magnitude of an effect
between two independent groups (Algina et al., 2005a;
Algina, Keselman, & Penfield, 2006a) and two correlated
groups (Algina et al., 2005b). Free software available from
http://plaza.ufl.edu/algina/index.programs.html can com-
pute these robust effect sizes. An attractive feature of the

software is that it calculates accurate bootstrapped confi-
dence intervals around the point estimate of the effect size
(see also Keselman et al., 2008).

Another robust effect size is the probability of supe-
riority (PS). PS has also been called the probabilistic index,
intuitive and meaningful effect size index, area under the
receiver operator characteristic curve, and the measure of
stochastic superiority (Acion, Peterson, Temple, & Ardnt,
2006; Grissom, 1994; Grissom & Kim, 2005; Kraemer &
Kupfer, 2006; Vargha & Delaney, 2000). PS is the proba-
bility that a randomly sampled score from one population is
larger than a randomly sampled score from a second pop-
ulation. For example, imagine that a researcher wanted to
compare men (Population 1) and women (Population 2) in
terms of their height (dependent variable). If PS � .70, the
probability that a randomly sampled man is taller than a
randomly sampled woman is .70.

PS is easily estimated using software such as SPSS
and SAS. First, run the Mann–Whitney U test and obtain
the U value. In SPSS, the test is accessed by clicking
Analyze, followed by Nonparametric Tests and Two Inde-
pendent Samples. In SAS, use the NPAR1WAY procedure.
Once the U value is obtained, estimate PS using the for-
mula

PSest � U/mn, (5)

where U is the Mann–Whitney U statistic, m is the number
of participants in the first sample, and n is the number of
participants in the second sample (Acion et al., 2006;
Grissom & Kim, 2005). For example, imagine U � 80,
m � 10, and n � 20. Substituting these values into the
formula above, we get

PSest� 80/(10  20) � .40. (6)

The calculation of PS values using the above formula is
only appropriate for independent groups designs. For a
variant of PS that is appropriate for repeated measures
designs, see Grissom and Kim (2005, pp. 114–115) or
Vargha and Delaney (2000).

It is possible to compare PS values with those that would
be obtained under normal theory using other estimates of
effect size, such as Cohen’s d. Grissom (1994) presented a
comprehensive table of d values ranging from 0 to 3.99 and
corresponding PS values. Using the table, it is possible to
establish that d � 0 (i.e., no difference between group means)
is equivalent to PS � .50. A small effect size (d � .20) is
equal to a PS of .56, a medium effect size (d � .50) is
equivalent to PS � .64, and a large effect size (d � .80) is
equivalent to PS � .71. Grissom and Kim (2005, p. 109)
provided a table for converting between d, PS, and the pop-
ulation point-biserial correlation, rpb. PS can also be converted
to the number needed to treat (NNT), an effect size index that
is particularly appropriate for conveying information in psy-
chotherapy outcome studies or other behavioral research that
involves comparisons between treatments (or treatment and
control or placebo conditions). NNT is defined as the number
of patients that would need to be treated with Treatment A to
experience one greater treatment success than if the same
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number of patients were treated with Treatment B. For exam-
ple, imagine a randomized controlled trial in which cognitive
behavior therapy is compared with psychoeducation for the
treatment of depression. Success is defined as the remission of
depression at posttreatment. An NNT of 3 would indicate that
it is necessary to treat three patients with cognitive behavior
therapy, to have one more patient remit than if the same
number of patients were treated with psychoeducation.

Many useful resources provide further information
about the robust standardized mean difference, PS, NNT,
and other effect size measures. Grissom and Kim (2005) is
an authoritative source of information about numerous
effect sizes for use in a wide range of designs (including
factorials). Wilcox (2003, 2005) discussed various effect
size measures and provided software for R used to form
confidence intervals around PS. Kromrey and Coughlin
(2007) prepared a SAS macro used to calculate PS, Algi-
na’s robust standardized mean difference, and a range of
other robust effect sizes. Kraemer and Kupfer (2006) dis-
cussed the estimation of PS and NNT when using dichot-
omous rather than ordinal or continuous dependent vari-
ables. For situations (such as meta-analysis) in which
original data are not available, the estimation of PS may not
be possible. In these cases, PS is estimated using McGraw
and Wong’s (1992) common language effect size statistic.

Summary
Most researchers analyze data using outdated methods.
Classic parametric tests, effect sizes, and confidence inter-
vals around effect size statistics are not robust to violations
of their assumptions, and violations seem to occur fre-
quently when real data are analyzed. Researchers relying
on statistical tests (e.g. Levene’s test) to identify assump-
tion violations may frequently fail to detect deviations from
normality and homoscedasticity that are large enough to
seriously affect the Type I error rate and power of classic
parametric tests. We recommend that researchers bypass
classic parametric statistics in favor of modern robust
methods. Modern methods perform well in a much larger
range of situations than do classic techniques. The use of
modern methods will result in researchers finding more
statistically significant results when real effects exist in the
population. Using modern methods will also reduce the
number of Type I errors made by researchers and result in
more accurate confidence intervals around robust effect
size statistics. A range of accessible texts about modern
methods is available (e.g., Wilcox, 2001, 2003), as well as
a wide range of software to perform modern analyses.
Given the wealth of resources available, researchers have a
tremendous opportunity to engage in modern robust statis-
tical methods.
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