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Mixed-effects Models

From the statistical point of view, mixed-effects models involve two
types of coefficients or “effects”:

Fixed-effects parameters, which are characteristics of the entire
population or well-defined subsets of the population

Random effects, which are characteristics of individual experimental
or observational units.

In the probability model we consider the distribution of two
vector-valued random variables: Y, the n-dimension response vector
and B, the q-dimensional vector of random effects.

The value, yobs, of Y is observed; the value of B is not.

Douglas Bates (U. Wisc.) Mixed-effects Models 2011-08-09 3 / 20



Distributions of the random variables

In the probability model we specify the unconditional distribution of B
and the conditional distribution of Y, given B = b.

Because the random effects, B, are unobserved, the assumed
distribution is kept simple. For most of the models that we will
describe we assume

B ∼ N (0,Σ)

where Σ is a parameterized, positive semi-definite symmetric matrix.

In the conditional distribution, Y|B = b, the value b changes only the
conditional mean, µY|B, and does so through a linear predictor
expression

Xβ + Zb

where β is a p-dimensional fixed-effects vector and the model
matrices, X and Z , are of the appropriate dimension.
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Linear Mixed Models

In a linear mixed model (LMM) the distributions of Y and B are both
Gaussian and the conditional mean is the linear predictor,

µY|B = Xβ + Zb.

More explicitly

(Y|B = b) ∼ N (Xβ + Zb, σ2I n)

and
B ∼ N (0,Σ) = N (0, σ2ΛθΛ

T
θ )

In the expression σ2ΛθΛ
T
θ the scale parameter, σ, is the same as that

in the expression for Y|B = b, and Λθ is the parameterized relative
covariance factor.
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Generalized linear mixed models

In a generalized linear mixed model (GLMM) the conditional
distribution, Y|B = b can be other than Gaussian. Common choices
are Bernoulli for binary response data and Poisson for count data.
Some of the theory works best when this distribution is from the
exponential family.

Because each element of µY|B may restricted to an interval, (e.g.
(0, 1) for the Bernoulli or (0,∞) for the Poisson), the conditional
mean is expressed as a non-linear function, g−1, called the inverse
link, of the linear predictor, η = Xβ + Zb

µY|B = g−1(η) = g−1(Xβ + Zb)

The inverse link is defined by applying a scalar inverse link function,
g−1, componentwise, µi = g−1(ηi). Thus the Jacobian matrix,
dµ/dη, is diagonal.
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Generalized linear mixed models (cont’d)

We must be more explicit about the multivariate distribution,
Y|B = b.

Components of Y are conditionally independent, given B = b.

In many common cases this means that the conditional mean entirely
determines the conditional distribution.

It is a common misconception that the variance-covariance of Y can
be modelled separately from the mean. With a Gaussian conditional
distribution you can separately model the mean and the variance.
With most other conditional distributions you can’t.

Another common misconception is that there is an advantage in
writing the conditional distribution in a “signal”+“noise” form like

(Y|B = b) = Xβ + Zb + ε, ε ∼ N (0, σ2I n)

for the Gaussian case. This doesn’t gain you anything and induces
considerable confusion.
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Nonlinear mixed models

The nomenclature here is a bit tricky. Even though a GLMM can, and
often does, involve a nonlinear inverse link function, g−1, we reserve
the term nonlinear mixed-effects model (NLMM) for cases where the
transformation from linear predictor to conditional mean involves a
nonlinear model function separate from the inverse link.

The nonlinear model function, h(x i ,φi), is usually a mechanistic
model (i.e. based on an external theory of the mechanism under
study) as opposed to an empirical model derived from the data.

For example, in pharmacokinetics, a two-compartment open model for
the serum concentrations of a drug administered orally at t = 0 is

h(x i ,φi) = ke · ka · C
e−ke ti − e−ka ti

ka − ke

where ka is the absorption rate constant, ke is the elimination rate
constant and C is the clearance; the covariate vector x i for the ith
observation is ti and the nonlinear parameter vector φi is (ka , ke ,C ).
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Nonlinear mixed models (cont’d)

In the basic nonlinear mixed model, the conditional distribution,
Y|B = b, is a spherical Gaussian

(Y|B = b) ∼ N (µY|B, σ
2I n)

A further extension, of course, is to allow for a generalized nonlinear
mixed model (GNLMM) in which the conditional mean is a nonlinear
function (in addition to an inverse link) of the linear predictor and the
conditional distribution is non-Gaussian.

There are important applications for such models in what is called
item-response theory that provides models for correct/incorrect
answers on objective exams according to characteristics of the items
(difficulty, discrimination, threshold probability for guessing) and
characteristics of the subjects (ability).
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Linear and nonlinear mixed-effects models

The two “non-generalized” model forms are sufficiently alike that it is
worthwhile considering them together. Both can be written as

(Y|B = b) ∼ N (µY|B, σ
2I n), B ∼ N (0,Σ) = N (σ20,ΛθΛ

T
θ )

It is only the relationship between the linear predictor, η, and the
conditional mean, µY|B, that differs.

The joint density for Y and B is

fY,B(y , b) = fY|B(y |b) fB(b)

providing the marginal density

fY(y) =

∫
Rq

fY,B(y , b) db

and the likelihood
L(β,θ, σ|y) = fY(yobs).
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“Spherical” random effects

At this point we introduce a linear transformation, determined by Λθ,
of the random effects. Recall that Λθ can be singular (it is only
required to be positive semi-definite). The maximum likelihood
estimates (mle’s) of variance components can be zero.

Even if the estimates are not on the boundary of the parameter space,
we may need to evaluate on the boundary while optimizating.

This is why algorithms based on estimating the precision matrix, Σ−1,
(e.g. EM algorithms) or requiring its value (Henderson’s mixed model
equations) run into problems.

You can evaluate the likelihood on the boundary – you just need to be
careful how you evaluate it.

We define a “spherical” random effects vector, U ,

B = ΛθU , U ∼ N (0, σ2I q)

with linear predictor, η = Xβ + ZΛθu .
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Joint densities and conditional modes

The joint density function for Y and U , which is the quantity in the
integrand for the likelihood, is

fY,U (y ,u) =
exp

(
− 1

2σ2 ‖y − µY|U‖2
)

(2πσ2)n/2
exp

(
− 1

2σ2 ‖u‖2
)

(2πσ2)q/2

=
exp

(
−
[
‖y − µY|U‖2 + ‖u‖2

]
/[2πσ2]

)
(2πσ2)(n+q)/2

This expression, evaluated at yobs is the unnormalized conditional
density of U given Y = yobs. (In fact, the inverse of the normalizing
factor is exactly the likelihood.)

The conditional mode, ũ(yobs), of the random effects is the solution
of the penalized least squares (PLS) problem

ũ(yobs) = argmin
u

(
‖y − µY|U‖2 + ‖u‖2

)
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Solving the linear PLS problem

For a linear mixed model the PLS problem is a penalized linear least
squares problem and the conditional mode is also the conditional
mean of U|Y = yobs. For a nonlinear model the PLS problem is a
penalized nonlinear least squares problem.

In the linear case there is a direct solution to the PLS problem. In
fact, we can simultaneously determine ũ and β̂θ, the conditional
estimate of β, as the minimizers of

r2θ = min
u ,β

[
‖y −Xβ − ZΛθu‖2 + ‖u‖2

]
which are the solutions to the system[

ΛT
θ Z

TZΛθ + I q ΛT
θZ

TX

XTZΛθ XTX

] [
ũ

β̂θ

]
=

[
ΛT
θ Z

Ty

XTy

]
.
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Use of the sparse Cholesky factor

Taking into account that the dimensions of Z can be very large
indeed, the equations for the PLS solutions would be interesting but
not terribly useful, except that Z (and Λθ) are also very sparse.

The system matrix, especially the part ΛT
θ Z

TZΛθ + I q is positive
definite, even when Λθ is singular.

Determining the sparse Cholesky factor, Lθ, which is a sparse lower
triangular matrix such that

LθL
T
θ = ΛT

θ Z
TZΛθ + I q

is a well-understood process for which high quality, effective software
is available.

Like most operations on sparse matrices, the sparse Cholesky
factorization is performed in two phases: a symbolic phase in which
the positions of the non-zeros in the result are determined, and a
numeric phase in which the actual numeric values are calculated. The
symbolic phase need only be done once.
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The profiled deviance and REML criterion

Given a value of θ we determine the sparse Cholesky factor, Lθ, the
conditional mode, ũθ, of the random effects and the conditional
estimates, β̂θ and σ̂2θ of the other parameters, providing the profiled
deviance as a function of θ only.

−2˜̀(θ) = log(|Lθ|2) + n

[
1 + log

(
2πr2θ
n

)]
The REML criterion is

LR(θ, σ
2|y) =

∫
L(θ,β, σ2|y) dβ

and the profiled REML criterion can be evaluated as

−2˜̀R(θ) = log(|L|2) + log(|Rx |2) + (n − p)

[
1 + log

(
2πr2θ
n − p

)]
where RX is the p × p (usually dense) Cholesky factor in the full
decomposition of the system matrix for the PLS problem.

Douglas Bates (U. Wisc.) Mixed-effects Models 2011-08-09 15 / 20



Laplace approximation to the deviance for an NLMM

For an NLMM, the PLS problem becomes penalized nonlinear least
squares, which usually requires an iterative solution, such as using the
Gauss-Newton algorithm.

We can determine the solution with respect to u only or
simultaneously with respect to u and β. In the latter case, the β
optimizer is close to but not necessarily the same as the conditional
estimate β̂θ.

The Laplace approximation to the profiled deviance is

−2˜̀(θ) = log(|Lθ|2) + n

[
1 + log

(
2πr2θ
n

)]
where r2θ is the minimum penalized residual sum of squares and Lθ is
the sparse Cholesky factor at the PNLS solition. If β is not optimized
during the PNLS problem then these quantities should be indexed by
θ and β.
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Adaptive Gauss-Hermite quadrature

The Laplace approximation involves approximating the unnormalized
density of U|Y = yobs by a multivariate Gaussian that matches the
mode and the second moment at the mode.

Gauss-Hermite quadrature provides weights and abscissa values to
evaluate scalar integrals of the form

∫
R f (x )e−x

2
dx as a linear

combination of function values. Extensions to multivariate integrals,
evaluating either on grids or on spherical patterns exist but are only
suitable for low dimensions.

If the integral of the unnormalized conditional density can be factored
into the product of low-dimensional integrals then these can be
evaluated more accurately using Gauss-Hermite quadrature.

This process is called adaptive Gauss-Hermite quadrature (AGQ)
because the quadrature points are evaluated taking into account the
conditional mode and the second moment of the unnormalized density
at the conditional mode.
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When can AGQ be used?

The random effects are associated with the levels of one or more
factors, called the grouping factors, in the data. In the simple case
where there is only one grouping factor (e.g. random effects for
Subject only) the observations can be grouped according to the
levels of this single grouping factor.

Conditional independence in the distribution Y|U = u and
independence of components in U ∼ N (0, σ2I q) allows the
multivariate integral to be expressed as the product of scalar or
low-dimensional integrals.
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Maximum likelihood estimates for GLMMs

GLMMs also can have a nonlinearity in the transformation from η,
the linear predictor, to µY|U , induced by the inverse link function.

Furthermore, in a GLMM changing the conditional mean can change
the conditional variance of Y given U = u and we account for this by
using weighted least squares.

Some complications of notation can arise because Y|U = u is often a
discrete distribution. Nonetheless, U is always continuous and the
unscaled conditional density of U|Y = yobs is well-defined.

The iteratively reweighted least squares (IRLS) algorithm for
determining the mle’s in a generalized linear model (GLM) is modified
to PIRLS for determining the conditional mode, ũ , in a GLMM. The
Laplace and AGQ approximations follow as for NLMMs.
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Taxonomy of mixed-model forms

In a linear mixed model the distribution of the response, given the
random effects, is a multivariate Gaussian whose mean is mean is the
linear predictor, Xβ + Zb.
In a generalized linear mixed model, the conditional distribution is
non-Gaussian with a mean that can be a transformation of the linear
predictor. (For historical reasons this function is called the “inverse
link”.) The Rausch IRT model is an example.
In a nonlinear mixed model the conditional distribution is Gaussian
but the mean function is nonlinear in one or more of the fixed-effects
parameters or the random effects (or both).
In a generalized nonlinear mixed model the conditional distribution is
non-Gaussian and the mean function is nonlinear in parameters or
random effects (beyond the nonlinearity of the inverse link).
The inner optimization problem for each of these cases is PLS
(penalized linear least squares), PIRLS (penalized iteratively
reweighted least squares), PNLS (penalized nonlinear least squares)
and PIRNLS.
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