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P R E F A C E  

This book presents a broad coverage of its topic: variance components 
estimation and mixed models analysis. Although the use of variance components 
has a long history dating back to the 1860s, it is only in the last forty years or 
so that variance components have attracted much attention in the statistical 
research literature. Numerous books have maybe a chapter or two on the subject 
but few are devoted solely to variance components. This book is designed to 
make amends for that situation. 

The introductory Chapter 1 describes fixed, random and mixed models and 
uses nine examples to illustrate them. This is followed by a chapter that surveys 
the history of variance components estimation. Chapter 3 describes the l-way 
classification in considerable detail, both for balanced data (equal numbers of 
observations in the classes) and for unbalanced data (unequal numbers of 
observations). That chapter, for the l-way classification, details four main 
methods of estimation: analysis of variance (ANOVA), maximum likelihood 
(ML), restricted (or residual) maximum likelihood (REML) and Bayes. 

Chapters 4 and 5 deal with ANOVA estimation in general, Chapter 4 for 
balanced data and 5 for unbalanced. Chapter 6 covers MLand REML estimation 
and Chapter 7 describes the prediction of random effects using best prediction 
(BP), best linear prediction (BLP) and best linear unbiased prediction (BLUP). 
Chapters 8-12 are more specialized than 1-7. They cover topics that are of 
current research interest: computation of ML and REML estimates in 8; Bayes 
estimation and hierarchical models in 9; binary and discrete data in 10; 
estimation of covariance components and criteria-based estimation in 1 1; and 
the dispersion-mean model and fourth moments in 12. 

This broad array of topics has been planned to appeal to research workers, 
to students and to the wide variety of people who have interests in the use of 
mixed models and variance components for statistically analyzing data. This 
includes data from such widely disparate disciplines as animal breeding, biology 
in general, clinical trials, finance, genetics, manufacturing processes, psychology, 
sociology and so on. For students the book is suitable for linear models courses 
that include something on mixed models, variance components and prediction; 
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and, of course, it provides ample material for a graduate course on variance 
components with the pre-requisite of a linear models course. Finally, the book 
will also serve as a reference for a broad spectrum of topics for practicing 
statisticians who, from time to time, need to use variance components and 
prediction. 

More specifically, for graduate teaching there are at least four levels at which 
the book can be used. ( 1 )  When variance components are to be part of a solid 
linear models course, use Chapters 1 ,  3 and 4 with Chapter 2 (history) being 
supplementary reading. This would introduce students to random effects and 
mixed models in Chapter I ,  and in Chapter 3, for the 1-way classification, they 
would cover all the major topics of ANOVA and ML estimation, and prediction. 
(As time and interests allowed, additional aspects of these topics could also be 
selected from Chapters 5, 6 and 7. )  And Chapter 4 provides results and 
methodology for a variety of commonly occurring balanced data situations. (2 )  
This same material, presented slowly and in detail, could also be the basis for 
an easy-going course on variance components. ( 3 )  For an advanced course we 
would recommend using Chapters 1 and 2 for an easy introduction, followed 
by a quick overview of Chapters 3-5 (I-way classification, and ANOVA 
estimation from balanced and unbalanced data) and then Chapters 6 and 7 in 
detai; (;s5I, and REML, and prediction). We suggest following this with sections 
8.1-8.3, (introduction to computing ML and REML) and all of Chapters 10 
(binary and discrete data) and I I (covariance components and criteria-based 
estimation). Then, for a general overview of Bayes, ML and REML, use Sections 
9.1-9.4, and for a mnthematical synthesis of ML and REML from a pseudo 
least squares viewpoint, Chapter 12 is appropriate. (4 )  Finally, of course, 
Chapters 1-7, and then 8- 12, could constitute a detailed 2-semester (or 
2-quarter) course on variance components. 

Considering the paucity of books devoted solely to variance components, 
we have attempted a broad coverage of the subject. But we have not, of course, 
succeeded in a complete coverage-undoubtedly that is impossible. Some 
readers will therefore be irked by some of our omissions or slim treatment of 
certain topics. For example, much emphasis is placed on point estimation, with 
only some attention to interval estimation. The latter, for ANOVA estimation, 
is very difficult, with only a modicum known about exact intervals (e.g., Table 
3.4); although, for ML and REML asymptotic properties of the estimators 
provide straightrorward derivation. Also, even for estimation we chose to 
concentrate on methodology with sparse attention to interpreting analyses of 
specific data sets-and thus few numerical examples or illustrations will be 
found. And topics that receive slim treatment are criteria-based estimation and 
non-negative estimation (in Sections 1 1.3 and 12.7 respectively). The former 
(e.g., minimum norm estimation) is not, in our opinion, a procedure to be 
recommended in practice; and it already has its own book-length presentation. 

Sections within chapters are numbered in the form I .  I ,  1.2,1.3,. . .; e.g., Section 
1.3 is Section 3 of Chapter 1. These numbers are also shown in the running 
head of each page: e.g., [ 1.31 is found on page 7. Equations are numbered 
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( I ), (2), . . . throughout each chapter. Equation references across chapters are 
few, but include explicit mention of the chapter concerned; otherwise “equation 
(4)” or just “(4)” means the equation numbered (4) in the chapter concerned. 
Exercises are in the final section of each chapter (except Chapters I and 2), 
with running heads such as [E 51 meaning exercises of Chapter 5. Reference 
to exercise 2 of Chapter 5, for example, is then in the form E 5.2. 

Grateful thanks go to Harold V. Henderson and Friedrich Pukelsheim for 
comments on early drafts of some of the chapters; and to students in Cornell 
courses and in a variety of short courses both on and off campus who have 
also contributed many useful ideas. Special thanks go to Norma Phalen for 
converting handwritten scrawl to the word processor with supreme care and 
accuracy; and to Pamela Archin, Colleen Bushnell, April Denman and Jane 
Huling for patiently and efficiently dealing with occasional irascibility and with 
almost endless revisions for finalizing the manuscript: such helpful support is 
greatly appreciated. 

Ithara. New York 
April 1991 

SHAYLE R. SEARLE 
GEORGE CASELLA 

CHARLES E. MCCULLOCH 
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C H A P T E R  1 

I N T R O D U C T I O N  

Statistics is concerned with the variability that is evident in any body of data. 
A traditional (and exceedingly useful) method of summarizing that variability 
is known as the analysis of variance table. This not only presents a partitioning 
of observed variability, but it also summarizes calculations that enable us to 
test, under certain (normality) assumptions, for significant differences among 
means of certain subsets of the data. Sir Ronald Fisher, the originator of analysis 
of variance, had this to say about it in a letter to George Snedecor dated 
6/Jan/’34 that was on display at the 50th Anniversary Conference of the 
Statistics Department at Iowa State University, June, 1983: 

The analysis of variance is (not a mathematical theorem but) a simple method of 
arranging arithmetical facts so as to isolate and display the essential features of 
a body of data with the utmost simplicity. 

Initially this analysis of variance technique was developed for considering 
differences between means, but later came to be adapted to estimating variance 
components-as indicated in Chapter 2 and presented in detail in Chapters 3-5. 

Although Fisher’s descriptions of analysis of variance methodology were in 
terms of sums of squares of differences among observed averages, the trend in 
recent decades has been to present many of the ideas behind the analysis of 
variance in terms of what aiz called linear models, particularly that class of 
linear models known as fixed effects models (or just fixed models). These are 
described in Section 1.3. Numerous books are available on this topic at varying 
levels of theory and application. Eight examples of those that are at least 
somewhat theoretic are: Searle ( 1971), which emphasizes unbalanced data; Rao 
( 1973)’ with its broad-based mathematical generality; Graybill ( 1976), which 
emphasizes balanced data; Seber (1977). with its concentration on the full-rank 
model; Arnold ( I98 1 ), which uses a co-ordinate-free approach and emphasizes 
similarities between univariate and multivariate analyses; Guttman ( 1982), 
which is mainly an introduction; Hocking ( 1989, which is very wide-ranging; 

1 
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Sex 

and Searle ( 1987), which is confined to unbalanced data, needs no matrix algebra 
for its first six chapters, and does offer some brief comments on statistical 
computing packages. 

Variation among data can also be studied through a different class of linear 
models, those known as random effects models (or just random models)-see 
Section 1.3; and also those called mixed models, which are models that have a 
mixture of the salient features of fixed and random models. For some situations, 
data analysis using these models is closely allied to traditional analysis of 
variance, but in many instances it is not. The various analysis techniques that 
are available for random and for mixed models have been developed over many 
years in the research literature, with certain facets of those methods being 
available in a chapter or two of a number of books, e.g., Anderson and Bancroft 
(1952), Scheffe (1956), Searle (1971), Rao (1973), Neter and Wasserman (1974), 
Graybill (1976), Hocking (1985) and Searle (1987), to name a few. In contrast, 
this book is devoted entirely to random and mixed models, with particular 
concentration on estimating the variances (the components of variance, as they 
are called), which is the feature of these models that makes them very different 
from fixed effects models. We begin with some useful terminology and then, 
through a series of examples, illustrate and explain fixed effects and random 
effects. Chapter 2 is a brief history of the development of methods for estimating 
variance components, and as such it serves as an introductory survey of the 
array of methods available. Chapter 3 begins the description of those methods 
in detail. 

Marital Status 

Married Not Married 

Drug Drug 

A B C A B C 

1.1. FACTORS, LEVELS, CELLS AND EFFECTS 

In studying the variability that is evident in data, we are interested in 
attributing that variability to the various categorizations of the data. For 
example, consider a clinical trial where three different tranquilizer drugs are 
used on both men and women, some of whom are married and some not. The 
resulting data could be arrayed in the tabular form indicated by Table 1.1. 

TABLE 1.1 .  A FORMAT FOR SUMMARIZING DATA 

Male 

Female 
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The three classifications, sex, drug and marital status, that identify the source 
of each datum are called facrors. The individual classes of a classification are 
the levels of the factor; e.g., the three difl’erent drugs are the three levels of the 
factor “drug”; and male and female are the two levels of the factor “sex”. The 
subset of data occurring at the “intersection” of one level of every factor being 
considered is said to be in a cell of the data. Thus with the three factors, sex 
(2 levels), drug (3  levels) and marital status (2 levels), there are 2 x 3 x 2 = 12 
cells. 

In classifying data in terms of factors and their levels the feature of interest 
is the extent to which different levels of a factor affect the variable of interest. 
We refer to this as the eflect of a level of a factor on that variable. 

The effects of a factor are always one or other of the two kinds, as has already 
been indicated. First are f i x e d  eflects, which are the effects attributable to a 
finite set of levels of a factor that occur in the data and which are there because 
we are interested in them. In Table 1.1 the effects for the factor sex are fixed 
effects, as are those for the factors drug and marital status. Further quality 
discussion of fixed effects is in Kempthorne (1975). In a different context the 
effect on crop yield of three levels of a factor called fertilizer could correspond 
to the three different fertilizer regimes used in an agricultural experiment. They 
would be three regimes of particular interest, the effects of which we would want 
to quantify from the data to be collected from the experiment. 

The second kind of effects are random eflects. These are attributable to a 
(usually) infinite set of levels of a factor, of which only a random sample are 
deemed to occur in the data. For example, four loaves of bread are taken from 
each of six batches of bread baked at three different temperatures. Whereas the 
effects due to temperature would be considered fixed effects (presumably we 
are interested in the particular temperatures used), the effects due to batches 
would be considered random effects because the batches chosen would be 
considered a random sample of batches from some hypothetical, infinite 
population of batches. Since there is definite interest in the particular baking 
temperatures used, the statistical concern is to estimate those temperature effects; 
they are fixed effects. No assumption is made that the temperatures are selected 
at random from a distribution of temperature values. Since, in contrast, this 
kind of assumption has then been made about the batch effects, interest in them 
lies in estimating the valiance of those effects. Thus such data are considered 
as having two sources of random variation: batch variance and, as usual, error 
variance. These two variances are known as variance components: their sum is 
the variance of the variable being observed. 

Models in which the only effects are fixed effects are called jixed efSecrs 
models, or sometimes just fixed models. Models that contain both fixed and 
random effects are called mixed models. And those having (apart from a single, 
general mean common to all observations) only random effects are called random 
eflects models or, more simply, random models. Further examples and properties 
of fixed effects and of random effects are given in Sections 1.3 and 1.4. 
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1.2. BALANCED AND UNBALANCED DATA 

a. Balanced data 
Data can be usefully characterized in several ways that depend on whether 

or not each cell contains the same number of observations. When these numbers 
are the same, the data shall be described as balanced data; they typically come 
from designed factorial experiments that have been executed as planned. 

A formal, rigorous, mathematical definition of balanced data is elusive. 
Although the word “balanced” is used in a variety of contexts in statistics 
(see Speed, 1983), its use as a descriptor of equal-subclass-numbers data is now 
more widely accepted and has been formalized by a number of authors, e.g., 
Smith and Hocking (1978), Seifert (1979), Searle and Henderson (1979) and 
Anderson et al. (1984); and an explicit definition of a very broad class of 
balanced data is given in Searle (1987). These details are not pursued here. 

b. Special cases of unbalanced data 
In a general sense all data that are not balanced are, quite clearly, unbalanced. 

Nevertheless, there are at least two special cases of that broad class of unbalanced 
data that need to be identified. So far as analysis of variance is concerned, they 
can be dispensed with because their analyses come within the purview of the 
standard (so-called) analyses of balanced data. These analyses can be used for 
variance components estimation either by adapting the techniques for balanced 
data (Chapter 4), or by using the methods available for unbalanced data in 
general (Chapters 5-12). However, in most instances of these special cases of 
unbalanced data estimating variance components would not be judicious 
because there are often impractically too few levels of the factors. Nevertheless, 
we briefly illustrate both cases, to ensure that the reader realizes we deem them 
to be outside the ken of what we generally refer to as unbalanced data. 

4. Planned unbalancedness. Certain experimental designs are planned so 
that they yield unbalanced data. There are no observations on certain, carefully 
planned combinations of levels of the factors involved, e.g., latin squares, 
balanced incomplete blocks and their many extensions. We call this planned 
unbalancedness. An example shown in Table 1.2 is a particular one-third of a 
3-factor experiment (of rows, columns and treatments with 3 levels of each), 
that is a latin square of order 3, as shown in Table 1.3. In each of the 9 cells 
defined by the 3 rows and 3 columns, only one treatment occurs, and not all 
three treatments. This is displayed in Table 1.2 as unbalanced data (planned 
unbalancedness) with zero or one observation per cell of the 27 cells of a 
3 x 3 x 3 (3-factor) experiment. The customary display of this latin square is 
shown in Table 1.3. 

Another example of planned unbalancedness is an experiment involving 3 
fertilizer treatments A, B and C, say, used on 3 blocks of land in which one of 
the 3 treatment pairs A and C, A and B, and B and C is used in each block. 
This is a simple example of a balanced incomplete blocks experiment that can 
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TABLE 1.2. AN EXAMPLE OF PLANNED UNBALANCEDNESS: THE LATIN SQUARE 

Number of Observations 

Treatment 

A B C 

Column Column Column 

Row 1 2 3 I 2 3 1 2 3 

1 I 0 0 0 1 0 0 0 1 
2 0  1 0 0 0 1 1 0 0 
3 0 '  0 I 1 0 0 0 1 0 

TABLE 1.3. A LATIN SQUARE OF ORDER 3 

(TREATMENTS A, B. C) 

Column 

Row 1 2 3 

1 A B C 
2 C A B 
3 B c A 

TABLE 1.4. NUMBER OF OBSERVATIONS IN A 

BALANCED INCOMPLETE BLOCKS EXPERIMENT 

Block 

Treatment 1 2 3 

A 1 1 0 
B 0 1 1 
C 1 0 1 

be represented as a 2-factor experiment, each factor having 3 levels, with 
certain cells empty, as shown in Table 1.4. 

Analyses of variance of data exhibiting planned unbalancedness of the nature 
just illustrated are well known and are often found in the same places as those 
describing the analysis of variance of balanced data. In a manner more general 
than either of the two preceding examples, planned unbalancedness need not 
require that a planned subset of cells be empty; it could be that subsets of cells 
are just used unequally; e.g., Table 1.4 with every 0 and 1 being a 1 and 2, 
respectively, would still represent planned unbalancedness. 
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-ii. Estimating missing observations. The second special case of unbalanced 
data is when the number of observations in every cell is the same, except that 
in a very few cells the number of observations is just one or two less than all 
the other cells. This usually occurs when some intended observations have 
inadvertently been lost or gone missing somehow, possibly due to misadventure 
during the course of an experiment. Maybe in a laboratory experiment, 
equipment got broken or animals died; or in an agricultural experiment, 
farm animals broke fences and ate some experimental plots. Under these 
circumstances there are many well-known classical techniques for estimating 
such missing observations [e.g., Steel and Torrie (1980), pp. 209, 227 and 3881, 
as well as some newer, computer-intensive techniques (see Little and Rubin, 
1987). After estimating the missing observations, one uses standard analyses of 
variance for balanced data. We therefore give no further consideration to 
estimating missing observations. 

c. Unbalanced data 
After defining balanced data and excluding from all other data those that 

can be described as exhibiting planned unbalancedness or involving just a few 
missing observations, we are left with what shall be called unbalanced data. 
This is data where the numbers of observations in the cells (defined by one 
level of each factor) are not all equal, and may in fact be quite unequal. This 
can include some cells having no data but, in contrast to planned unbalancedness, 
with those cells occurring in an unplanned manner. Survey data are often like 
this, where data are sometimes collected simply because they exist and so the 
numbers of observations in the cells are just those that are available. Records 
of many human activities are of this nature; e.g., yearly income for people 
classified by age, sex, education, education of each parent, and so on. This is 
the kind of data that shall be called unbalanced data. 

In describing unbalanced data this way we give no consideration to whatever 
mechanism it was that led to the inequality of the numbers of observations in 
the cells. For example, with milk yields of dairy cows sired by artificial 
insemination, bulls that are genetically superior have more daughters than other 
bulls, simply because of that superiority. This effect should, of course, be taken 
into account in estimating between-bull variance, as was considered by Harville 
(1967, 1968). We do not deal with such difficulties and so, in the sense that 
unbalanced data are balanced data with some observations missing, we are in 
effect assuming that those are what Little and Rubin (1987) call missing-at- 
random observations. 

Within the class of unbalanced data we make two divisions. One is for data 
in which all cells contain data; none are empty. We call these all-cells-filled 
data. CompIementary to this are some-cells-empty data, wherein there are some 
cells that have no data. This division is vitally useful in the analysis of fixed 
effects models (Searle, 1987) where Yates’ ( 1934) weighted-squares-of-means 
analysis is very useful for all-cells-filled data but is not applicable to some-cells- 
empty data. This is of less importance for random and mixed models than for 
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fixed effects models, although the weighted-squares-of-means analysis is indeed 
one possible basis for variance components estimation from all-cells-filled data. 
(See Chapter 5 . )  

1.3. FIXED EFFECTS AND RANDOM EFFECTS 

The two classes ofeffects, fixed and random, have been specified and described 
in general terms. We now illustrate the nature of both classes, using some 
illustrative examples to do so, and emphasizing properties of random effects in 
the process. 

a. Fixed eflects models 

Example 1 (Tomato varieties). Consider a home gardener carrying out a 
small experiment with 24 tomato plants, 6 plants of each of 4 varieties that the 
gardener is particularly interested in, through having tried them occasionally 
in recent summers. Comparison of the four varieties is now to be made in the 
12' x 8' garden space available. Each plant is allocated randomly to one 
of the 2' x 2' squares. If yi, is the yield of fruit from plant j of variety i 
(for i = 1,. . ., 4 and j = 1 ,..., 6), a possible model for yil would be 

E ( Y i j )  = Pi ,  ( 1 )  

where E represents expectation and pi is the expected yield from a plant of 
variety i. If we wanted to write p, = p + af we would then have 

(2) 

where p is a general mean and ai is the effect on yield of tomatoes due to the 
plant being variety i. 

In this modelling of the expected value of yfl  each p, (or p and each a , )  is 
considered as a fixed unknown constant, the magnitudes of which we wish, in 
some general sense, to estimate; e.g., we might want to estimate p ,  and p, or 
p1 - p4. In doing this the pfs, (or the a i s )  correspond to the four different 
varieties that the gardener is interested in. They are four very specific varieties 
of interest, and in using them the gardener has no thought for any other varieties. 
This is the concept of fixed effects. Attention is fixed upon just the varieties in 
the experiment, upon these and no others, and so the effects are called fixed 
eflects. And because all the effects in (2) are fixed effects, the model is called a 
fixed eflects model. It is also called Model I ,  so named by Eisenhart (1947). 

Armed with (2), we now define the deviation of yf, from its expected value 
E ( y f , )  as residual error: 

This gives 

or equivalently y f l  = pi + e,, I 

E(Yi, )  = P + a,, 

efl = yil - E(yij) = Yij  - ( p  + a,) . 

Y i j  = P + ai + ell, (3 )  
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A consequence of the definition of the residual ei, is that it is a random 
variable with mean zero: 

E(ei,) = ECyi, - E(yij)l = 0. (4) 

But that definition carries no consequences so far as second moments are 
concerned. Therefore we attribute a variance and covariance structure to the 
erp: first, that every ei, has the same variance, 03, and second, that the ells are 
independently and identically distributed and that pairs of different etis have 
zero covariance. Thus, using var(.) to denote variance and cov(*, -)for covariance, 

var(e,,) = 0," V i and j 

(with V meaning "for all") and 

cov(e,,, ei.,.) = 0 except for i = i' and j = j' . ( 6 )  

In light of (4), this means that 

var(eij) = af = E(ei) 

and 

E(erje,,,,) = 0 except for i = i' and j = j' . (7) 

The manner in which data are obtained always affects inferences that can 
be drawn from them. We therefore describe a sampling process pertinent to 
this fixed effects model. The data are envisaged as being one possible set of 
data involving these same tomato varieties that could be derived from repetitions 
of the experiment, repetitions for each of which a different sample of 6 plants 
of each variety would be used. This would lead on each occasion to a set of es 
that would be a random sample from a population of error terms having zero 
mean, variance a," and zero covariances. It is the probability distribution 
associated with the es that provides the means for making inferences about 
functions of the pis (or of p and the ais) and about 0,2 , 

The all-important feature of fixed effects is that they are deemed to be 
constants representing the effects on the response variable y of the different 
levels of the factor concerned, in this case the varieties of tomatoes. These varieties 
are the levels of the factor of particular interest, chosen because of interest in 
those varieties in the experiment. But they could just as well be different fertilizers 
applied to a corn crop, different forage crops grown in the same region, different 
machines used in a manufacturing process, different drugs given for the same 
illness, and so on. The possibilities are legion, as are the varieties of models 
and their complexities, reaching far beyond those of (1)-(7). We briefly offer 
two more examples. 

Example 2 (Medications). Consider a clinical trial designed for testing the 
efficacy of a placebo and 3 different medications intended for reducing blood 
pressure. The placebo and drug are administered to 24 executives of the same 
N.Y. City corporation, all aged 40-45 and earning salaries in the range 
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$100,000-$250,000 per annum. Six executives are chosen at random to receive 
the placebo and six others for each of the three medications. After 30 days of 
treatment, blood pressure is measured again, and for each of the 24 executives 
the change in blood pressure from before treatment to after treatment is 
recorded. The difference for the j t h  patient on treatment i, for i = 1,2,3,4 and 
j = 1,2,. . . ,6,  is denoted y,. Then for studying the effect of treatment on change 
in blood pressure, the same model could be used as that suggested in 
Example 1 for studying effects of the four varieties on yield of tomatoes. Just 
as with the four different varieties of tomatoes, so with the four different 
treatments (placebo and 3 medications) on the executives: the prs (or p and 
ais) are considered as fixed, unknown constants. This is because the four 
treatments being used are the four treatments that have been decided upon as 
being of interest. They are the treatments on which our attention is fixed. The 
effects in the model corresponding to those treatments are therefore fixed effects. 

Although medications other than those we have used could be envisaged, 
the ones chosen for the experiment are, insofar as the experiment is concerned, 
the treatments of interest. In no way are the four chosen treatments deemed to 
be a sample from a larger array of possible treatments. 

Example 3 (Soils and fertilizers). The growth of a pottcd plant depends 
on the potting soil and the fertilizer it is grown in. Suppose 30 chrysanthemum 
plants, all of the same variety and age, are randomly allocated to 30 pots, one 
per pot, where each pot contains one combination of each of 6 soil mixtures 
with each of 5 fertilizers. A suitable linear model for yf,, the growth of the plant 
in soil i used with fertilizer j would be 

E(Y,,)  = c1 + af + P, (8)  

where p is a general mean, af is the effect on growth due to soil i and /I, is the 
effect on growth of fertilizer j. Since the 6 soils and the 5 fertilizers have been 
specifically chosen as being the soils and fertilizers of interest, the ais and pjs 
are fixed effects corresponding to those soils and fertilizers-with i = 1,2,. . . , 6  
and j = 1,2,. . . ,5 .  As with the drug treatments, the soils and fertilizers in the 
experiment are the specific items of interest and under no circumstances can 
they be deemed as having been chosen randomly from a larger array of soils 
and fertilizers. Thus the ais and /?,s are fixed effects. This is just a simple extension 
of Examples 1 and 2, which each embody only one factor: variety effects 
on yield of tomatoes, and treatment effects on blood pressure. With the 
chrysanthemums there are two factors: soil effects and fertilizer effects on growth. 

b. Random effects models 

Example 4 (Clinics). Suppose a new form of injectable insulin is being tested 
using 15 different clinics in New York State. It is not unreasonable to think of 
those clinics (as do Chakravorti and Grizzle, 1975) as a randomly chosen sample 
of clinics from a population ofclinics (i.e., doctors who administer the injectioiis). 
If clinic i has nf patients in the trial and the measured response of patient j in 
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clinic i is y i j  then a possible model would be 

E ( y i j )  = p + ai for i = 1, ..., ni . (9)  

Although (9) is algebraically the same as (2)  for Examples 1 and 2, some 
assumptions underlying it are different. In Example 2 each ai is a fixed effect, 
the effect on blood pressure of the patient having received treatment i ,  a treatment 
that is a pre-decided treatment of interest. But in (9) ai  is the effect on blood-sugar 
level of the observed patient having been injected in clinic i ;  and clinic i is just 
one clinic, that one from among the randomly chosen clinics that happened to 
be numbered i in the clinical trial. Since the clinics have been chosen randomly 
with the object of treating them as a representation of the population of all 
clinics in New York State, and from which inferences can and will be made 
about that population, the one labelled i is of no particular interest of itself to 
the trial; it is of interest solely as being one of the 15 clinics randomly chosen 
from a larger population of clinics. This is a characteristic of random effects: 
they can be used as the basis for making inferences about populations from 
which they have come. Thus ai is a random eflect. As such it is, indeed, a random 
variable. 

More precisely, ai corresponding to the clinic that has been assigned label i 
is the (unknowable) realization of a random variable “clinic effect” appropriate 
to that clinic labeled i .  However, for notational convenience we judiciously 
ignore the distinction between a random variable and a realized value of it and 
let ai do double duty for both. 

With the ais being treated as random variables, we must attribute probability 
properties to them. There are two that are customarily employed: first, that 
all !xis are independently and identically distributed (i.i.d.); second, that they 
have zero mean, and then, that they all have the same variance, at. We 
summarize this as 

Consequences of this are 
ai h- i.i.d.(O, a:) V i . 

E(ai) = 0 V i, ( 10) 

( 1 1 )  

cov(ai, ak)  = 0 V i # k . (12) 

var(ai) = E [ a i  - E(ai)12 = E(aZ) = a:, 

and 

There are, of course, properties other than these that could be used, e.g., non-zero 
values for cov(ai, ak). In point of fact, these elementary properties lead to enough 
difficulties insofar as estimation is concerned that alternatives seldom get used. 
Nevertheless, some of these alternatives are mentioned briefly in Chapter 3. 

A second outcome of treating the ais as random variables is that we must 
consider E ( y i , )  = p + ai of (9) with more forethought, because it is really a 
conditional mean. Suppose for the moment that a* represents the random 
variable “clinic effect”, and that for the clinic labeled i, ai is the realized (but 
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unobservable) value of a*. Then in reality (9) is the expected value of yi j  given 
that a* is ail i.e., that a* = ai. Hence (9) is the conditional mean 

E ( y i j ( a *  = a i )  = y + ai . (13) 
As already indicated, for notational simplicity we drop the use of a* and write 
(13) as 

( 14) 

E(Yij) = Ir * (15)  

E(Yijlai) = P + Qi * 

Taking expectation over ori, as in (lo), then gives 

Note that E(ai )  = 0 of (10) involves no loss of generality in (14) and (15) 
because if E ( a i )  # 0 but E(a i )  = t, say, then E ( y i j I a i )  = y + T + a, - t gives 
E ( y i , )  = y + t. Therefore, on defining y' as p' = y + t and a; = ai - t, we have 
E ( y i j ( a i )  = y' + a;, which is (14) with p' in place of p and a: in place of ail and 
the form of (14) and (15) is retained. 

Finally, we introduce the residual, similar to eif = yif - E ( y , j )  defined earlier 
for fixed effects models. The definition here is 

eij = Yij - E(yijlai) = Yij - ( P  + mi), (16) 

Yi j  = P + mi + eiji (17) 

similar to (3). Then eij has properties similar to those of Example 1. Thus 
E(eif) = 0 and attributing uniform variance 0; to each eif gives 

(18) 

similar to (5). Furthermore, we also treat the eijs as being independent of each 
other and of every ai so that 

so that e,, is a random variable; and (16) gives an equation 

var(eij) = 0,' = E(e$), 

cov(eij, ei,f) = 0 V i, i' and j ,  j' except i = i' and j = j '  

and 

cov(eij, ak)  = 0 V i, j and k , 

Hence, for the same values of i, i ' ,  j ,  j '  and k 

E(eijerf) = 0 and E(eija,) = 0 .  

In view of (17), the variance of yij is 

W y i j )  = var(y + ai + eij), 

which is 

u: = of + a:, [Use (18)-(20)] . (21 1 
In this way we see that 0.' and u,2 are components of o;, the variance of y ;  
thus they have attracted the name components of variance or variance components. 
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Nevertheless, we also note that a,’ is the intra-class covariance, i.e., the covariance 
between every pair of observations in the same clinic: 

Parenthetical statements. The phrase enclosed in square brackets in (21) is the 
first use of a practice that re-occurs in subsequent chapters: an isolated phrase 
that indicates to the reader the reasoning behind the derivation of the equality 
on that line. In (21) that reasoning is quite straightforward, but such is not 
always so. 

It is important to recognize that a model is not just its equation such as 
( 17), but also everything that prescribes properties of the elements in that 
equation. Thus the model is not just equation (17) but it is that and all the 
equations and other properties described between equations (10) and (20). It 
is these properties that distinguish this model from that used in Examples 1 
and 2. In Example 1, for instence, the model equation is (3), but the model is 
(3) and everything from (2) d;.rwn to (7). 

Model equation (17) has p as a fixed effect, and al and e,, as random. Thus 
everything except p is random. This is the characteristic of what is called a 
random effects model, or just a random model. It was named Model I1 by 
Eisenhart (1947), a name that is somewhat disappearing from use. 

Example 5 (Dairy bulls). It is common practice for dairy farmers today, 
rather than mating their own bulls to their own cows, to have their cows 
inseminated by a technician who is supplied with bull semen from an artificial 
breeding corporation. That corporation’s business is to own bulls that generally 
sire daughter cows that are high-yielding producers of milk. It can achieve that 
by each year buying some 80-150 young bulls that are considered to be a 
random sample from the population of bulls (of some particular breed-mainly 
Holstein, in the USA.) .  Then semen from those bulls is used enough so that 
three years later there will be approximately 60 daughter cows per bull that 
have milk production records. Letting yl, be the record of the j th daughter of 
the ith sire, an appropriate model for y,, is then precisely the same as in Example 
4, based on the model equation 

cov(y,,, yi,y) = cov(p + a, + el,, p + a, + ety) = of for j # j’ . 

Yif = cc + a, + e,, 

but for i = 1,. . . , 150 and j = 1,. . . ,60. Because the bulls are considered random, 
each a, is a random effect, with var(a,) = of and cov(a,, ak) = 0 for i # k, and 
with all the other specifications given in Example 4. 

To the animal breeder and farmer, who are both interested in using breeding 
to help increase the production of economically important products from farm 
animals (e.g., eggs, milk, butter, wool, tallow and bacon), the variance components 
a,’ and a,” are of much interest. They are needed, for example, for the ratio 
h = 4a,’/(az + a:), which is a parameter called heritability that is of great 
importance in genetics, not only in the breeding of animals but of plants too. 
A similar ratio is .,‘/(a,’ + a:), the intra-class correlation; it also occurs in 
psychological and educational testing, where it has the connotation of reliability. 
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Another aspect of this model that is often of particular interest is that of 
predicting the value of ai corresponding to the bull labeled i. This is important 
for ranking the bulls on the basis of the predicted values of the ais because 
those predictions act as estimates of the bulls' genetic merits as sires of daughter 
cows that are valued for high milk production. 

Note how this example differs from the preceding ones. On one hand, it is 
quite reasonable to assume that the bull effects are a random sample of possible 
values, and we accordingly treat bull as a random factor. On the other hand, 
we are interested in predicting the value of ai for a specific bull that occurs in 
the data. Thus the distinction between fixed and random effects centers on 
whether we are willing to assume that the levels of a factor are sampled randomly 
from a distribution, not whether we are specifically interested in the levels of 
that factor. 

Given that the exact genetic contribution (a random half of his genetic 
make-up) of a bull to his daughter cows is, in fact, different for each daughter, 
we cannot estimate ai in the sense that we estimate fixed effects. With ai being 
a random variable, the best we can do is to consider the expected value of ai, 
given the records that we have from all the daughters of all 150 of the bulls. 
Thus we seek to estimate the conditional mean E ( a i I y ) ,  where y is the vector 
of all records. This estimator (which is nowadays called a predictor) turns out 
to be, as derived in (40) of Chapter 3, 

where bull i has ni daughters with mean record j i .  = Xy=i yfj/ni and fi is the 
estimator of p:  

(22) 
$=- xi Wijj i .  1 - ni for wi = ~ - xi wi var(jji.) nia.' + a:' 

as derived in (34) of Chapter 3. The estimator (21), which is known as the best 
linear unbiased predictor (BLUP), can also be written as 

- nib 
a. = (Ii. - f i ) ,  ' 

4 + (ni - 1 ) h  

where h = 4a,'/(a: + a:), as before. Details of these results and generalization 
of them are given in Chapter 7. Clearly, in order to use 6, in practice, estimates 
of a,' and a: are needed. That is what this book is all about, estimating variance 
components. 

Example 6 (Ball bearings and calipers). Consider the problem of manufacturing 
ball bearings to a specified diameter that must be achieved with a high degree 
of accuracy. Suppose each of 100 different ball bearings is measured with each 
of 20 different micrometer calipers, all of the same brand. Then a suitable model 
equation for y i j ,  the diameter of the ith ball bearing measured with the j th  
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caliper, could be 

E ( y i j )  = P + ai + P j  . (23) 

This is the same model equation as (8) in Example 3; but it is the equation of 
a different model because the ai and the P j  are here random effects corresponding, 
respectively, to the 100 ball bearings being considered as a random sample from 
the production line, and to the 20 calipers that were being considered as a 
random sample of calipers from some population of available calipers. Hence 
in (23) each ai and /Ij is treated just as is ai in Examples 4 and 5, with the 
additional property of taking the ais and P j s  as being independent of one 
another. Similar independence is taken for the ais and P j s  and eijks. Thus 

cov(ai, Pi) = cov(ai, ei . j .k)  = cov(Bj, = 0 

and similar results for expected values of corresponding products, as in (7) and 
(12). 

c. Mixed models 

Example 7 (Medications and clinics). Suppose in Example 2 that blood 
pressure studies were made at 15 different, randomly chosen clinics throughout 
New York City, with 5 patients on each of 4 treatments (placebo and 3 
medications) at each clinic. In this case a suitable model equation for the kth 
patient on treatment i at clinic j would be 

(24) 

where ai, Pi and y i j  are the effects due to treatment i ,  clinic j and treatment- 
by-clinic interaction, respectively. The range of values for i , j  and k are 
i = l , . .  ., 4, j = 1 ,..., 15 and k = 1 ,..., 5. Since, as before, the treatments are 
the treatments of interest, ai is a fixed effect. But the clinics that have been used 
were chosen randomly, and so Pi is a random effect. Then, because yij is an 
interaction between a fixed effect and a random effect, it is a random effect, 
too. Thus the model equation (24) has a mixture of both fixed effects, the a,s, 
and random effects, the P j s  and yijs. It is thus called a mixed model. It incorporates 
problems relating to the estimation of both fixed effects and variance components. 

In application to real-life situations, mixed models have broader use than 
random models, because so often it is appropriate (by the manner in which 
data have been collected) to have both fixed effects and random effects in the 
same model. Indeed, every model that contains a p is a mixed model, because 
it also contains a residual error term, and so automatically has a mixture of 
fixed and random elements. In practice, however, the name mixed model is 
usually reserved for any model having both fixed effects (other than p) and 
random effects, as well as the customary random residuals. 

E ( Y i j k )  = P + mi  + P j  + y i j i  

Example 8 (Varieties and gardens). Example 1 deals with 4 different 
varieties of tomatoes. Suppose they are to be compared in 15 different gardens 
in Tompkins County of New York State. Then (24) of Example 7 would be an 
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appropriate model, with a, being the fixed effect for variety of tomato, and fl, 
the random effect for garden; and yii the interaction effect-a random effect. 
This and Example 7 would then be essentially the same-4 different treatments 
(fixed effects) being used in each of 15 randomly chosen places (random effects). 

1.4. FIXED OR RANDOM? 

Equation (8) involving soils and fertilizers is indistinguishable from (23) for 
the ball bearings and calipers. But the complete models in these two cases are 
different because of the interpretation attributed to the effects: in the one case 
fixed, and in the other, random. In these and the other examples most of the 
effects are readily seen to be categorically fixed or random: thus tomato varieties 
and medications are fixed effects, whereas clinics and dairy bulls are random 
effects. But such clear answers to the question “fixed or random”? are not 
necessarily the norm. Consider the following example. 

Example 9 (Mice and technicians). A laboratory experiment designed to 
study the maternal ability of mice uses litter weights of ten-day-old litters as a 
measure of maternal ability. Suppose there are four female mice, each of which 
has six litters. The experiment is supervised by a laboratory technician, a different 
technician for each successive pair of litters that the mice had. One possible 
model for yi,.k, the weight of the kth litter from mouse i with the experiment 
being supervised by technician j, would be 

where p is a general mean, mi is the effect due to mouse i, T,  is the effect due 
to technician j and q$, is an interaction effect. 

Consider the mis and the mice they represent. The data relate to maternal 
ability, a variable that is assuredly subject to variation from animal to animal. 
The prime concern of the experiment is therefore unlikely to center specifically 
on those four animals used in the experiment. After all, they are only a sample 
from a population of mice: and so the m,s are random effects. But what of the 
T,S ,  the technician effects? If the technicians each came and went, as a random 
sample of employees, so to speak, with many more such people also being 
available, then the T,S could reasonably be treated as random effects. But suppose 
three particular people were the only candidates available for the position of 
technician, and each wanted it as long-term employment. Then we are specifically 
interested in just those three technicians and want to assess differences between 
them, and pick for the job the one deemed best. In that case we would be 
unwilling to assume that the technician effects were sampled from a population 
of values, and they would be fixed effects, not random effects. Thus it is that 
the situation to which a model applies is the deciding factor in determining 
whether effects are to be considered as fixed or random. Extensive discussion 
of this is to be found in the landmark paper of Eisenhart (1947), with further 
comment available in Kempthorne (1975) and Searle (1971). 
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In some situations the decision as to whether certain effects are fixed or 
random is not immediately obvious. Take the case of year effects, for example, 
in studying wheat yields: are the effects of years on yield to be considered fixed 
or random? The years themselves are unlikely to be random, for they will 
probably be a group of consecutive years over which the data have been gathered 
or the experiments run. But the effects on yield may reasonably be considered 
random, subject, perhaps, to correlation between yields in successive years. Of 
course, if one was interested in comparing specific years for some purposes, 
then treating years as random would not be appropriate. 

In endeavoring to decide whether a set of effects is fixed or random, the 
context of the data, the manner in which they were gathered and the environment 
from which they came are the determining factors. In considering these points 
the important question is that of inference: are the levels of the factor going to 
be considered a random sample from a population of values? “Yes”-then the 
effects are to be considered as random effects. “No”- then, presumably, 
inferences will be made just about the levels occurring in the data and the effects 
are considered as fixed effects. Thus when inferences will be made about a 
population of effects from which those in the data are considered to be a random 
sample, the effects are considered as random; and when inferences are going 
to be confined to the effects in the model, the effects are considered fixed. 

Another way of putting it is to ask the questions “DO the levels of a factor 
come from a probability distribution”? and “Is there enough information about 
a factor to decide that the levels of it in the data are like a random sample”? 
Negative answers to these questions mean that one treats the factor as a fixed 
effects factor and estimates the effects of the levels. Affirmative answers mean 
treating the factor as a random effects factor and estimating the variance 
component due to that factor. In that case, if one is also interested in the realized 
values of those random effects that occur in the data, then one also uses a 
prediction procedure for those values (see Section 3.4). 

It is to be emphasized that the assumption of randomness does not carry 
with i t  the assumption of normality. Often this assumption is made for random 
effects, but it is a separate assumption made subsequent to that of assuming 
effects are random. Although most estimation procedures for variance 
components do not require normality, if distributional properties of the resulting 
estimators are to be investigated then normality of the random effects is often 
assumed. 

1.5. FINITE POPULATIONS 

Random effects occurring in data are assumed to be from a population of 
effects. The populations are usually considered to have infinite size, as is, for 
example, the population of all possible crosses between two varieties of tomato. 
They could be crossed an infinite number of times. However, the definition of 
random effects does not demand infinite populations of such effects. They can 
be finite. In addition, finite populations may be very large, indeed so large as 
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to be considered infinite for most purposes; an example would be all the mice 
in New York State on July 4, 1990! Hence random effects factors can be 
conceptual populations of three kinds insofar as their size is concerned: infinite, 
finite but so large as to be deemed infinite, and finite. 

We shall be concerned with random effects coming solely from populations 
assumed to be of infinite size, either because this is the case or because, although 
finite, the population is large enough to be taken as infinite. These are the most 
oft-occurring situations found in practical problems. Finite populations, apropos 
variance components, are discussed in several places, e.g., Bennett and Franklin 
(1954, p. 404) and Gaylor and Hartwell (1969). Rules for converting the 
estimation procedure of any infinite-population situation into one of finite 
populations are given in Searle and Fawcett (1970). 

1.6. SUMMARY 

a. Characteristics of the fixed effects model and the random effects model for 
the I-way classification 

Characteristic Fixed ERects Model Random ERects Model 

fori = i'and j = j '  

0 otherwise 

b. Examples 

No. 
1 
2 
3 
4 
5 
6 
1 
8 
9 

Page 

1 
8 
9 
9 

12 
13 
14 
14 
15 

Content Classification 

Tomato varieties I-way 
Medications 1 -way 
Soils and fertilizers 2-way 
Clinics 1-way 
Dairy bulls 1 -way 
Ball bearings and calipers 2-way 
Medications and clinics 2-way 
Varieties and gardens 2-way 
Mice and technicians 2-way 

Model 

Fixed 
Fixed 
Fixed 
Random 
Random 
Random 
Mixed 
Mixed 
Mixed or random 



c. Fixed or random? 

decide whether the factor is to be considered iIs tixcd or random. 
For any factor, the following decision tree hiis to be followed in order to 

IS IT REASONABLE TO ASSUME THAT LEVELS OF THE FACTOR 
COME FROM A PROBABILITY DISTRIBUTION'? 

I I 

No YeS 

1 
Treat factor as random 

as fixed 1 
WHERE DOES INTEREST LIE? , 

1 
Treat factor 

ONLY IN THE 
DI STR I BUT1 ON 

RANDOM EFFECTS 

Estimate the variance 
of the random effects 

IN BOTH THE DISTRIBUTION 
AND THE 

OF THE RANDOM EFFECTS 

Estimate the variance 
of the random effects 

and calculate predictors 
(BLUP) of the realized 

values of the random effects 

OF THE REALIZED VALUES 

1 1 
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H I S T O R Y  A N D  C O M M E N T  

This chapter gives a brief history of the different methods now available for 
estimating variance components. In so doing, it provides a skeleton survey of 
many of the topics that are detailed in ensuing chapters. We begin with an 
introductory section on analysis of variance because, historically, that is the 
starting point of methods of estimating variance components. 

2.1. A N A L Y S I S  OF V A R I A N C E  

The starting point of Fisher’s analysis of variance table was the array of 
different means or averages available from a body of data. Thus in Example 1 
of Chapter 1, where yij  is the yield from plant j of variety i, there are variety 
means j i .  and the overall mean j.. . From that example of the l-way classification 
we generalize notation to have 

n a n  a c c Y i j  c Ii. 
y i .  = - and 8.. = -- i = l  j = 1  - i =  1 

C y i j  - j = 1  

n an ll 

for i = 1 ,..., a and j = 1 ,..., n. In that example, a = 4 and n = 6. Thus, in 
general, a is the number of groups or classes (tomato varieties in the example) 
with the number of observations (plants) in each being n. 

We begin with the identity 

Y i j  - 1.. = ( y i j  - j i . )  + ( j i .  - j . . )  * (2) 

Squaring each side of (2) and summing over i and j gives, in contrast to the 
linear identity of (2), what can be called a quadratic identity: 

19 
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This arises because in squaring the right-hand side of (2), the cross-product 
term is zero: 

( y r ,  - j i . )( j l .  - j..) = i [ i (Yi, - j i . ) ] ( j i .  - j . . )  = i - j..) = 0 ' 
i = l  ,=1 i = 1  j - 1  i = l  

Note that each term in (3) is analogous to the sum of squares used in the 
customary estimation of variance from a simple sample of k observations, 
xl, x2, .  . ., X k ,  namely 

k k 

c x, 
r = l  

1 (x, - 2l2 
2 r = l  

s =  for R = -. 
r -  1 r (4) 

Thus the term on the left-hand side of (3) is the total sum of squares of deviations 
of all the observations from their mean, and the two terms on the right-hand 
side of (3) are sums of squares of deviations of observations from their group 
means, j i . ,  and of those group means from their mean, j... Thus (3) is a 
partitioning of the total sum o j  squares (or total sum of squares corrected for 
the mean) into two other sums of squares, all three of them being available for 
calculating estimated variances after the manner of s2 in (4). This partitioning, 
namely the identity (3), is easily summarized in tabular form as in Table 2.1, 
wherein the labels SSA, SSE and SST, have been given to the sums of squares. 
SST,, the total sum of squares adjusted for the mean (a.f.m), is used for distinc- 
tion from SST = Cl= C;, y$,  with SST, = SST - anjf. = Z i Z , ( y i ,  - j..)2. 

All of this is just straightforward algebra. Now we introduce certain statistical 
properties that originate from the customary assumptions of independence and 
normality: that the y ,  are realized values of independent random variables that 
are normally distributed with E ( y , , )  = pi and var(y,,) = 0,'. Under these 
circumstances it was Fisher's work that showed that SSA and SSE are each 
distributed as a multiple of a X2-distribution, that they are stochastically 

TABLE 2.1. PARTITIONING THE SUM OF SQUARES IN 
THE 1-WAY CLASSIFICATION, BALANCED DATA 

Source of 
Variation 

~ ~~ 

Sum of 
Squares 

Groups 

a n  

Within groups SSE = c c ( y i f  - j i . )2  
i = I  i = 1  

a n  

i = I  i = l  

Total (a.f.m.) SST, = c 1 (yif - Y . . ) ~  
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TABLE 2.2. ANALYSIS OF VARlANCE FOR A 1-WAY CLASSlFlCATlON WITH BALANCED DATA 

Source of 
Variation d.f.’ Sum or Squares Mean Square F-Sta tistic 

a MSA 
Groups a - 1 SSA = n c ( j i , .  - j..)’ MSA = SSA/(a - 1) F = - 

i= I MSE 
o n  

I - I  1 - 1  
Within groups a(n - I )  SSE = 1 (yi, - j,.)* MSE = SSE/a(n - I )  

I d.f. = degrees of freedom 

independent and that 

SSA/(a - 1 )  
SSE/a(n - 1 )  

F =  - 9:;: ,), 

meaning that F is distributed according to Fisher’s F-distribution (so named 
by Snedecor) with a - 1 and a(n  - 1) degrees of freedom for the numerator 
and denominator, respectively. This calculation and its intermediate steps are 
summarized in the familiar analysis of variance table of Table 2.2, which is 
simply an expansion of Table 2.1. 

The simplest use for which Fisher designed the analysis of variance table is 
that in Table 2.2, on assuming normality and the model equation 

( 6 )  

the F-statistic of ( 5 )  and Table 2.2 is a test statistic for testing the hypothesis 

W,) = P + ai, 

H: a1 = a2 = =a,, . (7) 
As has been said, this is for the fixed effects model. But for the random effects 
model, which is more pertinent to this book, the important question is “How 
does Table 2.2 get used in the random model?” This is answered by considering 
two questions that are more specific. 

The first is “In the random model, what use is F?” The difference between 
the fixed model and the random model is what is essential here. In the fixed 
model, the as correspond to specific, carefully chosen, levels (e.g. tomato 
varieties) of specific interest; and in the random model the as correspond to a 
random sample of levels from some larger population (e.g., a sample of bulls). 
In the fixed effects case we are most interested in just the particular as that 
occur in the data-and in only those effects. In the random effects case we are 
interested in the effects that occur in the data only inasmuch as they are a 
sample from a population and can therefore be used to make inferences about 
that population-in particular about its variance. Hence fixed effects models 
focus concern upon means: random effects models focus concern upon variances. 
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Thus for the fixed effects model the assumption of normality leads to F = MSA/ 
MSE [of ( 5 )  and Table 2.21 being a test statistic for the hypothesis 
H: a1 = a2 = =a ,  shown in (7). But in the random model that same 
F-statistic tests H: 0.’ = 0. 

The preceding F = MSA/MSE is a test statistic for H: cr,’ = 0 only for the 
I-way classification (see Sections 3.5d-v and 3.6d-v). But the reader is cautioned 
that this obviously useful result, of an F-statistic being available for testing a 
hypothesis that a variance component is zero, does not extend to every F-statistic 
that arises in analysis of variance tables of data of all mixed or random 
models-not even for balanced data. And this caution leads to another. Users 
of computer packages that have F-values among their output must be totally 
certain that they know precisely what the hypothesis is that can be tested by 
each such F-value. This is so both for fixed effects models (e.g., Searle, 1987), 
and for random and mixed models, too. Thus for the I-way classification of 
Table 2.2, with the random model the statistic F does not have an F-distribution 
when using unbalanced data, unless 0.‘ = 0. 

The second question concerning Table 2.2, which is particularly pertinent 
to this book, is “What part does the analysis of variance table play in estimating 
components?” The answer to this question occupies Chapters 3-5 that follow, 
dealing not just with the analysis of variance of Table 2.2, but with many 
extensions for both balanced and unbalanced data. 

2.2. EARLY YEARS, 1861-1949 

a. Sources 
The following brief history emphasizes the development of methods of 

estimating variance components, much of it being akin to Searle (1988a, 1989). 
The early years of 1861-1939 are dealt with in more detail than is 1940 
onwards, because publications are sparser and, for many readers, harder to 
locate than those since 1940. For this early history we draw heavily, plagiaristically 
in some cases, on Anderson ( 1978, pp. 11 -25), with his kind permission; and 
he, in turn, utilized Scheffk (1956). For the more recent period, heavy reliance 
is placed on (and free use made of) the excellent survey of Khuri and Sahai 
(1985)-again, with their kind permission. The proliferation of papers in the 
last fifteen years or so is extremely well summarized by those authors and the 
interested reader is encouraged to read their article and use their comprehensive 
bibliography as an entrk to almost all aspects of variance components. In relying 
on their survey, the account given here of the recent years does, for some topics, 
refer to just an early paper and a recent one, so providing the reader with both 
a starting point and something up-to-date. To encompass all the literature 
would be to repeat Khuri and Sahai’s (1985) paper, the reference list of which 
is extensive; and even more so are the bibliographies of Sahai (1979) and Sahai, 
Khuri and Kapadia (1985). 
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Much of the early story of variance components revolves around the I-way 

(8) 

var(ai) = of; var(e,,) = of; all covariances zero; (9) 

j = 1,2,. . ., n V i, for balanced data; (10) 

j = 1,2 ,..., n,, for unbalanced data . (11) 

classification that has already been set out in Chapter 1, summarized as follows: 

y,, = /.I + ai + e,,, with i = 1,2 , . . . , a ;  

For consistent notation, changes have been made to what some authors have 
used (even within direct quotations), and a unified set of equation numbers has 
been employed, with authors’ numbers shown in square brackets. 

b. Pre-1900 
An excellent telling of the early history of variance components is given in 

Scheffe (1956) and is enlarged upon in Anderson ( 1978, 1979a). Both of these 
accounts are drawn on extensively in what follows. 

Legendre ( 1806) and Gauss ( 1809) are well known as the independent fathers 
of the method of least squares. Plackett (1972) has an intriguing discussion of 
their relative rights to priority. An interesting aspect of those two early papers 
is, as pointed out by Scheffk (1956), that they were both published in books 
concerned with problems arising from astronomy: the orbits of the comets were 
Legendre’s concern and Gauss dealt with conic sections. But what is even more 
interesting is that whereas Legendre and Gauss were implicitly dealing with 
fixed effects aspects of linear models (although they wrote no model equations 
as would be recognized today), the subject of random effects models also seems 
to have originated from problems in astronomy. 

The first known formulation of a random effects model (although not called 
such) seems to be that of Airy (1861, especially Part IV). Scheffe (1956) refers 
to this work as being “very explicit use of a variance-components model for 
the one-way layout . . . with all the subscript notation necessary for clarity.” He 
(Scheffe) describes the work (Airy, 1861, Sec. 118; Sec. 113 in the 3rd edition) 
as being concerned with making telescopic observations on the same phenomenon 
for a nights, n, observations on the ith night. It is noteworthy (as remarked 
upon by Anderson, 1978) that in this earliest known use of a variance 
components model there is provision for unequal numbers of observations on 
the different nights. Then, with a footnote that he has changed Airy’s capital 
letters to lower case, and that he has “added the general mean I( since he [Airy] 
writes the equations for the observations minus /.I instead of for the observations,” 
Scheffe describes Airy’s model as follows [but now using the notation we have 
set out in (8)-( 1 1 )] : 

Airy assumes the following structure for the jth observation on the ith night: 

c2.11 YiJ = p + + eiJ ,  (12) 

where p is the general mean or “true” value, and the { a , }  and { e,,} are random 
effects with the following meanings: He calls a, the “constant error”, meaning it 
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is constant on the ith night; we would call it  the ith night effect; it is caused by 
the “atmospheric and personal circumstances” peculiar to the ith night. The { c,,} 
for fixed i we would call the errors about the (conditional) mean I( + a, on the 
ith night. It is implied by Airy’s discussion that he assumes all the e,, independently 
and identically distributed, similarly for the ai, that the {e,,} are independent of 
the {!xi}, and that all have zero means. Let us denote the variances of the {e, ,}  
and the { r , }  by u.‘ and u.’. 

Nowadays this seems to be accepted as the first occurrence of a random effects 
model in the literature. Yet Airy himself must not have thought of it as being 
the first, for in the preface of his book, quoted by Anderson (1978), he writes 
“No novelty, I believe, of fundamental character, will be found in these pages.”; 
and “, . . the work has been written without reference to or distinct recollection 
of any other treatise (excepting only Laplace’s Thdorie des Probabilitds). . . .” 
As Anderson (1978) says, this, insofar as attempts at establishing the exact 
origin of the components of variance concept are concerned, is an unfortunate 
style of writing. 

Quoting from Scheffk (1956, p. 256) again, it is interesting to note that Airy 
estimates what we would call at by first calculating 

for the ith night and then averages the square roots of the values given by ( 13) 
to estimate a,’ by 

It is noteworthy to see such an early use of ni - 1 as denominator of (13), 
although Anderson (1978) states that this is not an original use. “In establishing 
a criterion for the rejection ofdiscordant observations,” he writes, “Pierce (1852) 
specified “the sum of squares of all errors’ as being (N - m)c2, where N is the 
total number of observations, m is the number of unknown quantities contained 
in the observations and e2 is the mean error (sample variance). Clearly, 
astronomers understood the concept of degrees of freedom (but without using 
the term) as early as the year 1852.” 

The second user of a random effects model appears, according to Scheffe, to 
be Chauvenet (1863, Vol. 11, Articles 163 and 164), who, although he did not 
write model equations, certainly implied such models and derived the variance 
of j.. = Zy= Xy=, yij/an of ( 1 )  as 

a: + a;/n 

a 
var(j..) = 

Chauvenet suggests that there is little practical advantage in having n greater 
than 5, and refers to Bessel ( 1820) for this idea; but Scheffk says that the reference 
is wrong, although it “does contain a formula for the probable error of a sum 
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of independent random variables which could be the basis for such a conclusion. 
Probably Bessel made the remark elsewhere.” If so, the question is “Where?”; 
and might that other reference be the first germ of an idea about optimal design? 
Preitschopf ( 1987) has searched the 1820- 1826 and 1828 yearbooks containing 
Bessel (1920) and finds not even a hint about not having “n greater than 5” ;  
the only pertinent remark is on page 166 of the 1823 yearbook which has, 
with x i  being the “random error of part i ,  i = l , . . . , n ,  total error is 

Apart from some inconsequential comments by Yule ( 191 1, Chap. XI) that 
indicate his unawareness of Airy (1861) and Chauvenet (1863), the next 
,and major foundational ideas on estimating variance components are seen in 
the work of R. A. Fisher. 

y = Jm’.*- 

C. 1900-1939 

4. R. A. Fisher. In an essay on the status of quantitative genetic theory, 
Kempthorne ( 1977) remarks: “Without doubt, the basic and seminal paper in 
the theory ofquantitative genetics is that of Fisher ( 1918).” However, considering 
that the motivation for Fisher’s paper was his having foreseen that the basis 
for “...a more exact analysis of the causes of human variability” lay in 
reconciling the continuous variation of a metric trait with the discrete nature 
of Mendelian inheritance processes, Kempthorne’s remark can also be applied 
to Fisher’s contribution to variance component theory. In this connection, some 
notable aspects of Fisher’s paper are [adapting freely from Anderson ( 1978)l: 

( i )  Inceptive use of the terms “variance” and “analysis of the variance”. 
(ii) Implicit, but unmistakable, use of variance components models. 
( i i i )  Definitive ascription of percentages of a total variance to constituent 

causes; e.g., that dominance deviations accounted for 21 % of the total 
variance in human stature. 

Following that genetics paper, Fisher’s book (1925, Sec. 40) made a major 
contribution to variance component models through initiating what has come 
to be known as the analysis of variance method of estimation: equate sums of 
squares from an analysis of variance to their expected values (taking expectations 
under the appropriate random or mixed model) and thereby obtain a set of 
equations that are linear in the variance components to be estimated. This idea 
arose from using an analysis of variance for deriving an estimate of an intra-class 
correlation from data from a completely randomized design. The pertinent 
passage in Fisher (1925, p. 190) is as follows. 

Let a quantity be made up of two parts, each normally and independently 
distributed; let the variance of the first part be A, and that of the second part, 8; 
then it is easy to see that the variance of the total quantity is A + B. Consider a 
sample of n‘ values of the first part, and to each of these add a sample of k in 
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each case. We then have n’ classes of values with k in each class. In the infinite 
population from which these are drawn the correlation between pairs of numbers 
in the same class will be 

A p = -  
A + B ’  

From such a set of kn’ values we may make estimates of the values of A and 
B, or in other words we may analyze the variance into the portions contributed 
by the two causes; the intraclass correlation will be merely the fraction of the 
total variance due to the cause which observations in the same class have in 
common. The value of B may be estimated directly, for variation within each class 
is due to this cause alone, consequently 

kn’ 
S ( X  - f,)’ = n ‘ ( k  - 1)B. 

I 

The mean of the observations in any class is made up of two parts, the first 
part with variance A ,  and a second part, which is the mean of k values of the 
second parts of the individual values, and has therefore a variance B / k ;  consequently 
from the observed variation of the means of the classes, we have 

n’ 
k s (XP - 2)’ = (n ’  - I ) ( k A  + B )  . (17) 

1 

s in (16) and (17) represents summation; the notation of Table 2.1 has these 
equations as 

i.e., 

Fisher did not write the expectation operator E, nor did he even use the 
phrase “expected value”, but he clearly had that idea in mind when, preceding 
( 1 9 ,  he wrote “In the infinite population from which these are drawn.. .“-even 
though it applies there to the correlation of ( 15) and not to the sums of squares 
of ( 16) and ( 17). But it is definitely implicit in ( 16) and ( 17), and therein hangs 
Fisher’s germinal contribution to the analysis of variance (ANOVA) method 
of estimating variance components. For that is precisely what (16) and (17) 
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represent, as we see from rewriting their equivalent forms (18) and (19) as 

SSE = a(n - 1)8,2 

and 

SSA = (a - l)(n6,2 + 8 : ) .  

Definitive priority for this idea undoubtedly goes to Fisher, based on his sentence 
“The value of B may be estimated directly ...” immediately prior to (16), 
although the actual doing of it  must go to some reader of Fisher (1925) who 
did what (at least nowadays seems) was obviously intended, namely 

- MSE, 
df=-- SSE 

a(n - 1)  

(21 1 
SSA/(a - 1 )  - 8: MSA - MSE - 8; = - 

n n 

These, for balanced data (of a classes with n observations in each), in a I-way 
classification random model, are what are known as the ANOVA (analysis of 
variance) estimators of the variance components. They are akin to method-of- 
moments estimators. 

Had Fisher foreseen even a small part of the methodology for estimating 
variance components that was heralded by (16) and (17) he might have given 
more attention to this topic. But he did not. Section 40 of Fisher (1925) remains 
quite unchanged in subsequent editions (e.g. 8th ed., 1941, p. 215 and 12th 
ed., 1954, p. 221 ), even after variance component principles were well established. 
Furthermore, even when Fisher extended the analysis of variance to a I-way 
classification model with unbalanced data, to a 2-factor model with interaction 
and to more complex settings, he did not address the estimation of variance 
components in those settings. 

-ii. L. C. Tippett. As noted by Urquhart, Weeks and Henderson (1973), 
Fisher “did not use linear models to explain the analysis of variance of designed 
experiments even though his writings on regression and correlation (both simple 
and multiple) lean toward linear models.” In contrast, Tippett (1931; Secs. 6.1, 
6.2 and 10.3) not only clarified the analysis of variance method of estimating 
variance components from balanced data but also extended it (apparently for 
the first time) to the 2-way crossed classification, without interaction, random 
model. The following quote from Tippett (1931, p. 89) illustrates this point. 

Let it be assumed, for example, that a quantity x is subject to random variations, 
and to others associated with two factors A and B ;  then the value of any one 
observation of x is 

x = F + a  + + t’, 
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where f is the mean, r and f i  are deviations arising from A and B, and t‘ is the 
random deviation. The square of its [i.e., x’s] deviation from the mean is 

(x  - t)’ = 32 + 8 2  + < I =  + 2rp + 2rt’ + 2pr’ 

and this may be summed for a sample of N individuals, and divided by the degrees 
of freedom (N in this case, since we have not found the mean 4 from the sample, 
but have assumed it). Thus we obtain [with S = Z] 

~ ( x -  El’ - s a 2  sp2 s<” 2 s a p  2Sat’  2Sp<‘  

N N N N N  N N 

and as N becomes indefinitely large, the last three terms of this equation tend to  
zero if z, and {‘ are independent; the other terms are the squares of the standard 
deviations or variances, so that finally 

_ -  +-+-+- +-+- 

u,’ = uf + U: + u.$ ... [ 161 (22) 

Hence the variance of x is the sum of the random variance and of those due to 
A and B. 

I t  is interesting that by relying on the notation of uncorrelated random 
“deviations”, Tippett (especially in Sec. 10.3) overlooked the possibility of having 
interaction effects in linear models whereas Fisher (1925, Sec. 42), despite his 
non-usage of a linear model, not only used the term “interaction” (p. 200), but 
also described an interaction effect between two factors A and B. 

Tippett ( 1931, Sec. 6.2, pp. 92-93) describes the analysis of variance method 
for estimating variance components as follows. It yields the estimators a little 
more explicitly than do (16) and (17 )  from Fisher (1925). 

If u: is the mean variance between shrubs [amongst classes mean square], and 
ti,‘ the mean variance within a shrub [error mean square], as found from the sample 

... [IS] 
uf + nu: + u: 

v,? -+ nu,? 

where n is the number of readings per shrub, IY; is the variance “within a shrub”, 
us is the mean variance “between shrubs” and + denotes “that the quantity 
on the left is an estimate of that on the right, and that the former approaches 
the latter as the size of the sample” (number of degrees of freedom in both 
parts) increases indefinitely. Having for a set of data obtained values of u t  and 
0,‘ of 26 I .492 and 3.057, respectively, and with n = 100, Tippett continues (p. 93) 

Using the relations of equations [ 181 

261.492 + 100~: + u: 

3.057 -+ u,? ... 
whence 

258.435 + lOOuf 

2.584 + us . 
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The preceding methodology is extended in Tippett (1931, Sec. 10.3, p. 180) 
to the 2-way crossed classification model, using deviations from the grand mean, 
an analysis of variance table, and expected mean squares; and the preceding 
expressions for calculating variance components estimates of Tippett’s first 
edition of 1931 were extended in the second edition of 1937 (p. 182), in terms 
of an example. 

With a method of estimating variance components established (notwith- 
standing its restriction to balanced data), the problem of selecting an optimal 
sample design for any particular experiment could be studied definitively. Thus 
the “best way of distributing the observations between and within groups” for 
a 1-way model was addressed by Tippett (1931, Sec. 10.1, p. 182), as it had 
been by Chauvenet ( 1863) and perhaps Bessel(1820). 

The lure 1930s. Despite Tippett’s consideration of optimal design just 
mentioned, the comprehensive study on sampling for yield in cereal experiments 
by Yates and Zacopanay (1935), which dealt with designs corresponding to 
higher-order models, would appear to be an early beginning to optimal sampling 
design. In the same year Neyman, Iwaszkiewicz and Kolodziejczyk (1935) 
examined the comparative efficiency of randomized blocks and Latin squares 
designs and, in contradistinction to all previous studies, they made extensive 
use of linear models (including mixed models) and associated mathematical 
concepts. 

Neyman et al. (1935) also have some claim to originating the term “variance 
component”. In an acrimonious review of that paper, Fisher (1935) used the 
term “components of variation”, which, coupled with the paper’s use of 
the term “error components”, undoubtedly influenced ultimate adoption of 
“components of variance” (or ‘‘variance component”). However, this cannot 
be asserted unequivocally because Daniels (1939), who appears to have been 
the first to use the phrase “components of variance”, did not mention either 
Neyman et al. (1935) or Fisher (1935) in this regard when he wrote that 
variability 

-iii. 

. . .is the result of factors.. . , each factor being responsible for its quota of the 
dispersion, and it is natural to use the analysis of variance techniques not only 
to detect possible sources of variation but to arrive at estimates of the components 
of total variance assignable to each factor. The components of variance can then 
be used to establish an efficient sampling scheme.. . . 

Both Daniels (1939) and, a few months later (across the Atlantic), Winsor 
and Clarke (1940) derive the equivalent of (16) and (17) that Fisher ( 1925) has. 
In doing so, both papers use the “expected value” concept; Daniels mentions 
Tippett (1931) but not Fisher. whereas Winsor and Clark describe their 
derivation as being ‘‘a straightforward extension of the suggestions of 
R. A. Fisher in his Statistical Methods for Research Workers [Sec. 401.” 
Presumably this is the seventh edition, published in 1938, in which Sec. 40 is 
the section dealing with the intraclass correlation, exactly as does the same 
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section, unchanged, in both the first edition of 1925 and the twelfth edition of 
1954. Yet, as we have seen, although Fisher (1925) has the idea of taking 
expected values, he has not there specifically formulated it using the E operator 
as do Daniels, and Winsor and Clarke. 

At about the same time as both the Daniels and the Winsor and Clarke 
papers were published (the latter in what, even at that time, must have been 
somewhat of an obscure journal for statisticians), Snedecor’s third edition ( 1940) 
became available with, as far as can be seen, no reference to variance components 
at all. Page 205 contains discussion of estimating the intra-class correlation as 
A / ( A  + B),  just as does the 1938 seventh edition of Fisher (1925). The nearest 
thing to characterizing A as a variance component is the description that “ A  
is the same for all . . . samples-it is the common element, analogous to 
covariance.” And that is, of course, the case: the covariance between y, ,  and 
y,,, for j # j ‘  is c.”. 

The work of Daniels (1939) was significant in two other respects: 

( i )  Sampling variances of variance component estimates were derived, 
for balanced data, up to the complexity of a 3-way crossed classification 
random effects model, complete with all intzractions. 

(ii) In deriving expected mean squares, account was taken of the possibility 
that the population of effects for a random factor could be of finite size. 
This was motivated by Tippett’s (1937, Sec. 10.13) treatment of the l-way 
random model for which he derived the estimator of the variance component 
due to classes (a:) as ( 1  - l/n)-’(MSA - MSE). This estimator differs from 
the corresponding infinite population estimator of (21) through multiplication 
by ( 1  - l /n) - ’ ;  i.e., i t  is ( 1  - I / @ ) - ’  times the estimator given by [IS] of 
Fisher (1925). 

Since linear models have nowadays become an integral part of describing 
variance components, i t  is interesting to note that this had become widely 
accepted by 1939; e.g., Neyman et a/. ( 1935)’ Welch ( 1936), Daniels (1939) and 
Jackson ( 1939). Moreover, the models specified here were surprisingly up-to-date 
in some cases. Consider the following serltence from the appendix of Welch 
( 1936): 

xli are a set of N = kn observations consisting of k groups ( t  = 1, 2,. . . , k )  of n 
individuals in each group ( i  = 1,2,. . . , n )  such that x,, = a + y, + z,i where y and 
z are normally and independently distributed about zero with S.D.s [standard 
deviations] a, and a2, respectively. 

Welch then utilizes properties of X2-variables to derive essentially the same 
results as Fisher (1925), shown earlier as (16) and (17). Stemming from his 
reliance on normality for deriving expectation of sums of squares, Welch’s 
sentence about the unbiasedness of the resulting variance component estimators 
suggests that he may not have realized that the assumption of normality is not 
necessary for establishing that unbiasedness. 
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Jackson (1939) also assumed normality for random effects and error terms 
in his description of a mixed model for a no-interaction 2-factor situation with 
one factor random and the other non-random. He writes the model as 
y,, = A + B, + C, + z,,, with A being “a measure of the effect common to all 
individuals,. .”, B, as being “a measure of the trial effect”, C, as “a measure of 
the individual effect” and z,, as “the error of measuring.. .”. This seems to be 
the first occurrence in the literature of the word “effect” in what is now its 
customary usage in the context of linear models; and this description of a mixed 
model, although not so called at that time, may well be its first occurrence 
in the literature also. 

Considering the detail of the descriptions that Welch (1936) and Jackson 
(1939) give to their models, it is surprising that it was not until Eisenhart (1947) 
that the first precise distinction was made between “fixed” and “random” models 
(Eisenhart’s Models I and 11, respectively), and that the name “mixed model” 
or “mixed analysis of variance” had not been suggested before 1947. Clearly, 
it was recognized before then that there is a need to specify which of the effects 
in a linear model are fixed and which are random. Albeit, it is a distinction 
that Yates (1967) later took great exception to. 

-iu. Unbalanced data. Almost all of the work described so far concerns 
balanced data; e.g., k observations in each of the n‘ classes of Fisher’s description 
of the I-way classification. The case of unbalanced data was given but a passing 
comment by Tippett (1931, Sec. 6.5, p. 96): “In such cases, the relations [ 181 
do not hold, for in summing the squares of the deviations of the group means 
from the grand mean, each group has been given a different weight, n, [the 
number of observations in group s].” Nevertheless, Section 9.6 (p. 166) 
subsequently provides an approximation to allow the calculation of an intraclass 
correlation coefficient from such data. In contrast, Snedecor (1934, Sec. 31, 
p. 20) simply stated “The direct relation between analysis of variance and 
intraclass correlation disappears if there are unequal frequencies in the classes.” 

It is nowadays well known that estimating variance components from 
balanced data is generally much easier than from unbalanced data. A comment 
on the history of this state of affairs is that although Airy ( 1861) made provision 
for unbalanced data-see (12) and (13)-and estimation from balanced data 
first appeared (implicitly) in Fisher (1925), it was to be fourteen years before 
something appeared for unbalanced data-in Cochran ( 1939). And this was 
for only the simplest case, the 1-way classification random model. With data 
consisting of a groups having n, observations in group i, Cochran states 
that “the mean square variance between groups is an estimate of o i  + 
(C,n, - C,n: /C,n, )oi / (a  - I). where C T ~  is the variance within groups and of 
the true variance between groups.” This expression is, of course, the expected 
value of the between-group mean square. Although Cochran goes on to use his 
result in a manner that we might not use today, he certainly seems to be the 
first in print with a procedure for handling unbalanced data-albeit for the 
simplest possible case, the 1-way classification random model. 
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Cochran follows the result with the comment that “if n, = n in all groups, 
the coefficient of 0,’ reduces to n; otherwise the coefficient is somewhat smaller 
than the average number of sampling units per group.” With ii. denoting this 
average, this latter observation is valid because 

a - 1  U a - 1 (a - l)Z,n, 1 Z,n, - Cin,2/Z,ni Z,n, 
ii. - 

Whereas Cochran ( 1939) was not specifically concerned with estimating 
variance components from unbalanced data in the 1 -way random model, Winsor 
and Clarke (1940) certainly were. The essence of their results is the pair of 
expectations 

and (24) 
e nr 

for unbalanced data, something that Daniels (1939) does not address himself 
to. Interestingly enough, Snedecor (1st edn, 1937) touches obliquely on this 
subject in Example 10.21 (p. 195), where, in referring to unbalanced data of 
Table 10.8, he asks the question “Why can’t you calculate intraclass correlation 
accurately?” for such data. Winsor and Clarke’s results (24) would show that 
you could. Needless to say, that example does not appear in the completely 
rewritten fourth edition( 1947) nor, ofcourse, in Snedecor and Cochran( 1989). 

Notation In (24) E represents the expectation operator. It is often written in 
the form E ( * )  or E [ . ]  but for clarity, as in (24), we also use E followed by a 
space, to mean the expectation of the expression that follows that space. 

d. The 1940s 
The general method of estimating variance components by equating analysis 

of variance mean squares (or, quite equivalently, sums of squares) to their 
expected values, under either mixed models or random models, is now known 
as the ANOVA method of estimation. It was firmly in place by 1934. The 1940s 
saw a number of extensions to that method; they were but a prelude to the 
flood of developments that came later. For example, Ganguli (1941) applied it 
to the k-way nested classification, and Crump (1946) to the 2-way crossed 
classification, random model, with interaction. 
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Both Ganguli (1941) and Crump (1946) drew attention to a deficiency of 
this method of estimating variance components, namely that it can, depending 
on the data, produce negative estimates. And, as a method of estimation, it 
does, of course, have no provision for preventing this embarrassment (of having 
a negative estimate of a parameter that, by definition, is positive). Whenever 
this does occur, both authors suggested truncating negative values to zero; but 
this sacrifices the property of unbiasedness that is implicit in the ANOVA 
method. 

Under normality assumptions, Crump ( 1947) also derived sampling variances 
of this class of estimators for the 1-way and the 2-way crossed classification 
random models. Sampling variances for the l-way model were also derived by 
Hammersley ( 1949), but for arbitrary distributional form. However, to obtain 
“usable” results, fourth cumulants of the random effects distributions had to 
be set to zero (their correct value under normality). Crump ( 1947) also invoked 
normality for considering maximum likelihood estimation, as summarized in 
Crump ( 1951), a procedure later used by Hartley and J. N. K. Rao ( 1967) in 
developing quite general results (see Section 2.4a which follows). 

Three other papers in the 1940 decade are of particular note: Satterthwaite 
( 1946), who dealt with approximate sampling distributions of variance 
component estimates (and in doing so also gave us the procedure still known 
by his name for calculating approximate degrees of freedom for approximate 
F-statistics in random models), and Wald (1940, 1941), who considered 
confidence intervals for ratios of variance components in l-way and 2-way 
classifications with unbalanced data. 

2.3. GREAT STRIDES: 1950-1969 

The years from 1950 to 1969 brought major developments in methods of 
estimating variance components, starting with important extensions of the 
methodology already in place and ending with establishment of new methods 
based on maximum likelihood and minimum norm criteria. 

Early on came the Anderson and Bancroft (1952) book, the first to contain 
substantial discussion (four chapters) of variance components. This really set 
the subject on a firm footing, and solidly established the procedure of equating 
analysis of variance sums of squares to their expectations as a method of 
estimating variance components. The book deals very thoroughly with estimation 
from balanced data for both mixed and random models; it also deals with 
unbalanced data for nested classifications and, after considering incomplete 
blocks designs, it poses a number of pertinent research problems, many of which 
have still not been answered satisfactorily. In all, the book is a milestone in the 
history of variance components estimation. It was followed two years later by 
Bennett and Franklin (1954) who, in their long ( 160-page) chapter on analysis 
of variance, show numerous expected mean squares in terms of variance 
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components, including details pertaining to finite-sized populations, a subject 
later taken up by Searle and Fawcett ( 1971). 

a. The Henderson methods 
A landmark paper dealing with the difficult problem of how to use unbalanced 

data for estimating variance components is Henderson (1953). The paper was 
motivated by what was to be its author’s lifetime work with the statistical 
analysis of dairy cow records [e.g., Example 5 of Chapter 1, and see Henderson 
(1984)l. The paper in 1953 is important because it presents three different ways 
of using unbalanced data, from random or mixed models, with as many crossed 
and/or nested classifications as one wishes. All three are adaptations of the 
ANOVA method of equating (for balanced data) analysis of variance sums of 
squares to their expected values. Those three adaptations have come to be 
known as the three Henderson methods. Method I uses sums of squares that 
are unbalanced-data analogues of those used with balanced data; Method I1 
adjusts the data for whatever fixed effects are in the model, and then uses 
Method 1 on those adjusted data; and Method 111 is based on sums of squares 
that result from fitting a linear model and its submodeis (i.e., from the method 
of fitting constants). Details of these three methods, based largely on Searle’s 
(1968) matrix reformulation of them, are given in Chapter 5. All three have 
been used extensively, in a wide variety of applications. 

With the hope of providing a criterion for assessing relative optimality, several 
papers between 1956 and 1968 developed formulae for (or that could lead to) 
sampling variances of ANOVA estimators and of Henderson methods estimators 
in particular. The unbiased property of ANOVA estimators demands no 
distributional assumptions of the random effects and the residual error terms 
in a model, but all sampling variance results [save those of Hammersley (1949) 
mentioned earlier J have been developed on the basis of assuming normality. 
With this, and for unbalanced data, the following cases have been dealt with: 
extending the 1-way classification results of Crump (1951 ) to include covariance 
components, Searle (1956); Method I estimation for the random model, for the 
2-way crossed classification in Searle ( 1958), for the 2-way nested classification 
in Searle (1961), for the %way nested in Mahamunulu (1963) and the 3-way 
crossed in Blischke (1966). Method 111 estimation for the 2-way crossed 
classification without interaction was dealt with by Low (1964). And very general 
results for Method 111 are given in Rohde and Tallis (1969). Except for the 
latter, all of these results are set out in Searle (1971, Chap. 1 I ) ,  and all of them 
lead to the sampling variance of almost every estimator except being a 
quadratic function of the population 0 2 s  having very complicated functions of 
the numbers of observations as their coefficients. Despite this, Ahrens (1965) 
provides a mechanism (described in Searle, 1971, Section 10.2) for estimating 
such a variance unbiasedly, provided unbiased estimates of the 6% are available. 
This is always the case with ANOVA estimation methodology. Nevertheless, 
the only currently available expressions for the sampling variances, to which 
we can apply Ahrens’ method, are those derived under normality assumptions, 
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and even then, closed form expressions for the distributions of estimated variance 
components are unknown (save, in many cases, that of &:). 

b. ANOVA estimation, in general 
The ANOVA name given to the method of estimating variance components 

by the procedure of equating sums of squares to their expected values initially 
applied to balanced data for which it is particularly apt, because with such data 
the sums of squares that are used are indeed those of the analysis of variance 
of those data. But for unbalanced data there is no unique set of sums of squares 
that can be used. Nevertheless, the method is still called the ANOVA method; 
and the Henderson methods are just three of the many possible variations of 
the ANOVA method. Other possibilities are, for example, to use the sums of 
squares from the weighted squares of means analysis or from the analysis of 
unweighted means-when the data have all cells filled (see Yates, 1934). Indeed, 
almost any set of quadratic functions of the observations can be used-as is 
discussed in detail subsequently. 

The 1950-1969 era includes many published results on properties of 
estimators obtained by the ANOVA method. We comment briefly on some of 
them. 

A first description of ANOVA estimation in its general form is as follows. 
Let u2 be the vector of variance components to be estimated in some model, 
and let s be a vector of sums of squares. Then, when each sum of squares has 
an expected value that is a linear function of the variance components, E(s)  is 
a vector of such linear functions, which we will represent as C G ~ ,  so that 

E ( s )  = Ca2. (25) 

Hence, for non-singular C the ANOVA estimator of u2 is based on (25) and 
is the solution for e2 to 

s = ce2, 

6 2  = C-'s I 

namely 

4. Negative estimates. It is clear from (26) that each element of e2, i.e., 
each estimated variance component, is a linear combination of the sums of 
squares in s. Moreover, there is nothing inherent in (26) to ensure that every 
element of 6* is always non-zero. Thus it is that ANOVA estimates can be 
negative. For example, 8; of (21) will be negative whenever MSA < MSE. And 
whether this inequality occurs or not is simply a function of whatever the data 
are that are used in calculating MSA and MSE. And when it does occur it 
produces the embarrassment of having a negative estimate of a parameter that, 
by definition, is positive. Nevertheless, this is a characteristic of ANOVA 
estimators: they can yield negativeestimates. What to do about them is discussed 
in Chapters 3 and 4, as in Searle (1971). 
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-ii. Unbiasedness. The estimator in (26) is always unbiased: 

E ( S 2 )  = C - ' E ( s )  = C-'Ca2 = u2 . 
This is the case for all ANOVA estimators. They are unbiased. 

Although unbiasedness is a property of estimators that is deemed to have 
merit in the case of estimating means (e.g., in designed experiments), there are 
at least two reasons for questioning its merit when estimating variance 
components, The first is that if the unbaisedness of ANOVA estimators is 
attractive, using such estimators can nevertheless yield negative estimators of 
positive parameters, which can be rather awkward, to say the least. Explaining 
to someone in a subject-matter discipline that we will use a negative estimate 
of an essentially positive parameter is not easy. Estimators that avoid this 
embarrassment, even if not unbiased, may therefore be appealing. 

A second reason for questioning the merit of unbiasedness stems from the 
concept underlying it. In the situation of a designed experiment, for example, 
the concept of unbiasedness is that over many repetitions of exactly the same 
experiment the average value of the (unbiased) estimator of a parameter would 
be the parameter itself. The trouble with this is that, when estimating variance 
components, the data available often do not come from carefully designed and 
executed experiments, for which many repetitions can be idealized; instead, data 
for estimating variance components are often voluminous and come from 
situations where repetition of exactly the same data-gathering process is a totally 
unrealistic idea; e.g., gathering milk yield from exactly the same sample of, say, 
400,000 Holstein cows in New York and Pennsylvania as were available in 
1989. Repeated data-gathering can be envisaged but, especially in the case of 
unbalanced data, not necessarily with the same pattern of unbalancedness nor 
with the same set of (random) effects in subsequent data sets. Replications of 
data are not, therefore, just replications of data from the same structure as in 
an initial data set. Indeed, not only might the whole idea of re-sampling inherent 
in the idea of unbiasedness be impractical but the data may be so voluminous, 
1,500,000 records, say, that one might want to think of a variance component 
estimate more as a descriptor of those data than as a sample of one from the 
sampling distribution of the estimator being used. Mean unbiasedness may 
therefore no longer be pertinent, and replacing it with some other criterion 
might be considered. Modal unbiasedness is one possibility, suggested by Searle 
(1968, discussion), although Harville ( 1969b) doubts if modally unbiased 
estimators exist and questions the justification of such a criterion on decision- 
theoretic grounds. Nevertheless, as Kempthorne ( 1968) points ' out, mean 
unbiasedness in estimating fixed effects ", . , leads to residuals which do 
not contain systematic effects and is therefore valuable ... and is fertile 
mathematically in that it reduces the class of candidate statistics (or estimates)". 
However, ". . , in the variance component problem it does not lead to a fertile 
smaller class of statistics". Unbiasedness is therefore, in our opinion, not 
necessarily a property of variance components estimators that should be 
slavishly accepted as meritorious. We say this at this juncture, in the midst of 
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this brief history, because unbiasedness appears so often in the development of 
methods of estimating variance components that we feel that comments about 
its lack of merit in this context deserve to be mentioned early on. 

-iii. Best unbiusedness. The general property of an estimator being best 
unbiased is that among all unbiased estimators of a parameter that which has 
minimum variance is called best unbiased. For balanced data Graybill (1954) 
investigated sampling variances of ANOVA estimators of variance components, 
and for the general k-fold nested, random-effects model showed that in the class 
of quadratic functions of the observations that are unbiased estimators of 
variance components, ANOVA estimators have minimum variance; i.e., ANOVA 
estimators are best quadratic unbiased estimators (BQUE). With the added 
assumption of normality, Graybill and Wortham (1956) showed for any random 
model (with balanced data) that ANOVA estimators are unbiased functions of 
jointly complete sufficient statistics, and therefore by the Lehmann-Scheffe 
Theorem (Casella and Berger, 1990, p. 344) they are uniformly best unbiased 
estimators (BUE); that is, in the class of all unbiased estimators (as distinct 
from just the quadratic unbiased subclass), ANOVA estimators under normality 
have minimum variance; i.e., they are BUE. As well as reiterating the latter 
result, Graybill and Hultquist (1961) extended Graybill (1954) to apply to all 
models; namely, without any distributional assumptions at all (save a fully 
random model and balanced data), ANOVA estimators are BQUE. The same 
results for mixed models were established by Albert (1976). Thus ANOVA 
estimators from balanced data are BQUE, and they are BUE under normality, 
whether the underlying model is a mixed model or a random model. Anderson 
(1978) rightly notes that such or kindred optimality properties have yet to be 
demonstrated for mixed models that include a covariate, which is not surprising 
because the presence of covariates effectively converts balanced data into 
unbalanced data. 

In contrast to balanced data, variance component estimators that are 
uniformly best do not exist in the case of unbalanced data. The essential problem 
is well summarized by Scheffe (1959; Sec. 7.2): Although the ANOVA 

procedure is commonly used also in the unbalanced cases, it loses there the intuitive 
justification it has for this writer. At the present writing, the "best" tests and 
estimates in the unbalanced cases of random-effects models and mixed models are 
not known, even in a rough intuitive sense. The basic trouble is that the distribution 
theory gets so much more complicated. We have nothing to offer the reader on 
the unbalanced cases outside the fixed-effects models except for some results for 
the completely nested cases in Sec. 7.6. 

And as a footnote to the penultimate sentence of the preceding quotation, 
Scheffe adds 

In the one-way layout, for example, there are three unknown parameters, p, a:, 
and a:. In the case of balance the (minimal) number of (real) sufficient statistics 
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is three; in the case of unbalanced it is greater. The sum of squares between groups, 
Ziwi(yi - j ; . ) ’ ,  where j .  = Ziwiyi/Ziwi, is not distributed as a constant times a 
non-central chi-square, no matter what (known) weights wi > 0 are used. There 
is no unbiased quadratic estimate of uf, of uniformly minimum variance, etc. 

An interesting omission of Scheffk’s is that of not citing Henderson ( 1953), 
especially since in his Sec. 7.6 (referred to above) he in fact uses Henderson’s 
Method I [the same procedure as that of Ganguli (1941), also uncited] in 
estimating variance components for the random effects nested model with 
unbalanced data. Moreover, Scheffk did not discuss in detail estimating variance 
components from unbalanced data with mixed models. A remark from the 
preface of his book is revealing: 

What I feel most apologetic about is the little I have to offer the reader on the 
unbalanced cases for the random-effects models and mixed models. They cannot 
be generally avoided jn planning biological experiments, especially in genetics, the 
situation being unlike that in physical science. 

This promotes the question as to what prompted his reference to  genetics and 
thus why was there no reference to  Henderson (1953) of six years prior to  
Scheffe ( 1959). The earlier book, Anderson and Bancroft ( 1952), had dealt with 
the random effects nested model with unbalanced data; in that, not only was 
the work of Ganguli (1941) clearly outlined (Sec. 22.4), but so too was that of 
Cochran (1939). 

-iu. Minimal suficient staristics. For balanced data, minimal sufficient 
statistics for a random model are, on the basis of normality assumptions, the 
arithmetic mean of the data and the sums of squares of the analysis of variance. 
The ANOVA estimators of variance components, being linear functions of those 
sums of squares, are (with j j )  therefore minimal sufficient statistics. They are 
also complete. These properties of ANOVA estimators were first derived by 
Graybill and Wortham (1956). Details for the 1-way and 2-way crossed 
classifications, and for several nested classifications (all with balanced data) are 
available in Graybill ( 1976, Chapter 15); see also Hultquist and Graybill( 1965). 

For unbalanced data, the situation is much more difficult because, even under 
the usual normality assumptions, for the sums of squares “the distribution 
theory gets so much more complicated”, as SchefTe (1959) says, and there are 
more minimal sufficient statistics than there are variance components. This is 
commensurate with the general lack of uniqueness of the ANOVA method for 
unbalanced data. 

-u. Lack of uniqueness. We have already mentioned that the three 
Henderson methods are simply three sets of possible sums of squares that can 
be used as elements of s in (25) and (26). Indeed, there is even greater generality 
in being able to use not just sums of squares as elements of s but also a limitless 
range of quadratic forms of the observations (which includes sums of squares, 
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of course). This is so because if q is a vector of quadratic forms such that 

E(q) = Bo’, (27) 

then, if B is non-singular, (27) yields t i 2  = B-‘q as an unbiased estimator of 
a2, just like (26). 

Even more generality can be introduced. Suppose we use more elements in 
q than there are elements in 0’. Then, provided the form of (27) still applies, 
but with B having full column rank, 

d = (B’B)-’B’q (28) 

is an ANOVA estimator of u’. It is unbiased, too. And it is B-’q when B is 
non-singular. 

So there is a broad array of specific uses of the ANOVA method of estimating 
variance components. If the resulting estimates were invariant to what one used 
as elements of q, there would be no problem of a lack of uniqueness about 
ANOVA methodology. But this is not so for unbalanced data. In broad terms 
this situation does not arise with balanced data because analysis of variance 
sums of squares used in q have been shown (see Sec. 2.3b-ii) to have attractive 
properties. But with unbalanced data, the lack of uniqueness is a real problem. 
I t  is avoided in Henderson’s Methods I and 11, but only by definition, since 
Method 11 uses Method I and Henderson ( 1948) specifically defined his Method 
I to be that procedure which utilizes “analogous sums of squares” (analogous 
to those used with balanced data). But it does arise in Method Ill, and this 
has brought criticism of Henderson’s methods, as has the complete absence of 
any criteria for deciding which of the three methods is optimal in any sense. 
An example of this criticism is that of Rao (1971b): 

Essentially, analysis of variance techniques are used but the theoretical basis is 
not clear. The procedures suggested are ad hoc in nature and much seems to 
depend on intuition. No general method is put forward to cover all experimental 
situations and, where alternative methods are suggested, no principle is laid down 
for choosing one among them as appropriate in a given problem. 

Blischke’s ( 1968) phrase “methods of a basically ad hoc nature” refers to methods 
more general than Henderson’s but certainly includes them. And the label is 
appropriate, for any use of the ANOVA method, because the method can be 
applied to almost any quadratic function of the observations. Thus in Example 
4 of Chapter 1, one nayve application of (27) is 

That, like each of the Henderson methods and like any other application of 
the ANOVA method, yields estimators that are unbiased, but having no general 
analytic properties that can be used to determine relative optimality of any one 
application of the general ANOVA method over another. There are some 
features of the Henderson methods that condition their applicability to certain 
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models (as shall be discussed later), but none of them really contribute to the 
difficulty of being unable to judge relative optimality of the different applications. 

2.4. INTO THE 1970s AND BEYOND 

The realization that ANOVA estimation had serious weaknesses was slow 
to dawn. Not only did Henderson’s Method I provide a procedure for estimating 
variance components from unbalanced data, where none had been previously 
available, but it was also reasonably computable for those pre-computer 
days-at least when judged by the standards of computing feasibility of those 
days. Method I1 was a little more difficult (see, e.g., Henderson, Searle and 
Schaeffer, 1974), and Method I11 was almost totally impractical from the 
computing point of view. Nevertheless, whatever computability considerations 
there were, the weaknesses of ANOVA estimators remained: negativity, lack of 
distributional properties and no useful way to compare different applications 
of ANOVA methodology. In light of these weaknesses it was natural that an 
alternative would be sought, and so maximum likelihood estimation duly came 
to be considered. 

a. Maximum likelihood (ML) 
Estimation by ML demands attributing a distribution to the data, which, in 

the case of random and mixed models, suggests doing just that for the random 
effects. This is, of course, not a requirement of ANOVA estimation, other than 
requiring finite variance components and, as in (25), that E(q) contain no terms 
in the fixed effects. 

To date, nearly all closed-form results for ML estimation of variance 
components are on the basis of normality assumptions: e.g., for the 1-way 
classification of (8)-( 1 l ) ,  that the random effects have the first- and second- 
moment properties well defined, and are additionally taken as being normally 
distributed. I t  is under these conditions, and their direct extension to multi-way 
classification, that the development of ML methodology has proceeded. 

The beginning appears to lie with Crump (1947, 1951), who dealt with the 
1-way classification for both balanced and unbalanced data, in the latter case 
deriving equations that have to be solved iteratively. Herbach ( 1959) derived 
explicit maximum likelihood (ML) estimators for certain balanced data models 
and took account of the necessity that such estimators must be non-negative 
(because the method of maximum likelihood prescribes maximization over the 
parameter space-and variance components are non-negative). Corbeil and 
Searle (1976b) summarize a number of these balanced data cases, showing their 
biases and sampling variances. 

The landmark paper for ML estimation in general is Hartley and J. N. K. 
Rao ( 1967), wherein a methodology is developed for a very wide class of models: 
all mixed and random models, with or without covariates, balanced or 
unbalanced data. One may wonder why there was a delay of some forty or so 
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years between Fisher’s (1922, 1925) derivation of the method of maximum 
likelihood and its general application to the estimation of variance components: 
undoubtedly it was the matrix specification of a mixed model that Hartley and 
Rao (1967) used that was instrumental to their deriving ML equations for the 
general case. Solving those equations for a data set, and calculating ML 
estimates, involves iterative calculations on the ML equations-and for some 
years this was an impediment to any widespread use of ML estimation of 
variance components. Computing methods have to be able to deal with sparse 
matrices of very large dimension, with equations that are very non-linear, with 
iterative procedures that lead to a global rather than a local maximum, and 
with adapting those procedures to take account of the ultimate non-negativity 
of the estimates. Fortunately, with the advent of supercomputers and the 
development of new computing packages (e.g., Thompson, 1980; Giesbrecht, 
1983, 1985), these problems are getting to be circumvented. 

Miller (1973, 1977) also worked on ML estimation, dealing with both 
balanced and unbalanced data. For the 2-way classification, random model, 
with or without interaction, he showed very explicitly that the maximum 
likelihood equations can be written with (relatively) disarmingly looking 
simplicity, but that they cannot be solved analytically. Miller also looked at 
asymptotic properties of the estimators; and Searle ( 1970) derived an expression 
for the large-sample dispersion matrix of ML estimators in the general 
unbalanced data case. 

b. Restricted maximum likelihood (REML) 
W. A. Thompson (1962) also considered ML estimation, and it was he who 

introduced the idea of maximizing that part of the likelihood which is invariant 
to the location parameters of the model; i.e., to the fixed effects. This has now 
come to be known as restricted maximum likelihood (REML), and is sometimes 
called marginal (or, in Europe, residual) maximum likelihood. It was put on a 
broad basis for unbalanced data by Patterson and R. Thompson (1971). The 
computational difficulties of ML are also equally as pertinent to REML as to 
ML, since REML methodology is effectively (see Harville, 1977) no more than 
ML on certain linear combinations of the data rather than on the data 
themselves. One of the interesting features of REML is that for balanced data, 
solutions to REML equations are identical to ANOVA estimators. Also, the 
REML methodology takes account of the implicit degrees of freedom associated 
with the fixed effects, whereas ML does not. ML and REML are coming to be 
the preferred method of estimation, especially from unbalanced data. 

c. Minimum norm estimation 
Attempts at finding minimum variance quadratic unbiased estimators of 

variance components (an analogue of best linear unbiased estimation of the 
mean in linear models) began with Townsend (1968), Harville (1969a) and 
Townsend and Searle (1971). This was quickly followed by LaMotte’s (1970, 
1971, 1973a,b, 1976) work on minimum variance estimation and C. R. Rao’s 
( 1970, 1971a,b, 1972) papers on minimum-norm quadratic unbiased equation 
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(MINQUE). The resulting estimators have, in some broad sense, a minimized 
generalized variance, stemming from the minimizing of a Euclidean norm, which, 
under normality, equates to a minimum variance property. 

MINQUE estimation demands no distributional properties of the random 
effects or error terms in the model. Nor does it involve iteration, just the solution 
of linear equations. However, estimators obtained by MINQUE are functions 
of a priori values used in place of the variance components in the estimation 
procedure itself. Thus the MINQUE procedure has what we deem to be a 
serious deficiency: the minimality property applies only at those a priori values. 
It also has the feature that from the same data set and the same model, N 
different people, each with their own set of a priori values, could yield N different 
sets ofestimators. Nevertheless, no matter what the a priori  values are, MINQUE 
estimators are unbiased. 

For a given set of a priori values, the MINQUE equations are linear in the 
variance component estimators and can thus be solved without iteration. But 
the presence of the a priori values suggests iterating on those equations using 
successive solutions as a priori values. The resulting solutions, once convergence 
is reached, are called I-MINQUE estimates. They are the same as REML 
estimates (Hocking and Kutner, 1975), and under large sample theory are 
normally distributed (Brown, 1976). Similarly, any MINQUE estimate is the 
same as a first-round iterate from REML, using a priori values needed for 
MINQUE as the starting values for REML iteration. These connections of 
MINQUE to REML add weight, we feel, to our opinion that MINQUE is not 
a practical method of estimating variance components. Readers who disagree 
with us are referred to Rao and Kleffe (1988), a book that is devoted almost 
entirely to MINQUE. And we do briefly describe the method in Section 11.3d. 

d. The dispersion-mean model 
Consider a vector having elements that are all the squares of, and products 

two-at-a-time of, the observations. A particular variant of that vector was shown 
by Pukelsheim (1976) to have expected value that can be expressed as a set of 
linear combinations of the variance components. In this way one has a linear 
model with the vector of variance components being the parameters to be 
estimated. It is called the dispersion-mean model and is described in Chapter 
12. Generalized least squares applied to this dispersion-mean model yields 
MINQUE, and applied to a mild variation of the model it yields ML (Anderson, 
1978). Brown (1978), using a vector of residuals, also developed MINQUE in 
a similar way. 

e. Bayes estimation 
Estimation of variance components using Bayesian principles is found in 

Hill (1965, 1967), who dealt with balanced data from the 1-way classification 
model. So did numerous other workers, followed thereafter by similar work on 
the 2-way classification, both nested and crossed; see Khuri and Sahai (1985, 
pp. 283-284). As those authors write (p. 290), “There have been only a few 
published papers on . , . unbalanced models”, i.e., unbalanced data. Gnot and 
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Kleffe (1983) is another good paper on this topic. We offer Chapter 9 on this 
topic. 

f. The recent decade 
In contrast to 1940-1980 there seems to have been only one major 

development of a new methodology for estimating variance components over 
the last ten years or so. This is the work of Smith and Murray (1986) and of 
Hocking et al. (1989) for balanced data [and Green (1988) for unbalanced 
data], who formulate variance components as covariances and then use the 
ANOVA procedure of equating quadratic forms of the data to their expected 
values. This formulation is described in Section 11.2. 

But, as opposed to new estimation procedures, there has been work in a 
variety of other topics. With the plethora of methods already available for 
unbalanced data, one emphasis has been the attention given to comparing 
different methods, mostly by the use of relatively small sets of simulated data. 
The papers range from Townsend and Searle ( 1971), for the 1-way classification 
without an overall mean, to Swallow and Monahan (1984). Their results 
“indicate that unless data are severely unbalanced and 0,2/0,2 > 1, ANOVA 
estimators are adequate” (Khuri and Sahai, 1985, p. 291). Comparisons have 
also been made for the 2-way crossed classification models (Corbeil and Searle, 
1976b) and the split-plot design (Li and Klotz, 1978). Generally speaking, 
maximum likelihood is the favoured methodology in these studies: or perhaps 
REML is even more favored. 

A second topic that has attracted research is that of designing experiments 
so that variance components can be estimated with some optimal properties. 
This has long been an interest of R. L. Anderson who, along with co-workers, 
has published a series of papers on the subject dating from Bush and Anderson 
(1963) and Anderson (1975) to Muse, Anderson and Thitakamol(l982). Khuri 
and Sahai (1985) provide an extensive collection of references (many of them 
by Anderson’s students) and a delightfully clear survey of them. 

Another matter of current interest is estimating variance components from 
discrete data, of which binary data are an important case. Chapter 10 describes 
methods for doing this. 

Developing confidence intervals for variance components and for functions 
of them has attracted considerable interest in recent years, especially for F. A. 
Graybill and colleagues. Some of the earliest work is that of Satterthwaite 
(1941). For the I-way classification, random model, with balanced data, a 
summary of confidence intervals for the variance components and some ratios 
of them is given in Searle (1971, Table 9.14), and a comprehensive survey of 
numerous papers on the subject is given in Khuri and Sahai (1985). They have 
a similar account for unbalanced data, ranging from Wald (1940) to the 
comprehensive review of Burdick and Graybill ( 1984); and a more recent survey 
is Burdick and Graybill (1988). 

Finally, a current topic of great importance is that of successful computing 
procedures for calculating ML and REML estimates. Some of the difficulties 
involved are listed in Section 6.4, and further details are given in Chapter 8. 



C H A P T E R  3 

T H E  1 - W A Y  C L A S S I F I C A T I O N  

The collecting of patient data from 15 clinics discussed as Example 4 in 
Chapter 1 is an example of a 1-way classification: clinics are the only way of 
classifying the data. This chapter deals with the 1-way classification more 
generally, introducing inter alia many topics concerning variance components 
that re-occur in subsequent chapters in more complicated situations and with 
more detail than is needed here. So, as well as dealing with the 1 -way classification 
in its own right, this chapter also introduces a variety of topics dealt with in depth 
in subsequent chapters. 

3.1. THE MODEL 

Describing the random model for the 1-way classification is somewhat 
repetitious of some of Section 1.3b, but it is done for the sake of completeness. 
The situation envisaged is that of having data that are grouped by classes, those 
classes being considered a random sample from some population of classes. 
The model equation that shall be used is 

yij = P + ai + eij, ( 1 )  

where y, ,  is the j th  observation in the ith class, j~ is a general mean, ai is the 
effect on the y-variable of its being observed on an observational unit that is 
in the ith class, and eij is a residual error. The number of classes in the data 
shall be denoted by a, and the number of observations in the ith class by n,. 
Thus i = 1,2 ,..., a and j = 1,2,. . . , n,, for n, 2 1. For balanced data there is 
the same number of observations in every class, n say, so that n, = n for every 
class, i.e., n, = n V i. 

a. The model equation 
In the fixed effects model of Section 1.3a, both j~ and a, are taken as fixed 

constants and the starting point is to assume E ( y , j )  = p + a,. Then eij is defined 
as eij = y i j  - E(y, , ) ,  from which yi j  = p + a, + eiJ. 

44 
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For the random model we must take account of ai being a random variable. 
To do so, we first assume that 

E l ( a i )  = 0. (2) 

where El represents expectation over the population of as. Lest it be thought 
that (2) implies some loss of generality, the reader is referred to the 
paragraph following (15) in Chapter 1. 
Now consider some particular class, and label it the ith class. Its n, 

observations, yf, for j = 1,. . . , ni, are considered to be a random sample from 
that class. Then, for E ,  representing expectation over repeated sampling from 
class i, the expected value of yi, for that class is p + ai. We denote this by the 
conditional expected value. 

EZ(YijIQi) = P + af * (3)  

Then, analogously to defining eij = yii - E(y,,) in the fixed effects model, we 
define e,, for the random model as 

(4) 

( 5 )  

eij = Yij  - EZ(Y~ , I@~)  = Yij  - ( P  + ail * 

Yij  = P + ai + eij * 

This gives the model equation 

b. First moments 
From the definition of e,, in (4) 

Ez(ef,laf) = E,(y,,la,) - Ez(Y,,Ia,) = 0, ( 6 )  

and on using E to represent expectation over repeated sampling from class i 
and E ,  for expectation over all classes, 

W,,) = E ,  E,(e,,la,) = 0 

Ez(Yi,lai) = E Z ( P  + ai + eijlai) = P + ai, 

(7) 

Similarly, using ( 5 )  and (6 ) ,  

which is our starting point (3). And on using (2)-(7), 

E(yi,) = ElE,(Yijlai) = E I ( P  + a,) = P * (8)  

c. Second moments 
The first moments of (2), (7) and (8) are either definitions or direct 

consequences of definitions. But those definitions produce no comparable results 
for second moments. In contrast we have to attribute second-moment properties 
to the a,s and the e,,s. Insofar as covariances are concerned, it is usual in random 
models to define all covariances as zero: 

( 9 )  cov(e,,, e r r )  = 0 except for i = i' and 1 = j '  . 
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This means that the covariance between every pair of different ei, terms is zero; 
similarly, for the a, terms, 

cov(ai, ai.) = 0 V i # i ’ ;  (10) 

( 1 1 )  

Whenever stochastic independence of the ei,s, of the ais, and of the ais and eijs 
is assumed, these zero covariances are, of course, a direct consequence of those 
independencies. Conversely, on assuming normality of the ais and the eils 
(usually just called the “normality assumptions”), these zero covariances imply 
independence. 

Now consider (9) and (10) for i = i‘ and j = j ’ .  These lead to variances, 
defined as follows: 

and likewise for the covariance of each a, with every eii: 

cov(ai, e i g j f )  = 0 V i, i’ and j’ . 

var(ei,) = of V i and j ,  and var(a,) = of V i . (12) 

These variances, u: and oi, are called variance components because they are 
the components of the variance of an observation: 

u,’ = var(y,,) = var(p + a, + eij) = u,‘ + uf . (13)  
Note also, starting from the definition of variance and covariance, and using 

E ( e i j )  = 0 and E(cri) = 0, that 

o: = var( e,,) = E [ e,, - E(  e,,)] = E(  e;), 

o,‘ = var(ai) = E ( a f ) ,  (14) 

(15) 

cov(ai, ai.) = E(a,ai.) = 0 V i # i’, 

cov(ai, e,.,) = E(a,e,.,) = 0 V i and i’, 

cov(e,,, eio,,) = 0 except for i = i‘ and j = j‘ . 
Moreover, although ai and eij are uncorrelated, the y,,s are not. For those in 
the same class 

cov(yij, y,,,) = cov(p + ai + eil, 1 + ai + ei,.) = of for j # j ’ ,  

whereas for those in different classes 

cov(yij, yi,,,) = cov(p + ai + e,,, p + a,. + e,.,.) = 0 for i # i’ . 
Equations (2), (3), (4)  and (9)-(12) specify the usual random model. 

Although these details have been given as applying to the I-way classification, 
they are, in fact, the definitions and assumptions used in most variance 
components models. That is, any random effect in most such models usually 
has attributed to it the same properties as have been given for the ai in (2), 
( lo) ,  ( I  1 )  and (12), namely zero mean, zero covariances with each other and 
with residual terms, and homoscedastic variances. Also, when there is more 
than one random factor, covariances of effects of one factor with those of another 



c3.21 MATRIX FORMULATION OF THE MODEL 

- 
Y l l  

Y12 

Y 1 3  

Y?.? 
Y21 

Y 2 2  

Y2 3 

Y.?? 
Y 3  1 

Y 3 2  

Y 3 3  

Y 3 4  - .  

TABLE 3.1. AN EXAMPLE OF THE I - W A Y  CLASSIFICATION 

( 3  CLASSES WITH 4 OBSERVATIONS EACH) 

Data y i j  
Total Mean 

Class Yii Yiz ~ i 3  ~ i 4  Yi. .Fi. 

i =  1 3 3 12 2 20 5 
i = 2  I I  13 17 7 48 I2 
i = 3  4 2 1 33 40 10 

Grand total, y . .  = 108 9 = Y.. 
= grand mean 
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are also usually taken as zero. These properties are used extensively in all that 
follows, with little further mention of the details shown here. 

3.2. MATRIX FORMULATION OF THE MODEL 

A matrix formulation of the model is introduced by means of an example. 

Suppose we have 4 observations on each of 3 classes, as in Table 3.1. 
The model equations ( 1 )  for the observations in Table 3.1 are 

a. Example 1 

3 

3 

12 

2 

11 

13 
17 

7 

4 

2 

1 

33 

.... 

.... 

1 1 .  

1 1 .  

1 1 .  

1 1 .  

1 . 1 .  

1 . 1 .  
1 . 1 .  

1 . 1 .  

1 '  - 1  

1 .  a 1  

1 .  - 1  

1 .  * 1  

.......................... 

.......................... 

- 

'i] 
el 1 

e l  2 

el  3 

e14 .... 
e 2  1 

e2 2 

e 2 3  

e 2 4  .... 
e3  1 

e 3 2  

e 3  3 

e 3 4  

where the vectors and matrix have been partitioned corresponding to the three 
classes in the data, and a dot as an element of a matrix represents zero. Denote 
by y and e the vectors of observations and residual errors, respectively, in (16). 
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Also define 

a = [ a 1  a2 a,]' 

Then (16)  is 

for 

xg = 

1 1 . '  

1 1 . '  

1 1 . .  

1 1 "  

1 . 1 -  

1 . 1 .  

1 . 1 '  

1 . 1 .  

1 a . 1  

1 * * 1  

1 m . 1  

1 a . 1  

and g = [ p  al  a2 a , ] ' = [ p  a']'. (17) 

y = X g + e  

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

P +  

We now utilize the summing vector I k  = [ 1 1 . . . 11' of k elements 1 and 
in doing so introduce the reader to Appendix M following Chapter 12. It 
contains a variety of definitions and reminders about matrix algebra. Equation 
(18 )  can then be rewritten as 

By expressing I , ,  and the 12 x 3 matrix as direct products (Appendix M.2), 
the model equation becomes 

b. The general case 
Appendix M.3 introduces new notation for writing A of order r x c, namely 

{ a,,} for i = 1,. . . , rand j = 1,. . . , c, where a,, is the element in row i and column 
j of A. It is 
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with the i and j and/or their ranges being omitted for brevity provided context 
permits. The m indicates that the elements a,, are arrayed as a matrix, and by 
the use of r, c and d one similarly represents rows, columns and diagonal 
matrices; e.g., { b , } , : ,  is a 1 x k row vector. This notation is useful because 
it can be used operationally without having to give a matrix symbol to every 
matrix involved. For example, 

avoids having to write “ A  is a matrix { ail )  and t is a column of elements ti 
and therefore At is a column of elements X,ai,tj.*’ 

We now use this notation to define vectors of observations and error terms, 
respectively, as 

Y = { c  { c V i j >  j ? ,  ) i l l  = { c  ~ i , )  12‘1. i f 1  

e = { { c ei,} 12, } i e i  = { c ei j}  j 2 1 ,  r f  1 ,  

(21) 

(22) 

and 

in each of which the elements are arranged in lexicon order, ordered by j within 
i .  Then with u defined as u = [ a ,  a2 . . . a,]’ for the general case of a classes, 
the model equations for n observations in each class are, like (20), 

(23) 

Searle and Henderson (1979) and Anderson el al. (1984) use extensions of this 
formulation for multi-way classifications to develop a variety of properties of 
random models. It has also been used by many other writers: e.g., Seifert (1981) 
and Smith and Murray (1984). 

A distinction between balanced and unbalanced data (see Section 1.2) must 
be noted. Although the example has balanced data (4 observations in each 
class), the definitions in (21) and (22) provide for unbalanced data ( n i  
observations in class i ) .  But with unbalanced data, the direct product formulation 
of (23) does not exist because, for example, the diagonal terms 1, of (19) will 
no longer be all the same. Thus, if n ,  = 3, n, = 4 and n3 = 2, those terms would 
be l , ,  1, and 1 2 ,  and this would not permit of a direct product multiplying u 
in (20). (See Section 3.2d, and Exercise E 3.1.) 

y = (1, &, 1n)P  + (I,&, 1 , ) ~  + e . 

c. Dispersion matrices 

matrices of y, u and e are from (9) and ( 12) 
4. The traditional random model. The dispersion (variance-covariance) 

var(e) = a,21an; (24) 

var(a) = 0,21,. (25) 

and similarly from ( 10) and ( 12) 
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Then from (9)-( 12) and (23) 

v = var(y) = (I, @ l,)a,”Ia(Ia @ I,,)’ + oaI,, 
= ~ ; ( l , @  J,) + 0:(1,@ I,) = I, @ (0,” J, + a;I,) . (26) 

These forms of dispersion matrices arise directly from the variance-covariance 
structures attributed in (9)-( 12) to the random a l s  and ei,s in the traditional 
form of the random and mixed models. But, although they are the structures 
most frequently employed and to which most of this book is therefore directed, 
they are by no means the only structures that could be envisaged. The possibilities 
are almost endless. We show but three in the following paragraph. 

Other alternatives. First, although forms of var(a) and var(e) other 
than (24) and (25) are sometimes employed, one property of a and e that is 
almost universally adopted is to take cov(a,, ek,) = 0 for all i ,  j and k, as in 
( 1  1). This gives 

cov(a, e’) = 0, of order a x an, (27) 

the orders of a and e’, namely a and an, respectively, determining the order of 
cov(a, e‘). But for var(a) there may be situations when adopting 

4. 

cov(ai, ai,) = pa,” for i # i f  

is reasonable. This gives, for a = 5 (for ease of illustration), 

var(a) = a,Z 

with its general form being 

An example of this in animal genetics could be where the classes were sires that 
were all paternal half-sibs. 

In a different context, if time series data are under consideration, with 
i = I , .  . ., a representing a series of time intervals, it may be appropriate to 
adopt either the structure 

pa,” V i  - i’ = f 1, 
0 otherwise 

cov(ai, m i , )  = 

or 

cov( ui, ai#) = a,2pli - i’l V i # i’, 
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' I  p * * * -  

P I P . '  

. ' P I P  

I * P 1 -  

var (a )=a :  * p 1 p 

. .  

- 1  P P2 P 3  P4. 

P 1 P P2 P 3  

P 3  P 2  P 1 P 

,P4 P 3  P 2  P I - 
and var(a)=u, '  p 2  p I p p 2  , 

0 ; I n  

0: I n  

c,' In 

1 * * *  * * *  

var(e) = 

:$ 
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TABLE 3.2. UNBALANCED DATA FROM A 1-WAY CLASSIFICATION 

i =  I 3 3 12 18 3 6 
i = 2  I I  13 17 7 48 4 12 
i = 3  4 2 6 2 3 

Grand total, y.. = 72 n. = 9 8 = jj.. 
= grand mean 

These still have the form y = Xp + e, but now Xf.l is 

The matrix multiplying a is still a diagonal matrix of summing vectors, but in 
contrast to (19) of the balanced data case where those summing vectors all 
have the same order they now have, for unbalanced data, different orders, 
namely the numbers of observations in the classes. 

The general cuse. Generalizing from (29), the model equation for 
unbalanced data is, for N = n. = &ni, 

(30) 

-ii. 

Y = 1Np + { d  lwi} i Z l  a + e .  

4i .  Dispersion mafrix. Correspondingly, the dispersion matrix of y is 

V = var(y) = { d  1 , )  u.'I,{d ILl} r Z 1  + u,2IN 

= ','{d J w , } i  + a z l N  

= { d  u.'Jfli + c:lnl}i, (31)  

where i takes values i = I , .  . . , a. Whenever ni = n V i, the form in (3 1 ) does, of 
course, reduce to (26) for balanced data. 

3.3. ESTIMATING THE MEAN 

In a fixed effects model represented as y = Xp + e with var(y) = var(e) = V, 
the ordinary least squares estimator (OLSE) of the estimable functions XF is 

0 1  SE(Xj3) = X(X'X)-X'y = XX'y, (32)  
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where (X'X)- is a generalized inverse of X'X and X +  is the Moore-Penrose 
inverse of X (see Appendix M.4). This estimator makes no use of any information 
about covariances that is contained in V. In contrast, this information is utilized 
in the generalized least squares estimator 

GLSE(Xfl) = X(X'V-'X)-X'V-'y.  (33) 

Derivation of (32) and (33) is briefly described in Section S.1. (Appendix S 
contains short reminders of some results in mathematical statistics.) 

We utilize (33) to estimate p in the unbalanced data, one-way classification, 
random effects model of (30), wherein E(y) = pl,, having X of (33) as X = 1, 
and var(y) = V of (31). For this (33) is 

GLSE( 1Np) = I N (  I h {  d a,'Jn, + 47:1,,} - ' 1 ~ ) - ' 1 h {  d a,' J,, + 6 : I n , )  - 'y, 

where, for clarity, the limits of the indicator variable from i = 1 to i = a have 
been omitted. (This omittance is continued whenever context permits.) Then, 
since 1, is a vector, GLSE( 1,p) yields 

Because, using (ii)  of Section M. 1, 

(O:Jnl + ~ z I , , , ) - l  = ',' J,,) , 
a,' + niof 

for vat&) = a,' + a:/n, being the variance of I,., since the model equation 
for j j r .  from ( 1) is ji. = p + ai + 4.. 

In the final form of (34) we see that GLSE(p) is the weighted mean of the 
cell means, weighted by the inverse of their variances. And the second form 
then shows very easily that when n, = n, we have 

for balanced data GLSE(p) = I.. . (35) 

in all cases OLSE(p) = 7.. . (36) 

It can also be noticed from (32) that 

The juxtaposition of (35) and (36) may prompt the question "When does a 
GLSE of a parameter (or function of parameters) equal the OLSE from the 
same model?" This is discussed in Sections 4.9, 5.10 and 12.4b. 

Both GLSE(p) of (34) and OLSE(p) = 1.. of (36) are unbiased estimators 
of p;  so also is C;= jji./a. All three are special cases of a weighted average of 
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the observed class means, the ji.: 

where 

1 
GLSE(p) of (34) is f i ,  with w - 

- 0,” + a,’/n,’ 

OLSE(p) = 1.. is p, with wi = n, 

and 
a 

C j , . / a  is 4, with wi = 1 . 

In the random model all of these are unbiased for p. But they have different 
variances, with 

i= 1 

var[GLSE(p)] = (37) 

This, as shown by Searle and Pukelsheim (1986), never exceeds var(bw), no 
matter what values are used for the w,  in b,; i.e., in the random model, GLSE(p) 
is that weighted average of the class means which has smallest variance among 
all weighted averages. 

In the fixed effects model, OLSE(p) = j j . .  would be the estimator used for 
p. In that model it has variance that never exceeds that of p,; moreover, the 
variance of OLSE(p) in the fixed effects model never exceeds the variance in 
the random model of GLSE(p), which in turn never exceeds the variance of 
OLSE(p) in the random model. Exercise 3.4 is concerned with these results. 

3.4. PREDICTING RANDOM EFFECTS 

The model equation yi j  = p + a, + e,, for an observation leads to j j , .  = p + 
a, + P i .  for the mean of n, observations in class i. Suppose I,. is the average of 
n, IQ test scores of college freshman Ronnie Fysher, with a, being his true, 
unobservable, IQ value. If Ronnie Fysher is considered as randomly chosen 
from some population of college freshman then, insofar as true IQ values of 
that population are concerned, a, is just a random sample of one from the 
population of a-values corresponding to the population of freshmen. Although 
Ronnie Fysher is a specific person, his a,-value is just one of the population of 
a-values, one that happens to have some name attached to it. The value a, can 
thus be considered as the realized (albeit unobservable) value of a random 
variable representing true IQ values. 

Although at is unobservable (just as i t  is when it  is a fixed effect) we do have 
some information about it, namely jj,., the average of Ronnie Fysher’s n, scores. 
A natural question to ask is, therefore, “How can we put some numerical value 
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to a, based on ji.?'* Let us denote that value by 8, .  Whatever we do to derive 
d , ,  we do not call it an estimator [as Henderson (1950) first did] because 
estimation applies to parameters and a, in the random model is not a parameter, 
it is a random variable. Instead, 8, is called a predictor or prediction of a,. 

In predicting the (unobservable) realized value of a random variable, which 
is what we want to do, it might seem sensible to take as the predictor the mean 
of the random variable; i.e., take 8, as E(a,). But E(ai) = 0. And 8, = E(ai) = 0 
makes no use of data. Yet, if the average of Ronnie Fysher's test scores, namely 
j,., were considerably above the overall freshman average then we would expect 
a, to be positive. With this thought in mind we are motivated to use the 
conditional mean E(ailji.) rather than E(ai) = 0 as our assessment of the true 
IQ of a freshman having an average IQ test score of j,.. This means that for 
each freshman having the same number of IQ tests as Ronnie Fysher and whose 
average test score is the same j i .  as Ronnie Fysher's, we assess his or her a-value 
as the mean of the a-values of all freshmen that have or might have the same 
ni and same test score j , . .  Thus our predictor is 

= E(ai lji.), (38) 

meaning that 8, is the expected value of a-values of the sub-population of 
freshmen for each of whom average test score, on the same number of tests, 
n,., is (or would be if it were to be available) the observed value that has, for 
some paticular i ,  been labeled ji.. 

In Chapter 7 we show from several viewpoints that (38) is a reasonable 
predictor of a,, In the meantime, we give an easy derivation of an expression 
for 6, that is more practical than simply E(a, Ij,.). To do so we invoke normality 
assumptions for the a, and the eij in y l j  = p + a, + e,,. Doing this with the usual 
first- and second-moment properties detailed in (2)-( 12) leads to a, and j i .  
being jointly distributed with a bivariate normal density having mean and 
variance 

Moreover, from a well-known property of the bivariate normal distribution 
(see Appendix S.2), we have 

which, from (39), is 

Thus our predictor of a, is 
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Notice that (40) has here been derived from (38), which was introduced solely 
on the grounds of its seeming to be reasonable. In Chapter 7 we show that (38) 
and (40) are special cases of general prediction procedures derived from several 
different starting points, such as regression, best prediction, best linear prediction 
and Bayes estimation. In the meantime we observe that 8, explicitly involves 
n,, not just in its occurrence in j , .  but also in the coefficient multiplying j , .  - p. 
For large n,-values, 6, is closer to j , .  - p than it is for small n,-values. 

Moreover, it is easy to rewrite 6, as 

6, = ( l i .  - - (Vi .  - P I ,  
a: + a:/n, 

which shows that 6, regresses towards j , .  - p as n, increases. This means that 
when j i .  exceeds p then 6, is less than j , .  - p;  whereas for ji less than p then 
Zi exceeds j , .  - p. Hence 

h, 2 j , .  - p according as j , ,  5 p . 
Thus when j , .  exceeds p, which suggests that a, is better than average (i.e. better 
than 0), we predict it to be better but only by a fraction of j , .  - p, and not by 
j , .  - p itself. Conversely, when j , .  is less than p, we predict ai as being poorer 
than average but only by a fraction of j , .  - p and not by j , .  - p itself. For 
example, a: = 90, 0: = 60, n, = 6 and p = 100 give 6, = 0.9(J,. - 100); and 
when J,. = 110 > 100, the predictor is 8, = 9 c 10 = 110 - 100, but when 
j , .  = 80 then 6, = - 18 > - 20 = 80 - 100. 

The example used for introducing the idea of predicting a random variable 
has been that of predicting IQ from test scores. It is an idea that applies in 
many other situations, some of the most notable being in agriculture, where 
the production of economically important animal products can be increased 
through well-planned breeding programs. In increasing milk production, for 
example, it is very useful to be able to predict a bull's genetic value (a,) from 
the milk production of his daughter cows. Animal breeders do this using 6, of 
(40). With h defined ash = 4t7,2/(0,2 + u;), a parameter well known to geneticists 
as heritability (which leads to a:/.: = 4/h - l),  the predictor (40) becomes 

a familiar expression to animal breeders. 
Note that (40) and its equivalent (41) are in terms of parameters a:, 0: and 

p. To have a numerical value of 6, therefore demands having estimates of these 
parameters. Estimating p by its GLSE(p) of (34) and using this in di gives what 
is known as BLUP of a,, the best linear unbiased predictor: 
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Its general derivation is given in Chapter 7. It gets its name from the fact that 
it is a linear function of the observations, it is unbiased in the sense that its 
expected value equals the expected value of ai, i.e., 

E[BLUP(a,)] = E(a,) ,  

which in this case is zero; and among all linear functions of the observations 
that have expected value E(a i )  it is the one with minimum variance. It also has 
other optimal properties, which are discussed in Chapter 7. They are also dealt 
with by Peixoto and Harville ( 1986), who consider bias and mean-squared error 
properties of a variety of different predictors of a,, of which BLUP(a,) is one 
special case. 

A natural extension of BLUP(ai) is 

BLUP(p + a,) = GLSE(p) + BLUP(a,) 

Both are special cases of BLUP in general, the direct derivation of which is 
given in Chapter 7. Practical usage of them requires, of course, estimates of the 
variance components, in this case 0.' and a:. This is an example of what 
motivates the subject of this book. 

3.5. ANOVA ESTIMATION-BALANCED DATA 

a. Expected sums of squares 

analysis of variance of balanced data from a 1-way classification are 
As indicated in Table 2.1, the two sums of squares that are the basis of the 

a 

SSA = n(9,. - jj..)' 
1= 1 

and 
a n  

totaling to 

(43) 

The ANOVA method of estimation is based on deriving the expected values 
of SSA and SSE from the definitions and their consequences in (1)-( 15). One 
then equates observed and expected values and solves for estimators. We show 
some details of one method of deriving the expected values for balanced data, 
and a slightly different but equivalent method in the next section for unbalanced 
data. 
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4. A direcr deriuarion. From the model equation ( l ) ,  

y i j  = p + ai + e,,, for i = I ,..., a and j = 1 ,..., n, 

we get 
n 

j =  1 
j i .  = p + ai + Ci., for pi. = C e i j / n ,  

and 

Therefore 

a 

= n 1 [E(ai - + E(gi. - 2..)2], 
i= 1 

using E(aieier.) = 0 of (15). Then, on using E(a,) = 0 = E(ei , )  of (4) and ( 5 ) ,  
a 

E(SSA) = n 1 [var(ai - &.) + var(2,. - ?..)I 
I= 1 

= n(a - 1)u: + (a  - l)u," = (a  - l)(nu,2 + u,"), 

as shown in (19) of Section 2.2~-i. And with MSA = SSA/(a - 1) this gives 

E( SSA) 
a - 1  

E(MSA) = -- = + uf . 

I t  is left to the reader (as Exercise 3.7) to use the same methods to derive 

E(SSE) a(n - 1)uf 
a(n-  1 )  a ( n -  1) 

= 6, - E(  MSE) = - - 

4. Using the matrix formulation. When E(y) = 8 and var(y) = V, we 

(45) 

0 = lanp = ( l a @  1,)p and V = Ia@(u,2Jn + ufIn), (46) 

write y - (0, V) and then, as in Theorem S1 of Appendix S.5, 

E(Y'AY) = tr(AV) + wA8. 

Now for y of (23) we have y - (0, V) with 

where 8 is the Kronecker product operator (see Appendix M.2). Then, since 
0 d 

SSA = n 1 ( j i .  - j . . )2 = n 1 ji'. - anj?. , 
i =  1 i =  1 
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we can also express SSA, using the J, definition of Appendix M.l, as 

SSA=y‘({dJ,},Zl -J,,)y=Y’(Ia8J,-Ja,)Y = Y ’ A ~ Y ,  (47) 

where A,  is defined as 

A1 = I a ~ J , - J , , = l a ~ J J , - J , ~ J , = ( I , - J , ) ~ ~ J , .  (48) 

Hence, using (47) and (46) in (45) gives 

E(SSA) = tr{ [(I, - 3,) 8 J,1 CIa 8 (0: Jn  + 0,21,)1} 

= tr[(I, - 3,) 8 (a:J, + a:J,)I + 0, 
+ ~ ( l b  8 Jb)C(Ia - 9,) 8 JnI(1a 8 1 , ) ~  

(49) 

the zero because lb(I,, - J,) = 11 - 1: = 0. Thus 

E(SSA) = [tr(l, - J,)][tr(a:J, + aiI,)] = ( a  - l)(na: + a:), 
as before. It is left to the reader to use similar methods to derive E(SSE). 

Naturally one gets the same results as when using the direct derivations; 
and although the matrix methodology is cumbersome in this instance, it is 
extremely useful for later, more complicated (usually unbalanced data) situations. 
The preceding details are foundation for those cases. 

b. ANOVA estimators 
Having derived 

and 

E(SSE) = a(n - I)a:, (51 )  

we use the “equate sums of squares (or, equivalently, mean squares) to their 
expected values” principle, which is called the ANOVA method of estimation. 
The resulting equations, which are linear in the variance components, are now 
written using the estimators 8; and 8:, so that the equations are, from (50) 
and (51), 

( 5 2 )  SSA = ( U  - l)(n8: + 8:) 
and 

SSE = a(n - I ) & : .  

These yield the estimators 

= MSE 
SSE 

a(n -- 1 )  
8: = 

and 

MSA - MSE 8,- 2 - ( -- sSA & : ) i n  = 
a - 1  n 

(53) 

(54) 

( 5 5 )  
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TABLE 3.3. 1 -WAY CLASSIFICATION. BALANCED DATA 

Expected Value of 
Source of Sum of Squares 
Variation d.f. Sum of Squares Under Random Model 

General Case 

Classes a - 1  SSA = n X i ( j i .  - j..)' (a - !)(nu: + 0: )  

Within classes a( n - 1 ) SSE = Z , Z , ( y i ,  - j$.)* a(n - 1)u: 

Example 1 (Table 3.1.) 

Classes 2 SSA = 104 2(4u; -t 6:) 
Within classes 9 SSE = 828 9.3 

Total (a.f.m.) I 1  SST, = 932 

They are unbiased estimators: E(8,Z) = 0; and E ( 8 : )  = a:, as the reader may 
easily verify (Exercise 3.8). 

The expected values of (50) and (51)  are summarized in the format of an 
analysis of variance table in Table 3.3, the lower part of which shows the 
calculated values for the data of Table 3.1. Using these, the estimation equations 
(54) and ( 5 5 )  therefore give for the example 

8; = MSE = 82819 = 92 

and 

6: = (MSA - MSE)/n = (104/2 - 92)/4 = - 10, ( 5 6 )  
where MSA = SSA/(a - 1 )  = 104/2. These are the ANOVA estimates of 0: 

and u,' from the data of Table 3.1. 

c. Negative estimates 
The estimate of 0,' in (56), the ANOVA estimate, is negative, - 10. This 

negativity is not universal. Indeed, one always hopes that 8: will not be 
negative; but it will be whenever MSA < MSE. And such an occurrence is a 
characteristic of data: with some data it will happen that MSA < MSE, and 
with some data it will not happen. There is nothing in the ANOVA method of 
estimation that will prevent a negative estimate occurring should MSA < MSE. 
This leads to some embarrassment: a negative estimate of a parameter which 
by definition is non-negative. Variances are never negative. 

Two questions immediately arise: ( I )  What can be done with a negative 
estimate? ( 2 )  How can negative estimates be avoided? The broad answer to ( 1 ) 
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is that a negative estimate either may be indicative of using a wrong model, in 
which case we could try changing the model, or it may be an indication that 
the true value of the variance component is zero, i.e., that 0.‘ = 0. If Bf is 
especially large and negative, that and its unbiasedness might well be suggestive 
that 0.’ = 0. If this is taken to be so then it effectively reduces the model to be 
y,, = p + el,, for which the ANOVA estimator of af is Sf = SST,/(an - 1). 

To avoid negative estimates, two trite answers to question (2) would be first 
to check the data for erroneous values and to check one’s arithmetic, and second 
to collect more data in the hope that the total set of data would then yield 
positive estimates. A more serious alternative would be to use a method of 
estimation that explicitly excludes the possibility of negative estimates- 
maximum likelihood (ML), restricted maximum likelihood (REML) and Bayes 
estimation are three such methods. Alternatively, if one has strong prior 
information on the true value of the components, one might try a minimum 
norm method (MINQUE) method of estimation. All these methods are described 
in their general forms, in Chapters 6, 9 and 11. 

This problem of negative estimates is discussed in a more general setting 
than here in LaMotte (1973a) and Styan and Pukelsheim (1981). Changing the 
model is considered by Hocking (1973, 1985) and Smith and Murray (1984), 
who, instead of modeling ylj in the manner done here, simply define a 
variance-covariance structure for the y,p as 

0 fori # i‘, 

cov(yij, yip,,) = pa2 fori = i’andj Zj’, { a2 fori = i’and j =j’ . 

Thus a2 is the variance of each y,,, and p is the correlation between yi,s in the 
same class. Then for the n observations in class i the dispersion matrix is 

var{, y i j } , Z ,  = a2C(1 - p ) I ,  + pJ,] = V, 

say, so that 

v = (av,},:, = I a @ V c .  

Then, although Hocking et al. (1989) in extending Smith and Murray (1984) 
use a variation of the ANOVA method that appears to be different from usual, 
it is in fact precisely the same as (54) and (55) except that those equations are now 

MSE = (1  - p ) B 2  and MSA = (np  + 1 - b)B2 . 
These lead to 

8 2  = - 
n 
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and 
MSA - MSE 

with Pd2 = a,‘ ’ = ( n  - 1)MSE + MSA 
In the context of p being a correlation parameter, the occurrence of negative 

6 when MSA < MSE is now of no concern. But on wanting to convert these 
parameters p and 6’ into 0.’ and o,Z, one comes right back to (54) and (55 ) ,  
with 8.‘ of ( 5 5 )  being negative when MSA c MSE. Moreover, in using this 
correlation model, which involves equal correlation between all pairs of 
observations in the same class (for every class), p is not entirely free to be any 
value in the ( -  1, 1) range as is usually the case for a correlation. This is so 
because V, = a’[( 1 - p)I, + pJ,] is, through being a dispersion matrix, 
non-negative definite, and so has a non-negative determinant. This leads to p 
having to satisfy p > - l / (n  - 1). Hence, if n is 11 or larger, p cannot be more 
negative than -0.1, which is somewhat of a limitation to its being a correlation 
that can be negative. Non-negative, minimum biased estimators are given by 
Hartung (1981) as nMSA/(l + nZ) and MSE. Estimators of this nature are 
discussed more fully by KlefT‘e and Rao (1986), Rao and Kleffe (1988) and 
Mathew et al. (1991a). 

Further comment on negative estimates is given in Sections 4.4 and 12.7. 

d. Normality assumptions 
Except for a brief mention of normality in Section 3.4 (predicting a,), it is 

to be noted that up to this point no assumptions have been made about the 
form of the probability density functions of the random a,s and e,,s, other than 
that they have zero means and finite variances. The ANOVA method of 
estimation, although i t  uses sums of squares traditionally encountered in an 
analysis of variance table, does not invoke normality. Neither is normality 
needed, of course, in the analysis of variance table itself until F-statistics 
calculated from those sums of squares are used in a confidence interval or 
h ypot hesis-testing con text. 

The assumptions that are called the usual normality assumptions in the 
random model are that the a,s and el,s are taken as being normally distributed, 
with the first- and second-moment properties of (6)-( 12). Stated succinctly in 
matrix notation, this means that 

and, using (26) 

y - N(pl,,,,, V) for V = I, 0 (a: J, + o,Zl,)] . ( 5 8 )  

From Theorem S2 of Section S.4 4. x2-dis?ributions of sums of squares. 
we have for 

y - N(0, V)  that y’Ay - x 2 ( v A ,  40’AO) (59) 
if AV is idempotent, where r A  is the rank of A. 
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Notation. X2(r ,  E.) represents the non-central X2-distribution with r degrees 
of freedom and non-centrality parameter A. Details and references are given in 
Appendix S.4. x,‘ represents the central X2-distribution with r degrees of freedom, 
just as 9; is for the F-distribution in ( 5 )  of Chapter 2. 

This notation shall be used in two ways. One is when we want shorthand 
for statements like “ u  has a X2-distribution with k degrees of freedom”, which 
shall be written as u - x:. An example is (59). A second usage will be when 
“the probability that u - is less than some value c” is abbreviated to 
Pr(Xi < c). 

To apply (59) to SSA we write SSA = y’A,y for A ,  = (I, - J,)@J,, of (48) 
and with V of (58) we find, using the algebra of J-matrices and of direct (or 
Kronecker) products set out in Appendix M, that [A,/(na: + a:)]V is 
an idempotent matrix with A,  having rank a - 1. Also, SO’AO of (59) here has 
B‘A = pl;,A, = 0, because l ’ A ,  = 0. Hence ( 5 9 )  gives 

(60) SSA/( na: + 0:) - x:- ,, 
a X2-distribution with a - 1 degrees of freedom. A similar use of (59) shows 
that for 

SSE = y‘A2y with A2 = I,, - { J,} 

ssE/a: - x ; ( n  - 1) * (61 1 
-ii. Independence of sums of squares. Theorem S3 of Appendix S.5 shows 

(62) 

that for y - A’”(p, V), 

y‘Ay and y’By are independent if AVB = 0 . 

Applying this to A,VA2 of the preceding paragraph, we find that A,VA2 reduces 
to 0 and so therefore 

(63) 

This is a simple example of a well-known property of sums of squares of balanced 
data. 

-iii. Sampling variances of estimators. The independence (under normality) 
of SSA and SSE has been established and each has a distribution that is 
proportional to a x 2 ;  and the variance of the (central) &distribution is 2f: 
From this we derive sampling variances of the estimators. The important results 
(Appendix S.3b) are that for a sum of squares SS being distributed proportionate 
to a x 2  with f degrees of freedom and mean square MS = S S / J  

SSA and SSE are independent. 

and 

EE(MS)12 (Ms)2 is an unbiased estimator of 
f + 2  f 
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Hence 
2[ E (  MSE)]’ 

a(n - 1 )  
var(8;) = var( MSE) = 

262 
=- 

a ( n  - I )  
is unbiasedly estimated by 

Similarly 

which is unbiasedly estimated by 

a(n - I )  + 2 
(it 1 2 (nd; + dp2)2 

v&r(8,2)=, -- + 
n [ a + l  

And the covariance of d: with d,Z is 

(71 1 
cov[( MSA - MSE), MSE] var( MSE) - - 20; cov(rf,2, df)  = = -  - 

n n a n ( n  - 1 1 ’  
for which an unbiased estimator is 

Thus, although the sampling (co)variances in (66), (69) and (71) are 
quadratic functions of u: and a;, we can estimate those sampling (co)variances 
by replacing uf and 0: therein by 8: and d;, and adding 2 to denominator 
degrees of freedom. This gives unbiased estimators of those sampling 
(co)variances, as shown in (67), (70) and (72). And best invariant unbiased 
estimators of mean square errors of 2: and 2: are derived by Hartung and 
Voet ( 1986). 

Using Edgeworth series and third and fourth cumulants, Singha (1984) 
develops, in the absence of normality, approximate expressions for the variance 
of 8: and 8: and for the means and variances of various ratio functions of 8: 
and a:. 

-iu. An F-statistic to test H: u: = 0. In the fixed effects model (where the 
a p  are fixed effects), F = MSA/MSE tests the hypothesis H: ais all equal. In 
that model, we have, under that hypothesis, that F - St:,! 1), the F-distribution 
(Section S.4) on a - 1 and a(n - 1)  degrees of freedom. 

In the random effects model, provided the data are balanced, the x 2  and 
independence properties of SSA and SSE of (60), (61) and (63) lead to 
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i.e., to 

Therefore, under the hypothesis H: a: = 0, the left-hand side of (73) reduces 
to F, which then has an 9-distribution and so F = MSA/MSE provides a test 
of H: a: = 0. Note that in the random effects model F = MSA/MSE has a 
distribution that is a multiple of a central 9-distribution, whereas in the fixed 
effects model F has a non-central 9-distribution when H: a,s all equal is not true. 

-u. ConBdence intervals. Exact confidence intervals are available for at, 
a,2/(a: + at), a:/(a: + at)  and a;/.:. Define xi, and xi, , by the probability 
statement 

for some probability value a( = .05, say). Then (61) gives 

pr{ x:(n- 1). L 

which is equivalent to 

so leading to the 100( 1 - a)% confidence level SSE/x:(.- I ) ,  , to SSE/X:~- l). 

shown on the first line of Table 3.4. 

and FL by 

we have, for F = MSA/MSE, 

Similarly, on defining upper and lower points of the 9-distribution as Fu 

Pr{FL Q 9:;Il, -d F , }  = 1 - a ,  

a:F 
na,2 + a: Pr{FL 6 Q F , }  = 1 - a .  

But the two-sided inequality within this probability statement is equivalent to 

FU <- --d 
F na: + a t  F 
FL at 

na,2 + at F 

F, 03 FL 
- 1 6 - - 1  

F 
e-- 16 

F/Fu - 1 a2 FIFL - 1 

n 03 n 
0 < m g  

The confidence interval shown in the last line of Table 3.4 comes from the 
preceding statement. Further manipulations of that statement, similar to those 
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TABLE 3.4. CONFIDENCE INTERVALS ON VARIANCE COMPONENTS AND FUNCTIONS THEREOF, I N  THE 

1 -WAY CLASSIFICATION. RANDOM MODEL. BALANCED DATA 

Confidence Interval I 

Lower 
Line Parameter Limit 

Upper Confidence 
Limit Coefficient 

SSE 
a: 2 

0,' 2 

1 
Xaw - I 1. u 

SSA( I - F , I / F )  

%- 1.u 
2 

a,' FIFU - 1 
3 

a; + a: n + F / F u  - 1 

aa n 
4 

a," -+ a: 
0,' F / F u  - I 

I I  + F / F L  - 1 

- 5 
0,' n 

1 - a  
SSE 

Xi," - 11. L 

SSA( 1 - F , / F )  

" X a -  1.1. 
1 - 2% 

2 

F I F L  - 1 

11 + F / F L  - 1 
1 - 8  

I 1  
I - a  

n + F / F U  - 1 

F I F L  - 1 
1 - 2  

n 

I Notation: F = MSAIMSE, 

Pr{x:.L < xi <xi , , }  = 1 - a  

Pr{F,<.f:;! , ,< F , )  = 1 - a  

that established it, yield the confidence intervals for of/(of + of) and for 
of/(o.' + of )  shown in Table 3.4. (Exercise 3.10.) 

For of there is no exact confidence interval, but by considering the intersection 
of confidence intervals on of + of and on oz/(nof + o:), based on the 
distributions of SSA and of F, Williams (1962) derived the confidence interval 
for of shown on the second line of Table 3.4. An excellent description of deriving 
this Williams interval is g' en in Graybill (1976, pp. 618-620). The intervals 
for of/(of + 6:) and uf/(of + of )  are given in Graybill (1961, p. 379; 1976, 
pp. 617-618), and for ai/o,Z by Scheffk (1959, p. 229). 

Probabiliiy of u negative estimate. Section 3 . 5 ~  describes how it is 
possible for 6: to be negative, and gives a trite example thereof. From the 
distribution of F in (73) one can derive the probability of such negativity 
occurring: 

4. 

Pr{d: < 0 )  = Pr{ MSA < MSE) 

= Pr{F  < I }  
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We now use the well-known fact that the reciprocal of 9; has the 9; 
distribution. We also define r as the ratio of the variance components and p 
as the intra-class correlation: 

and then have the probability of S,' being negative as 

P = Pr{S,2 < 0) = Pr{F:'!;'' > I + nr} . (74) 

Calculated values of this probability are shown in Table 3.5 for a, the number 
of classes, being 2, 5, 10, 25 and 50 and for n, the number of observations per 
class, being 5, 25 and 100. For the resultant fifteen pairs of (a, n )  values, P is 
shown for 5 = .01, .05, .10 and .25 (and for each 5 the corresponding values of 
p and h are also shown). The most noticeable feature of these values is, as 
would be expected, that P decreases as either a or n increases. This characteristic 
of P is very evident in Figure 3.1, which shows, when 7 = .01, contour lines for 
P = -4, .3, .2, .l, .05 and .01 plotted on (a,  n) co-ordinates, ranging from 2 to 
360 for a and from 2 to 100 for n. When similar plots were made for other 
values of T i t  was found, as would be indicated by the P-values in Table 3.5, 

TABLE 3.5. PROBABILITY OF THE ANOVA ESTIMATOR OF U,' BEING NEGATIVE WHEN OBTAINED FROM 

BALANCED DATA OF a CLASSES EACH WITH n OBSERVATIONS, UNDER NORMALITY ASSUMPTIONS 

P = Pr{ 6,' c 0 )  = P {  S:'Z;'J > I + nr} for T = u,2/u,2; 

U , ' - l - U :  1 + T  u,' + u: 

T 4u' 
4P and h = A = p = - - -  0,' - 

T = .01 T = .05 

p = .0099 h = ,0396 p = .0476 h = ,1904 

CI n = 5  n = 25 I t =  100 I1 = 5 n = 25 n = 1 0 0  

2 .65 .62 .52 .60 .49 .32 
5 .55 .47 .26 .46 .22 .04 

10 .5 1 .38 . I2  .38 .09 0 
25 .47 .26 .02 .27 0 0 
50 .43 .I6 0 . I8  0 0 

T = .10 T = .25 

p = ,0909 h = .3636 p = .20 h = .80 

U It = 5 11 = 25 n =  100 I1 = 5 it = 25 I / =  100 

2 .56 .40 .24 .48 ,29 .I6 
5 .38 . I  I .o 1 .22 .03 0 

10 27  .02 0 .I0 0 0 
15 .I3 0 0 .o I 0 0 
50 .05 0 0 0 0 0 
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360 

310 - 

- 

260 - 

- 210- 
L 1 
c g 110- 

d 
70 - 
30 - 

n, the number of observations per class 

Figure 3.1. Contours of P = Pr{df < 0 )  = Pr{F$i ' '  > I + nr) = .4, .3, .2, . I ,  .05 and .01, for 
r = uf /u,2 = .O1. 

that in all cases the pattern of contour lines was similar to those in Figure 3.1. 
For T < .01 the lines were more separated than those in Figure 3.1, spreading 
out more and more away from (0,O). This implies that as T gets very small, the 
probability of a negative 8,' is appreciable over a larger range of (a, n) values. 
Conversely, for T > .01, the contour lines bunched up more and more towards 
(0, 0), until for T 3 1 there were, from a practical point of view, no lines of any 
consequence at all. For example, with T = 1, P is effectively zero (less than .01) 
for all (a, n) pairs further from (0,O) along either axis than (3,99), (4,25), (5, 12), 
(6 ,8)  and (7,6); and for a 2 4, P < .09 for n 3 5. For T larger than unity, T = 5,  
say, this occurrence of non-zero P is even closer to (0,O); at (2, 5) ,  P is only 
.15, and it  is zero everywhere beyond ( 5 , s ) .  For T = 10, P is .11  at (2 , s )  and 
.03 at (2, 100) and is zero everywhere beyond (3, 5) ,  where it is only .02. 

This discussion of P, the probability of 8,' having a negative value, yields 
the following useful conclusions. 

(i) For any a (or any n) P decreases as n (or a) increases, decreasing faster 

( i i )  For u,' > gi ,  P is zero except for small values of a, and it exceeds .l 

( i i i )  For of < &o:, P can be appreciably large, e.g., for a = 10 and n = 5, 

for large a (or n) than for small. 

only for a < 4. 

P = .27 at of = &of and P = -51 at of = &,a%, as is evident in Table 3.5. 

In general, there seems to be no need for the data analyst to worry about the 
possibility of having 8; negative provided the number of classes is not too 
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small; having many classes is more important than having many observations 
per class. This is what one would expect: numerous classes are needed if one 
wants to estimate the class variance component with any degree of optimality. 
Three hundred observations on each of two classes is only giving information 
about two classes; it is better information on those classes than five observations 
on each of them would be, but it is still only two classes. 

-uii. Distribution ofestimators. The distributional result SSE/o; - &,- 1) 

in (6 1 ) gives 

by which notation is meant that 8; is distributed as a &-,,-variable multiplied 
by o z / [ a ( n  - l)]; more precisely a(n - l )MSE/a2 - In contrast, for 
8: = (MSA - MSE)/n, although MSA and MSE are each distributed as a 
multiple of a x 2 ,  and are independent, MSA - MSE is not distributed as a 
multiple of a x2.  Therefore neither is 8:. In fact 8: has no simple, closed form 
distribution. A somewhat complicated and more general form can be obtained 
from Fleiss (1971), and an alternative form based on the confluent hyper- 
geometric function is available in Robinson (1965). 

3.6. ANOVA ESTIMATION-UNBALANCED DATA 

The analysis of variance sums of squares for unbalanced data are 

and (75) 

these being the same as in (43) for balanced data, except for having ni in place 
of n, and with N = Cn,. 

Notation. In the right-most expressions of (75) two notational conventions 
have been adopted that will be used throughout: Ci and C f  represent C;, , and 
C$ 
a. Expected sums of squares 

As in Section 3.5a, we show details of two methods for deriving expected 
values of sums of squares. 

-i. A direct deriuation. The balanced data sums of squares in Section 3.5a-i 
were handled as sums of squares of deviations among means, similar to the 
first expression in (75). But unbalanced data sums of squares are sometimes 

respectively, and N is the total number of observations. 
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more tractable when expressed as linear combinations of crude sums of squares, 
as in the second expression of (75). 

Expected values of the three different terms in those expressions are now 
given. Derivation is, of course, based on exactly the same model as described 
in Section 3.1, making particular use of the results in ( 12)-( 15), such as E ( a i )  = 0, 
E ( a ; )  = 0." and E ( a , a i . )  = Ofor i # i ' ;  and E(e , , )  = 0, E(e$ = a;, E(ei ,e i , ,+)  = 0 
unless i = i' and j = j ' ,  and E(a,e,,, .) = 0. Thus we have 

E ( N j ? )  = N E ( p  + X , n , a , / N  + e..)' 

Xin:a:  + xx n,ni.aia,. 

N 2  

Z,X,e: j  + XZ XX eiJeislv 

N 2  
i # i ' j  # j '  + i # i' 

2pXi ni a,  
N 

2X , n,  i?,. a,  
N 

+- + 2p2.. + 
NXiX,G,2 + o + o + o + o  N X , n : o t  

N 2  N 2  
= N p 2  + + 0 +  

= N p 2  + 0.' X , n : / N  + a,? . 
Similarly 

E ( X i n i j $ )  = X i n i E ( p  + a,  + 2i.)2 = N p 2  + Nu: + aa,? 

and 

E ( X i X , y ; )  = & X , E ( p  + a,  + ei,)2 = N p 2  + NcrZ + N a z  

Using these in (75)  gives 

E(SSA) = ( N  - X,nZ/N)aZ + (a - 1)az (77)  

and 

E(SSE) = ( N  - a)a,? . 

-ii. Using the matrix formulation. I t  is not difficult to confirm that the 
expressions in (75)  are equivalent to 

SSA = y'A,y for A ,  = { d J n , }  - J N  (79)  

SSE = y'A2y for A2 = I N  - { d  J n , }  

and 

(80) 

where the { d } notation for block diagonal matrices is as described in Appendix 
M.3. That (79)  is a generalization of (47), from balanced to unbalanced data, 
can be noted; i.e., ( 4 7 )  is (79)  with n, = n V i. 

With 

Y ( I N p ,  = { d  + O:lfl,>) (81) 
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from (30) and (31). we now use (79) and (81) in Theorem S1, just as in (45), 
to derive the expected value of SSA as 

E(SSA) = E(y'A,y) = tr(A,V) + E(y')A,E(y) 

= fr[({d J n , }  - J N ) { d  OXJn, + O,'rnl>l + plk({d Jn,> - J N ) l N p  * 

Recalling that 1'Ql for any Q is the sum of all elements of Q gives 

E(SSA)  = Jtl,Jn,} - tr(JN{d J~ l} ) l  

just as in (77). Similar manipulations yield 

E(SSE) = tr(A,V) + p l ~ A , l , p  = ( N  - a)o,', 

as in (78). These derivations, although appearing tedious, involve methods that 
are very useful in more complicated models. 

b. ANOVA estimators 
Using exactly the same reasoning that led from (50) and (51 ) to the estimation 

equations (52) and (53) for balanced data, of equating sums of squares in their 
expected values, gives 

8; + ( a  - 1)s: and SSE = ( N  - a)&,' 

for unbalanced data. Therefore 

r3: = MSE 

and 

are the ANOVA estimators for unbalanced data. They do, of course, reduce to 
those for balanced data (n, = n V i )  in (54) and ( 5 5 ) .  

Example 1 (continued). The data of Example 2 are in Table 3.2. They and 
calculation of SSA and SSE are shown in Table 3.6, from which the analysis 
of variance table is shown in Table 3.7. 

The estimation equations (82) and (83) give 

S,' = 108/6 = 18 (84) 
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TABLE 3.6. DATA OF TABLE 3.2 AND ANOVA CALCULATIONS 

YU 

i = l  i = 2  i = 3  

3 1 1  4 SSA=3(6-8)2+4(12-8)2+2(3-8)2= 126 
3 13 2 

12 17 
- - 7 -  S S E = 2 ( 3 ’ ) + 6 ’ + 2 ( l 2 + 5 ’ ) + 2 ( 1 ’ ) =  108 

6 y.. = 72 YI.  - 18 9 - 
4 3 4 2 N = 9  
Y I .  6 12 3 j.. = 8 N - Zin:/N = 9 - (3’ + 4* + 2’)/9 = 

TABLE 3.7. 1-WAY CLASSIFICATION, UNBALANCED DATA (TABLE 3.2) 

Expected Value of 
Source of Sum of Squares 
Variation d.f. Sum of Squares Under a Random Model 

Classes a - 1 = 2  SSA = 126 0.: + 26: 

Residual N - a = 6 SSE = 108 66: 

Total N - 1 = 8 SST, = 234 

and 

63 - 18 
d: = = 15%. 

(52/9)/2 

c. Negative estimates 
Data being unbalanced does not eliminate the possibility of obtaining a 

negative A N O V A  estimate for u.”. As illustration, suppose in the example of 
Table 3.6 that the data for i = 2 are 2, 2, 37 and 7 instead of 1 1 ,  13, 17 and 7. 
The values of n2,  N, j 2 .  and j.. are unchanged so that SSA is also unchanged. 
But SSE is then 108 - 2( 1’ + 5 ’ )  + ( lo2 + lo2 + 25’ + S 2 )  = 906. Hence, with 
that replacing 108 in Table 3.7, 

63 - 90616 
8: = =-*. 

52/18 

As with balanced data, there is nothing inherent in the A N O V A  method of 
estimation that prevents the possibility of such negativity. Mathew et al. (1991 b) 
consider non-negative estimators from unbalanced data for models that have 
two variance components, of which the 1-way classification is a special case. 
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d. Normality assumptions 
Similar to (58) but now using V of (81), the normality assumptions are 

and 

Y ry “ P I N ,  = { d  o:Jfl, + ofln,)l (86) 

4. x2-distributions of sums of squares. As is usual, the basis for considering 

(87) 

(88) 

Therefore, since A,V/af is idempotent, SSE/of has a x2-distribution with 
degrees of freedom r(A2) = tr(A,) = N - a; i.e., 

x 2  properties is Theorem S2 summarized in (59). For SSE = y’A, y of (80), 

= ( I N  - { d  Jf l , ) ){d a:Jfl, + oflfl,> 

= o f { d  I,, - Jn , }  = OfAz . 
J n , - J n , J n ~ )  + o f { d l f l , - J f l ( )  

SSE/af - x i - a .  (89) 

= ( { d  Jfl,> - J N ) { d  f oflfl,> (90) 

= o:({d Jfl,} - I N { r  n i lk , ) /N)  + .:({d Jfl,} - JN)  * 

We begin similarly for SSA = y’A,y of (79): 

= O:({d Jfl,Jflt) - ’N{d Jn,}) + a:({dJn,) - J M )  

(91 1 
Inspection of (A,V)’ using (91) reveals that in general neither A,V nor any 
multiple of it is idempotent; it is if n, = n V i, or of = 0. Therefore neither SSA 
nor a multiple of it has a x’-distribution. This is in sharp contrast to the 
balanced data situation where n, = n V i reduces (91) to 

A1V = o:(I, 8 Jn - l a n l b n / a )  + of(I, 8 J, - Jan) 

= ~ : ( 4  8 Jn - Ja @ Jn) + of(Ia @ Jn - J, 8 Jn) 

= (no: + of)C(I. - J,) 8 &I; (92) 
and so for balanced data A,V/(no,2 + of) = [(I, - J,) 8 5.1 which is 
idempotent, so yielding the xz result in (60). SSA not having a x2-distribution 
in the random model with unbalanced data is also in sharp contrast to the 
fixed effects model with unbalanced data. In that case, under the hypothesis 
H: a,s all equal, one effectively has a: as zero in (91) and so then A,V/ot  = 
{ d J n l }  - jN, which is idempotent. Hence SSA/aZ has a x 2  (non-central) 
distribution-as is well known. But with unbalanced data, for u: # 0, there is 
no xz-distribution associated with SSA. 

4. Independence of sums of squares. Despite SSA not having a X2-density, 
SSA and SSE are independent, just as in both the random model, balanced 
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data case, and in the fixed effects model with either balanced or unbalanced 
data. Using (79), (80) and (86) in (62) gives 

A I V A Z  = [O,?({d Jn,} - lN{rnilhl}/N) + O f ( { d  J f l , }  - J h ’ ) ] [ I N  - { d  J n , } l  
(93) 

= O;({d Jfll - J f l , J f l , }  - l N { r  - ni1ht1flI1hl/ni}/N) 

+ O:({d J f l ,  - - 3, + 1 N { r  nilh,/ni}/N) 

= 0,?(0 - 0) + o:(O - JN + J N )  

= O .  (94) 

Therefore, with y having been assumed normally distributed, SSA and SSE 

-iii. Sampling variances ofestimators. Two of the three results are easy. 

are independent. 

First, because SSE/a: - xi-a, 

(95) 
2a4 

var(8:) = var( MSE) = C . 
N - a  

Second, using (82) and (83), 

COV(MSA - MSE, MSE) 
COV(6,2, 8: )  = 

( N  - Zin:/N)/(a - 1 )  
4 - 2u, 

(96) - -- 
( N  - a)(N - ZinZ/N)/(a - 1 )  * 

On writing 

(97) 
MSA - MSE N - Zn:/N. 

8: = for nu = 
nu a - 1  

and 

A ,  A2 nU8: = y’By for B = - - - 
a - 1  N - a ’  

the tedious derivation is obtaining var(8:) from Theorem S4, that 

y - N(p,  V)=~var(y’By) = 2 tr(BV)’ + 4p’BVBp . (99) 
In using B of (98) in (99) we find, with E(y) = p = plN of (83), that p’B is null, 
because it is a linear combination of l ’A,  and 1’A2, each of which, from (79) 
and (80), is null. Therefore (99) becomes 

= 2[ tr(A,V)’ + tr(A,V)’] 
(a - 1)’ ( N  - a)2 
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because A ,  VA, = 0, as in (94). Hence from (91 ) and (88) 

After considerable usage (left to the reader as Exercise 3.12) of the algebra 
of 1, J and J as in Appendix M.l, the ultimate simplification of (101) is 

2N 
var(8:) = 

(N2 - C,n:)  

N(N - l)(a - I )  
a: + 2a3a,2 

(N - a)(N2 - q n : )  

N(N2 - Cn?) a:]. 
N2Zin: + (Gin:)' - 2NZin: + 

Crump (1951) was the first to derive this result; it occurs again in Searle (1956) 
with 2a;a: erroneously shown as afa:, and is correct in Searle (1971). An 
extension of (102) to the rth cumulant is developed by Singh (1989). and 
Chatterjeeand Das( 19d3)develop best asymptotical normal (BAN)estimators. 

-iv. The effect of unbalancedness on sampling variances. A question of 
long-standing interest is to what extent does unbalancedness of data affect the 
minimum variance properties (Section 2.3b-iii) of the ANOVA estimators? At 
first thought one might expect that a satisfactory method of answering this 
question would be to study the behavior of the sampling variances of, and 
covariance between, 8: and d:, for different degrees of unbalancedness, i.e., for 
different sets of n,-values for given N and a. 

This is easy for var(df) and cov(d:, a:), since each is just a multiple of a:. 
Clearly, var(8:) of (95) for given N and a is unaffected by unbalancedness; and 
cov(d:, df) of (96) is affected only to the extent that C,n: is. And since Zinf 
for Cini = N and ni 2 1 is at its maximum for one n, being N - (a - I )  and 
the others being unity, and is at its minimum for all n, being the same (or as 
nearly so as every n, being an integer will allow), we see that cov(d,2,d,2) 
increases, numerically, as the degree of unbalancedness increases; or, put the 
other way, the closer that data are to being balanced, the smaller (numerically) 
is that covariance. 

Unfortunately, the behavior of var(8:) of ( 102) is not monotonic for changes 
in the n,-values, given N and a. The coefficients of a,' and of ofaf  each increase 
as unbalancedness increases, but this is not the case for the coefficient of a: in 
(102). For example, with N = 25 and a = 5, the last term of (102) is 1.1066a: 
for the mi king 1, t, f , f f  am& kf, wiremas it is .7%3d fur the more mrbrrlmxd 
data case of the ni being 1, 1, 1, 1 and 21. A consequence of this is that, after 
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TABLE 3.8. EXAMPLES OF Vaf(d:) OF (102) 
FOR N = 25, a = 5 AND af = 1 

n,-Values .25 .5 1 10 

1, 1, 1, 11, 11 .14 .41 1.374 113 
1, 1, 1, 1,21 .20 .49 1.370 85 

expressing var(8:) as 0: multiplying a quadratic in T = u,2/0,2, it will be found 
that var(6:) for some values of T increases as between the first of these sets 
of n,-values and the second, and it decreases for other values of T. Examples 
are shown in Table 3.8. Thus, for some values of T, var(8:) increases as 
unbalancedness increases, and for other values it decreases. 

The value of T at which var(8:) changes from increasing to decreasing as 
unbalancedness increases is, of course, not the same for all situations, but 
depends in no simple way on N, a and the n,-values. 

-u. F-statistics. The ratio F = MSA/MSE can, of course, be calculated. 
In the fixed effects model F has a non-central 9-distribution. In the random 
model with balanced data F is distributed as a multiple of an @-distribution- 
see (73). But in the random model with unbalanced data F does not have even 
a multiple of an @-distribution when 0; > 0. This is because, even though 
MSA and MSE are independent with of being non-zero, MSA is then not 
distributed as a multiple of a 1'. Nevertheless, on defining 

and 
2 F* = '(') for = w, ( j , .  - ,) W1 Yi .  . 

( a  - 1)MSE 1- 1 

it is shown in Wald (1940) that F* - 9"- N - a .  Moreover, 0," = 0 simplifies F* 
to be F = MSA/MSE, thus providing F as a test statistic for H: 0," = 0, even 
though F is not distributed as an 9-variable when 0,' > 0. [In concert with 

when a,' = 0.1 Spjetvoll(l967) suggests that this test is nearly optimal for large 
values of T, and Westfall (1988, 1989) and LaMotte et al. (1988) have made 
comparisons of this test with other exact tests. A summary of these results is 
shown in Table 3.9. A further test, which is locally best, invariant, and unbiased 
is developed by Das and Sinha (1987). They also consider both other models 
and robustness. 

-ui. Confidence interuuls. Because SSE/aZ - x i - a ,  a confidence interval 
on u,2 is easily derived in the same manner as for balanced data, in Section 

F* - 9"- N - a  when 0.' = 0, it can also be shown from (91) that SSA - u , ' ~ : - ~  
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TABLE 3.9. F-DISTRIBUTIONS AND F-TESTS IN THE I - W A Y  CLASSIFICATION 

Balanced Unbalanced Balanced and 
Model Data Data Unbalanced Data 

Fixed' F - 9 ' [ a  - 1, a(n - 1). A ]  F - 9 ' ( u  - 1, N - a, A )  F tests H: 
a,s all equal2 

Random -- 1, F* - sa-' N - a  F tests H: u: = O3 
F 

I + ?  

I P(., ., .) represcnts the non-central 9 distribution: see Appendix S.4. 
* Putting all a,s equal reduces A to zero. 
'ui = 0 reduces both F/(1 + T) and F* to F. 

3.5d-v, namely 

But because there is no readily tractable density function, no algebraic confidence 
interval is available for u.'. There is, however, a variety of approximate intervals, 
which are fully reviewed by Burdick and Graybill ( 1988). The 1 - a approximate 
interval that they say performs well is one developed by Burdick and Eickman 
(1986), based on the following parade of definitions. 
9; is a random variable having an 9-distribution with numerator and 

denominator degrees of freedom n and d, respectively. $;(a) is the point on 
the real line beyond which there is an area a in the distribution of St;; i.e. 

Pr{4r: > F : ( a ) }  = a . 
For all + all = a = a12 + a22, which provides two opportunities for dividing 
the a probability level into two pieces, define 

fl = CJ-Yall), f 2  = 9:(21)(%2), 

f3 = 9 % - ' ( 1  - a21), f4 = F5;!1)(1 - ~ 2 2 ) .  

m = min{n,}, M = max{n,} k = [&(l/n,)]-' 

w,. - w , . / a ) 2  MSA, = 

MSA, 1 , u = - - -  MSA, 1 L = - - -  

a - 1  
9 

f2MSE m f4MSE M ' 

Then, 

= l - a .  
kL( MSA,) kU( MSA,)} 

G o a  G 
fd1 + kU) 
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An  exact confidence interval for t = u,'/ut is proposed by Wald (1940), 
based on his F* shown in the title to Table 3.9. Because F* - S i Z ' , ,  a 1 - a 
confidence interval for F* is 

F ,  6 6 Fu, 
( a  - 1)MSE 

where h ( r )  is the numerator of F* and FL and F ,  are lower and upper limits 
ofthe9i21, distribution, respectively, similar to their definition used in Table 3.4. 

Wald ( 1940) shows that h(t) decreases as t increases. Therefore the confidence 
limits on t, say t! and ~ 8 ,  are based on the solutions to 

h(tL) = [ ( u  - l)MSE]FU and h ( t u )  = [ ( a  - l)MSE]F,. 

Because h ( t )  is decreasing in t, with h(0) = MSA/MSE and h(m)  = 0 (as may 
be easily verified), there may be no solutions to either or both of these equations 
when h(0) is less than F ,  or F , .  When that occurs, the corresponding limit for 
t, namely tt and tf, respectively, is taken as zero. Thus, in summary, a 1 - a 
confidence interval for t is (t:, tt), where 

T L  whenh(0) > F,, 

0 otherwise, 
t? = 

and 

t, when h ( 0 )  > F,, 
0 otherwise. 

tt = 

The corresponding confidence interval for p = u: /(u: + a:) is 

A broad review of inference procedures for p is given by Donner ( 1986), including 
much of what is in Shoukri and Ward (1984). Confidence intervals in the 
unbalanced data case are considered by Burdick, Maqsood and Graybill ( 1986). 
They begin at the last line of Table 3.4 and extend Wald's (1940) methods and 
in doing so compare a variety of methods for deriving confidence intervals. 
Extension to the 2-way nested classification is considered in Burdick, Birch and 
Graybill ( 1986). 

3.7. MAXIMUM LIKELIHOOD ESTIMATION (MLE) 

Maximum likelihood estimation of variance components from data on a 
continuous variable is oftm confined to situations based on the normality 
assumptions. For unbalanced data, with 

Y - " P 1 N 9  v = { d  dJ"! + &,H, 
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the likelihood function is then defined as 

This is the same as the density function for y, usually denoted asf(y 1 p, V); i.e., 

L h V I Y )  E f ( Y l P , V ) .  

Although these two symbols represent exactly the same function, each is used 
in its own particular context. The notation f ( y  I it, V) is used when interest lies 
in the density of y, with p and V being treated as fixed. In contrast, L(p ,  V I y) 
is used when we want to emphasize that the same function, namely the right-hand 
side of (103), can also be viewed as a function of y and V for some given vector 
of data, y. This is the context in which (103) is used as a basis of maximum 
likelihood estimation of p and V, the MLE of V being V with ax and a: replaced 
by their MLEs. 

With V in (103) involving the form a1 + bJ that is discussed at the end of 
Section M.l ,  we get from that section 

',' J,,,)} and I V I = fi a:("!- ' ) (a :  + nia,2), v- '  = {d$(I",-  a: + nia,' i =  I 

leading to 

i =  1 

(104) 

Since parameter values maximizing L are equal to those maximizing its natural 
logarithm, and because log L, which we denote by I, is often a more tractable 
function than L, we deal with 

1 = log L = log[ L(p, v 1 y)] 

= - i N  log 211 - +( N - a )  log a,' - + X i  log(a: + nia,2) 

a. Balanced data 

4. Likelihood. 
so that it becomes 

Balanced data has ni = n V i. This greatly simplifies log L 

I = log L = - +N log 211 - +a(n - 1 )  log a: - +a[Iog(a,2 + na,2)] 

- x i x j ( Y i j  - P)* + n20,2xi(.Vi. - PI' 
20: 2a:(a,2 + no:) . 
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The last two terms can be rearranged so as to display SSA and SSE: 

- W , ( Y i ,  - PIZ + n2a,21:,(J,. - P I 2  
20," 2a,"(a," + na,2) 

= - - [ ~ , ~ , ( ~ , , - J , . + J ~ . - p ) Z -  1 na,2 

20," a," + na,2 

na,2 - - - - ! - [SSE+(l-  a," + nad ) zin(ji .  - J.. + j.. - P ) Z ]  
2a,2 

= --{SSE+ 1 a," [ s s A  + an(J.. - p ) ~ ] } .  
26," a," t na,2 

Notation. Because the MLE of a function of parameters is that same function 
of the MLEs of the parameters, we simplify notation by writing 

1 = a," + nat . (105) 

Then 1 becomes 

I = log L = - 4 j ~  log 271 - $a(n - 1) log a," 

SSE SSA an(j . .  -p) '  
-$a log1 - 2 - - - 

2a, 21 21 

-ii. ML equations and their solutions. The maximum likelihood equations 
are those equations obtained by equating to zero the partial derivatives of log L 
with respect to p, a," and 1: 

a1 an( j . .  - p )  
aP 1 
_ -  - 

3 

a, --- 
a(n - 1) 

SSA an(j.. - p ) z  
1-- + 

a ) 2A2 2A2 21 

dl -a(n- 1)  SSE -a(n- 1) 

80: 26: 202 2a,4 

a1 - a  SSA an(j , .  - p)' - -a ( _ -  -- +?+ an 21 21 

-- - +-= 

(107) 

In equating these partial derivatives to zero we change the parameter symbols 
p, a," and A to be the symbols fi, 8," and 1 representing solutions to those 
equations, and from the form of the derivatives get those solutions as 

and 
A - 6," ( 1  - l /a)MSA - MSE +-= 

n n 
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These are the solutions to the maximum likelihood equations. But they are not 
necessarily the maximum likelihood estimators, even though L(fi, I y), which 
is identical to L(fi, d f ,  6,' I y), is the maximum of L(p,  of, o,' I y)  for variation 
in p, of and 0.". 

-iii. ML estimators. Denote the MLEs by j i ,  8: and 8,'. The reason that 
not all of fi, df and 6,' are j i ,  af and a,', respectively, is that all of f i ,  Sf and 
6,' do not always lie in the parameter space for p, of and 0,'. In particular, 6,' 
of (108) can be negative, and when it is it is not in the parameter space (0,oo) 
defined by o: being a variance and thus non-negative, i.e., 0 d o,' < a. Thus, 
in general, the solution 6,' will be the MLE 5,' only when it is non-negative. 
The very definition of maximum likelihood demands that the likelihood be 
maximized over the parameter space. Hence MLEs must be in the parameter 
space, which means Sf > 0 and a,' k 0. 

Fortunately, in the 1-way classification 6,' is the only one of the three ML 
solutions fi, df and d: that is not necessarily in the parameter space, which is, 
from the nature of the parameters, - 00 < p < 00, 0 < of < 00 and 0 d o,' < 00. 

We consider the solutions fi, df and 6,' in turn. First, f i  does not depend on 
df  or d,', and since f i  = J.. is clearly in the space of p it is the MLE of p :  

MLE(p) = j i  = f i  = 1.. . 
And df = MSE is in the parameter space for of, since MSE is never negative 
(and we exclude the naive case where yi, = j$. V i and j ,  which would give 
df = 0). But since d,' depends on d:, we must ensure not just that 5; is in the 
parameter space for 02 but that the pair of estimators (a;, 5,') is in the 2-space 
defined by (of, a,'). As a result, we find that there is a condition under which 
df = MSE is not the MLE of of. 

We now consider 62 and 8,' and invoke an argument similar to the original 
one of Herbach ( 1959) to derive ML estimators 6; and a,' from the ML solutions 
df and 6:. To do so, we consider of and 1 = of + no,', the latter in place of 
o,'. Then L is a positive function of positive parameters of and 1. It could be 
plotted in a 3-dimensional figure with L being the third dimension above the 
positive quadrant of the (of, I)-plane of Figure 3.2. 

Consider the line of = 1 shown in Figure 3.2. Since o,' 2 0 implies 1 = of + 
no: 2 of, and in Figure 3.2 all points for which 1 2 of are those on and below 
the 1 = crf line, this is the region of the figure in which the MLE point (x, 6') 
must lie. It is called the feusible region. Whenever (A ,  6:) is in that region, it is 
the MLE point. In other words, 

when 6: 2 0, 5,' = d: and 6; = df . (10% 

This leaves us needing the MLEs when 6: < 0, which is when A < d f ,  an 
example of which is shown in Figure 3.2. We argue by contradiction that when 
6: < 0, 5,' must equal zero. Therefore assume that 6,' < 0 but 5,' > 0, i.e., 
1 > d f .  We consider the two cases af < df and 8: 3 Sf separately. In the first 
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Feasible region 
A>of &a: > O  

* 
0 A 

Figure 3.2. The positive quadrant, for I ,  = u: t nu:, of the ( I , ,  u:)-plane, showing the 03 = I ,  line. 
the feasible region (that line and all points between it  and the I-axis) and a solution point ( A , & : )  
that is not in the feasible region. 

case 6: < d:, and from (107) we have, at the MLE, 

Therefore we can increase the log likelihood which, of course, is a function of 
i. and a:, by increasing a: from 6,' and leaving A at 1. This is a contradiction 
to 6: being the MLE. Now consider the second case, df 2 df, where 

( 110) 
The first inequality is the requirement that the MLEs be in the feasible region; 
the second inequality is our second case and the third inequality follows because 
t+i < 0. Now at the MLE, from (107) we have 

x 2 6: 3 d: > 1. 

< 0, from ( 1  10) . 
Hence we can increase the log likelihood by decreasing A from and leaving 
of at 6:. This is a contradiction to x being the MLE. Therefore we have 
contradicted the statement 6; > 0 when 6: -= 0, and so 6: must be zero; i.e., 
8; = 0 and, equivalently, 

Thus, in order to find the ML estimator of p and of a,' when 8: = 0, we 
must obtain them by maximizing log L subject to A = o;. This does not mean 
that we are taking 1 = of (and hence a; = 0) in the model, but that we are 

= Bf when d,2 -= 0. 
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simply going to maximize log Lconfined to the plane I = a,' in the 3-dimensional 
space (L, a:, A). Thus, on denoting the log likelihood when I = a,' as I ( ) .  = a,'), 
we find that putting I = a,' in (106) gives 

SSA + SSE an(J.. - c()~ 
! ( I  = a,') = -3N log 2a - i N  log a,' - - . (111) 

20: 20: 

Maximizing this with respect to C( and a,' leads to ji = p.. = fi and 

SSA + S S E  SST, - a; = -- 
N an 

= ( i  - ! ) M S E + -  l (  i - -  "I MSA. (a  - 1)MSA + a(n - 1)MSE - - 

= 6; + s: . 
< 6; . 

(113) 

16: < 01 

Note that 6: can never be sufficiently negative for ( 1  13) to be negative (because 
6,' = SST,/an and SST, is never negative). Thus when d: < 0, the MLEs are 
6: = 0 and 6,' = SST,/an. In summary, then, the MLEs are as follows: 

and 

Although this is certainly the correct way of stating the MLEs, we also state 
them in a manner that may well be more immediately readable for data analysts. 
This is because we state the data conditions first: 

if ( 1  - i ) M S A  2 MSE then 6: = 

(117) 
SST, 

if ( 1  - a) MSA < MSE then 6: = 0 and 6; = -, 
an 

the latter being 6: of (109). 
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Example. The balanced data of Table 3.1, with analysis of variance in Table 

3.3, have 

u = 3, SSA = 104, MSA = 52, 

n = 4, SSE = 828, MSE = 92, 

SST, = 932 . 
From (56) the ANOVA estimates are 

8f = MSE = 92 and 8: = (MSA - MSE)/n = f ( 5 2  - 92) = - 10 . 
The ML solutions of (108) are 

6f = MSE = 92 

and 

= 8: - MSA/an = - 10 - 13/3 = - 143. (1 18) 
Since 6: < 0, the MLEs are, from ( 115) 

6: = 0 and Bf = 6f + 6: = 92 - 143 = 773. 

-iu. Expected aalues and bias. E( MSE) = of and E( MSA) = no: + of 
so it is not difficult to derive 

1 
E(6f )  = af and E ( 6 : )  = 1 - -  a: --a:. ( I) an 

Thus the solution 6: is an unbiased estimator of af; and the solution 6: is a 
biased estimator of o:. 

Finding expected values of the ML estimators is more difficult because the 
form of the estimators depends on whether 6: is positive or negative. Thus the 
expectations depend on p of (74): 

p = Pr{6: < 0) 

= Pr{.F:(!;l) > (1 - l/a)(l + nT)} ( 119) 
for T = a,'/.:. 

First consider B f .  It is 6: with probability 1 - p and zero with probability 
p .  Hence its expectation is ( 1 - p ) E ( 6 :  16: 2 0). The expectation involved here, 
over only the non-negative part of the real line, is not easily derived because 
the density of 6: is not a tractable function. 

The expected value of 6; is no more tractable. Since Bf = MSE when 6: > 0 
and 5: = SST,/an when 6: < 0, and because 6: > 0 with probability 1 - p, 

E(B: )  = ( 1 - p ) E (  MSE 16: 2 0) + pE(SST, 16: < O)/an . (120) 
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Again these expectations, being conditional expectations over the non-negative 
part of the real line, in one case, and over the negative part in the other, are 
not tractable functions. 

-u. Sampling uuriunces. As a basis for comparison, we restate scalar results 
from (66), (69) and (71) as the sampling dispersion matrix of the ANOVA 
estimators: 

var[ :i]--[ MSE ]=20: 

MSA - MSE 

1 -1 
a(n - 1) 

an(n- 1) n 

an(n - 1) 
-1 A(%+&) 

(121 1 
And for the solutions of the maximum likelihood equations in (108) 

r MSE 1 
1 (1 - l/a)MSA - MSE 

n 

r i  - 1  1 

In both cases A2/a,4 = (1 + nr)2 for r = cr:/uf. 
The only difference between (121) and (122) is that in the (2,2) element of 

(122) the term in 1’/a: has denominator a2/ (a  - 1) whereas in (121) it has 
a - 1. And since a2/(a - 1) > a - 1, we have var(6:) < var(8:). 
To derive the asymptotic large-sample dispersion matrix for the MLEs, we 

need the negative of the expected value of the matrix of second derivatives of 
the likelihood (see Appendix S.7). Let lo denote d log L/d8 for some scalar 8; 
and similarly let lo, + denote al,/d$ for scalar $. Then from (107) 

and 

-a SSA an(7.. - p)2  

21 2L2 2A2 
I , = - + - +  

From this it is not difficult (Exercise 3.13) to obtain second derivatives, e.g., 
l,,,,, = -an/l, and the negative of their expected values, e.g., - E(1,J = an/l, 
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L I 

0 
' - I  

- 
an 

0 0 
an 
A 
- 

2af 
0 = o -  0 .  

a 2A2 

a(n - 1) = o -  
2at  a(n - 1) 

- 0 0 -  0 0 
2L a 

I I - 
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where 
1, = af + nib; 

as a generalization of (105). It is left to the reader as an exercise (see E 3.15) 
to simplify the last two terms of (128) so that it becomes 

(130) 
The simplification is easily derived using the identity (where r = crf/crf) 

4. M L  equations and their solutions. With aL,/daf = 1 and dl,/da; = n, 
we differentiate log L of ( 130) to get (using I ,  = d log L/dfl) 

and 

- ( N  - a )  1 SSE Wr. - P I 2  - +z,- + 4 + z, 
2af 4 20, 21: 

1,; = 9 

( 132a) 

( 132b) 

(132c) 

The ML equations are obtained by equating the right-hand sides of (132) 
to zero, after replacing the symbols p, crf and 1, by ri, 6f and A, = 6; + n,d:, 
respectively. Then 8,6f and 6; are the solutions to the ML equations. Carrying 
out this procedure with I ,  of (132a) gives 

nil , .  

(133) 
'i 6: + n.62 ' 0 -  ziji./vAr(ji.) 

'1 6: + nit+; 

- 
n, xiC1 / v ~ r ( j i s ) ~  ' 

This, i t  can be noted, is the same as GLSE(p) of (34) in Section 3.3, only with 
of and 0,' replaced by df and 6;; i.e., 

vAr(j,.) = 6: + 6;/tii . 
Derivation of 6,' and 6; comes from equating the right-hand sides of (132b) 

and (132c) to zero, so giving 
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and 

With A, = 6; + n#,' occurring in the denominators of the terms being summed 
(over i )  in these equations, there is clearly no analytic solution for the estimators; 
there is when the data are balanced, i.e. n, = n and A, = L V i. 

-iii. ML estimators. As with balanced data, solutions 4, b: and 6,' are 
ML estimators only if the triplet (ji, S,', 62) is in the 3-space of (p, a,', a,'). And 
in ensuring that this is achieved, the negativity problem raises its head again. 
For each data set, equations (134) and (135) have to be solved numerically, 
using some iterative method suited to the numerical solution of non-linear 
equations. After doing this, we derive the ML estimators as follows: 

when 6: 3 0, 

6,' =&:, 6,' =&,' and f i = f i ;  (136) 

6: = SST,/N, 6: = 0 and fi = j.. . (137) 

when 6,' < 0, 

In the latter case, when 6: < 0, the argument for having 6,' = 0 is essentially 
the same as with balanced data, whereupon it is left to the reader to show that 
log L reduces to being such that on equating its derivatives to zero one obtains 
6; = SST,/N, as in ( 1  15) for balanced data and f i  = j... (See E 3.16.) 

Having been derived by the method of maximum likelihood, the estimators 
in ( 136) and (137) are, as is well known, asymptotically normally distributed. 
Their relationship to a weighted least squares approach is considered by 
Chatterjee and Das (1983). 

The question might well be raised as to what to do if the numerical solution 
of (1 34) and ( 135) yields a negative value for 6;. Fortunately, it can be shown that 
L + 0 as a,' tends either to zero or to infinity, and so L must have a maximum 
at a positive value of a,'. (See E 3.21.) 

-iu. Bias. With balanced data we were able to specify p, the probability 
of the solution for 6; to the ML equations being negative-in (117). But 
with unbalanced data F = MSA/MSE does not have a distribution that is 
proportional to an F, so this probability cannot be easily specified. Moreover, 
although we know that 6,' = SST,/N with probability p; and the expected 
value of SST, is readily derived, the expected value of 8; when 6: < 0 cannot 
be easily derived. Thus, in general, the bias in the solutions obtained to (134) 
cannot be derived analytically. 

-1). Sampling uuriunces. Large-sample variances come from a matrix similar 
to (125), namely the inverse of the negative of the expected value of the Hessian 
(matrix of second derivatives) of log L with respect to p, af and a,'. Keeping 
in mind that, by definition, a,' > 0 (because if a,' = 0 the model and L change) 
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TABLE 3.10. SECOND DERIVATIVES OF log L AND THEIR EXPECTED VALUES 

Second Derivative of log L - (Expected Value) 

0 

0 

1 1 SSE ni(Yi.-  p )  2 N - a  

I t ;  a," 

N - a  
- 7 + t C , ,  

20, 
+ t C  ----C, 1; 1a:. e: = - 2 4  

89 

differentiating the three terms of (132) gives the derivatives and expected values 
shown in Table 3.10. 

The expected values are easily derived (E  3.17) utilizing 

E(j$.)  = jt  and E(j$.  - j t )2  = u,' + uf/nl 

Hence arraying these expected values in the matrix similar to (125) gives 

var 

Therefore 

ii 

a; 

a,' 

'y 

0 

and (see overleaf for D) 

- I  

(138) 
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for 
1 n; 2 N - a  n; 

D = -  tT: c i n ;  -+c i n :  -c ‘A; --(cis) 
These are the asymptotic (large-sample) variances-although var( p )  is also the 
exact variance of ji and of GLSE(p) of (34). 

Three points are worth noting. 

( A )  The terms in ( 139) reduce, for balanced data, to what one would expect, 
namely ( 126). 

(B) D in (139) can also be expressed as a:D = N & w ;  - ( X i w i ) 2  for 
wl = ni/Ai as used in Searle (1956). 

(C) The matrix in (139) can also be derived using the result from Searle 
(1970) that 

where var(y) = V and there are r + 1 variance components in the 
model, ui = of and 0: for i = 1 ,..., r. 

Establishing ( A )  and (B) is left to the reader in E 3.18; and (C) is derived 
in Section 1 I .  1 e-ii. 

3.8. RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION (REML) 

An adaptation of ML is to maximize just that part of the likelihood that is 
said to be location invariant. [The reader interested in invariance more generally 
will find a good discussion of it in Casella and Berger (1990).] In terms of the 
1-way classification this means maximizing that part of the likelihood that does 
not involve p. It is an idea that seems to have had its genesis in Anderson and 
Bancroft (1952, p. 320) and was later extended by W.A. Thompson (1962) and 
generalized by Patterson and R. Thompson (1971). We discuss REML in some 
generality in Chapter 6, but here just demonstrate its applicability to the 1-way 
classification, random model. 

We can note in passing a characteristic of REML estimation that is often 
considered to be one of its merits: it is a maximum likelihood method that, 
even though it is not concerned with estimating fixed effects, does take into 
account the degrees of freedom associated with the fixed effects of the model. 
(REML estimation is also an example of marginal likelihood estimation 
discussed in Chapter 9.) An elementary example of this is the case of estimating 
the variance from a simple sample of n independent observations distributed 
N ( p ,  a2). If x1 ,..., x, are those data then 

n - 1  n 
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are two well-known estimators of a2, The first, d2, is unbiased; the second, d2, 
is the ML estimator under normality. But d2 is also the REML estimator; and 
we see that it has taken into account the single degree of freedom needed for 
estimating p. (See E 3.19.) 

a. Balanced data 

4. Likelihood. For balanced data this restricted likelihood (as it is called 
nowadays) is easily derived. In doing so, we utilise the L ( - l . )  notation of (104) 
to provide clarification of different parts of the likelihood, the starting point of 
which is 

exp{ - I[t + 1 

as reconstituted from log L of (106). Observe that since 1.. is independent of 
both SSE and SSA, the likelihood of the precedingexpression can be factored as 

U p ,  a,', 0.' I Y) = L ( p  I j..)L(a,', 0.' I SSA, SSE), 

11, 1 SSE SSA ( J . . -p) '  + 
Ifan 

L(p,  a,', a: I y)  = (2n) tan  2 I f d n -  1 ) l ~ f a  at. 

where L ( p  I j . . )  is the likelihood of p given J.., namely 

and 
1 SSE SSA 

L(a,'va,' ISSEy ''A) = (2n)+(an-1) exp[ - 2 2[+a(n- (z l ) lA+(o-  + ?)I 1) (an ) f (141 1 
a, 

is the likelihood function of a,' and a,' given SSA and SSE. Note also that (141) 
can be expressed as 

(142) 

showing the marginal likelihood relationship. This, for the 1-way classification 
with balanced data, is known as the restricted likelihood, or sometimes as the 
marginal likelihood, the latter by analogy with the concept of marginal density 
functions. 

ii. REML equations and their solutions. REML estimation consists of 
obtaining estimators for a: and a,' that maximize (141) within the parameter 
space a: > 0 and a,' 2 0. Denote the logarithm of that function by 1,: 

L(a,', a,' I SSE, SSA) = L(p,  a:, a,' 1 y)  dp s 

lR = log L(a,', a,' 1 SSE, SSA) 
= - + ( a n -  1)Iog2n-+Iogan-+a(n-  l)loga,2 

SSE SSA 

2a,2 2). 
- + ( a -  ~ ) l o g j . - - - - .  (143) 
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The derivatives of this are 

- a ( n -  1) SSE +- 
2af 

1R,@; = 
2af 

c 3.8 1 

(144) 

and 

- (a  - 1) + SSA - 
21 2A2 * 

IR. A = 

Equating these to zero and replacing af and 1 by the solutions df, , and A,, 
we get those solutions as being 1, = SSA/(a - 1 )  = MSA and 

1 
a ( n -  1) n 

= MSE; and thus 6:. = - (MSA - MSE) . (145) 
SSE sf,, = 

These are the REML solutions. 

4i. REML esrimurors. Similar to the situation with ML, the preceding 
REML solutions are REML estimators only when both are non-negative. Sf, , 
can never be negative, but d:,, can be, whereupon we have to maximize 1, 
subject to d:,, = 0, which leads to df ,  , then being SST,/(an - 1). Thus the 
REML estimators are 

1 
n 

when d:, 0, Zf, = MSE and a:, = -( MSA - MSE); 

( 146) SST, 
an - 1 

when s:,, < 0, Zf,, = - and Z:,, = O .  

-iu. Comparison wirh ANOVA and ML. Comparing df, , and d:, ,, of ( 145) 
with the ANOVA estimators in (54) and (55 ) .  we see that they are the same; 
i.e., that solutions of the REML equations are the ANOVA estimators. This 
result is, in fact, true generally for all cases of balanced data (see Section 6.7f). 

Comparing the REML estimators of (146) with the ML estimators of ( 1  14) 
and ( 115), we see that the condition for a negative solution for a: is not quite 
the same in the two cases: in REML it is MSA < MSE, whereas in ML it is 
(1 - l/a)MSA < MSE; and the positive estimator is similarly slightly different: 
(MSA - MSE)/n in REML but [( 1 - l/a)MSA - MSE]/n in ML. Also, when 
there is a negative solution for a:, the resulting estimator of af is not the same 
in the two cases: SST,/(an - 1 )  in REML but SST,/an in ML. Each of these 
differences has a common feature: that with REML we see SSA being divided 
by a - 1 where it is divided by a in ML; and in REML the divisor of SST, is 
an - 1 whereas it is an in ML. In both instances the REML divisor is one less 
than the ML divisor. In this way REML is taking account of the degree of 
freedom that gets utilized in estimating p-even though REML does not 
explicitly involve the estimation of p, Nevertheless, it is a general feature of 
REML estimation of variance components from balanced data that degrees of 
freedom for fixed effects get taken into account. 
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In many applications r = o,'/of is at least as useful a parameter as a,' or 
of. Under ANOVA estimation its estimator would be (F - I ) /n for F = MSA/ 
MSE; under REML estimation it would be the positive part of this; and under 
ML it would be the positive part of [( I - l/a)F - 1]/n. Loh (1986) considers 
the admissability of these estimators and suggests that an improvement is the 
positive part of 

-u. Bias. What has just been said about REML might lead one to surmise 
that REML estimators are unbiased. They are not. The same need for 
non-negative estimates arises as with ML estimation. Similar to ( 1  19) we define, 
for balanced data 

pR = Pr { d,', < 0) = Pr { MSA < MSE} 

= Pt{4tj'!;l) > 1 + n ~ } ,  (147) 

akin to (1  19). Then, based on (146), the expected value of Jf, is 

E(df, R)  = (1 - pR)E(MSE I 6:. R 2 0) + pRE(SST, Id,', R < O)/(an - 1) . 
(148) 

-oi. Sampling oariances. Based on the derivatives in (144), we can easily 
find the large-sample dispersion matrix, 

which leads to exactly the same results as in (121). And something comparable 
but not very different from (127) could be derived if deemed worthwhile. 

b. Unbalanced data 
As in (104), the likelihood function for unbalanced data is 

(2n)*No,2[*"-a)I n (a: + n,o,')* 
I =  1 

There is no straightforward factoring of this likelihood that permits separating 
out a function of p in the manner of (140) for balanced data. Nevertheless, 
equations for REML estimators can be established-as a special case of the 
equations for the general case. This is left until Chapter 6. 

For the I-way classification, random model, with unbalanced data, Westfall 
(1987) makes numerical and analytical comparisons of a variety of estimators: 
ANOVA, ML, REML and several forms of MINQUE (see Chapter 11). For 
a few small designs, Khatree and Gill (1988) make similar comparisons and 
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conclude that for estimating of REML seems to be the favored method, whereas 
for at it is ANOVA; and for simultaneous estimation of 0,” and gf ML is 
favored. MINQUE(O), a variant of MINQUE (see Chapter 1 l ) ,  seems to be 
the worst of the methods compared. 

3.9. BAYES ESTIMATION 

A brief introduction to the basic ideas of Bayes estimation is given in Appendix 
S.6. The salient result is the one labeled (3) there. It states that n(Oly), the 
posterior density for the parameter 8 that occurs in the density function f(y 18) 
for the random variable y representing the data, is 

a(@ is the prior density of 8 and R,  is the range of possible values of 8. All 
these terms are briefly described in Appendix S.6. 

a. A simple example 

usual unbiased estimator is 
From x = [xl ,. . . , xn]’ - N ( p 1 ,  021) we consider the estimation of u2. The 

n c (Xi - X)2 
(n -  l )s2 

, with X n - 1  
s2 = i = l  

n - 1  g2 

It is also well known that the ML estimator is 

Define 

m = n - 1 .  (152) 

Then from ( 150) 

For Bayes estimation we need a prior distribution (see Appendix S.6), for 
c2, for which we will use inverted gamma distribution. This is a common choice 
in estimating variances of normal distributions, not only because it is quite 
realistic for a positive random variable, but also because it leads to a tractable 
form for the resulting posterior density (Appendix S.6b). The general form of 
the inverted gamma density is 
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with 

(155) 
1 

( a  - I)'(a - 2 ) b 2  ' 
and var(x) = 

1 
E(x)  = - 

( a -  I)b 

Weusethiswitha = 2andb = 1 asthepriorfora2:i.e.,from(154)and(155) 

n(a2 )  = ( O ~ ) - ~ ~ - I / ~ ' ;  with E(a2) = 1 and var(02) = cg , (156) 

Because var(02) = 00, the prior density in (156) is imparting rather vague 
information. It is chosen for its apparent lack ofsubjectivity and its mathematical 
tractability. 

As described in Section S.6, we need the posterior density of a', which on 
using (149) is 

Its numerator is 

And the denominator of (157) is 

To carry out the integration, make the transformation 

fms' + 1 

a2 

This gives 



96 THE 1-WAY CLASSIFICATION C3.91 

for 

1 
ims’ + 1 

a = 2 + 3 m  and b =  

Thus (161) is (154) with a and b of (162). Hence the posterior distribution (161) 
is an inverted gamma distribution, the same form of density as is the prior, in 
this case (156) with a = 2 and b = 1. This is a defining property of what is 
called a conjugate prior: it leads to a posterior density that is in the same family 
of densities as is the prior. In this case both are inverted gamma densities. 

Comparing (161) with (154) and thus using (162) in (155) gives the mean 
of the conditional variable a2 I s2 as 

)ms2 + 1 - (n - 1)s’ + 2 - - 1 
E(a2 1 s2)  = - - 

( a -  l ) b  +m+ 1 n + l  

=L(l-;J2+---(1)=- 2 n 2 
6’ + - E(aZ), (163) 

n + l  n +  1 n + l  

where dZ is the ML estimator from (151), and E ( d )  = 1 is the expected value 
of a2 from n( a’) of ( 156). This weighted averaging is similar to ( 13) of Section S.6. 

Similarly, ( 162) and ( 155) also yield 

var(02 I s2)  = 
2(ms2 + 2)’ 

m(m + 2)’ * 

On choosing to use E(a2 I s2) of (163) as a Bayes estimator, call it d;, we 
could derive its mean and variance in the usual (classical) manner. Thus with 

(n - 1)s’ + 2 

n + l  
8; = E(  a2 I s2) = 

from (163), and E ( s 2 )  = a’ and var(s2) = 2a4/(n - l), it is clear that 

(n - l ) a2  + 2 2(n - l)a4 
E ( 8 ; )  = and var(8;) = 

n + l  ( n  + 112 

In comparing 8; and s2 we find that c?: has bias - 2( a2 - 1 )/( n - 1 ) whereas 
s2 is unbiased; and 

2(n-  l)a4 2a4 
( n + 1 ) 2  n - 1  

var (8;)  = < - = var(s2). 

Since 8; is biased, a better comparison than that of variances is to compare 
mean square errors: variance plus squared bias. 

4(a2 - - 2[(n + i)a4 - 40’ + 21 MSE(c?;) = var(8;) + - 
( n  + 1)’ ( n  + , 
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and, because s2 is unbiased, 

204 
M S E ( S ~ )  = var(s2) = - . 

n - 1  

Therefore, d i  has smaller MSE than s1 when 

(n - 1)[(n + l)04 - 40’ + 23 - (n + 1 ) 2 ~ 4  < 0; 

i.e., when 

which certainly occurs whenever d > 3. 
b. The 1-way classification, random model 

From (la), the likelihood is (with 1, = of + n,af) 

Notice that 

. -  - - _. 
Thecross-product term from ( 164) disappearsin (165) because k,$,(y,, - j , .)  = 
0; and (166) comes from (165) by the definition of SSE and through 
1, = of + np;. Thus, from (166), writing it as a density in the manner following 
(104), 

The density in (167) has three parameters: p, of and of. Using it in Bayes 
estimation would require a prior, n(p, o:, of), on all three parameters. Then we 
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would, in the manner of (149), develop a posterior density 

where 

f ( Y ,  H 02 0.2) = f(Y lp, 0,2, d ) n ( p ,  0,2, 0.2). 

just as was done for 0’ in (157). This expression is customarily utilized with 
prior densities of the form 

n(p, a:, 0.2) = n(p)n(o,Z, 0.21, (168) 

thus assuming that p is independent of 0: and 0,’. We then proceed in stages. 
First, use n(p) to derive 

f(Y I a:, 0,’) = s / ( Y  IP, 0,2,a,’)n(P) dp; (169) 

second, obtain the posterior distribution of 0: and 0.2 using 

In the absence of any good prior information on a location parameter such 
as p, we use the non-informative prior ~ ( p )  = 1. Then the integration in (169) 
requires “completing the square” for the quadratic in p that occurs in (167). 
That quadratic is, using f I  = n , / i , ,  

ni n i j i .  nij? 

’ 4 4 x i  .i’ji.3T P I ’  = P z c . - - 2 / 1 c i - + + i -  3. 

Therefore the integration ( 169) becomes 
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Hence using ( 167) in ( 169) and then (171 ) gives 

f ( Y  Io02,d = ,,fIt(N - 4 1  a 

exp( - SSE/2oz) exp[ - )Ziti(ji. - Zitiji./Xiti)2](2n)*(Ziti)-+ - 
(27r)tN n (0 ;  + nib:)+ 

i= 1 

(172) 

Clearly, this is not very tractable. Nevertheless, it is the likelihood, ,!,(a;, a: 1 y), 
and for maximum likelihood estimation of of and 0,' one could use numerical 
maximization. However, because of the implicit intractability of ( 172) we turn 
to balanced data. 

c. Balanced data 

ti = n/i . .  Then (172) reduces to 
Balanced data have ni = n V i ,  whereupon each Li = 1 = of + no: and 

exp( - SSE/2a;) exp[ - i ( n / j . ) Z i ( j i .  - 1..)21 (2n)f(an/1)-f  
a p c l ( n  - 1 )I (2?r)+Nl.+" 

- exp( - SSE/2o;) exp( - SSA/21) 1 I 

a;I+dn- 1)1 j.+(a- 1) (2n)*(an- 1) (an)+' 

f ( Y  I d ,  0: )  = 

(173) 

which is the same as the restricted likelihood function in (141). Thus (173) is, 
on replacing i. by a; + no:, 

- 

( 174) 4) = of I+dn-  1)1(o,2 + n o : ) + ( a -  1)(2n)+(an- I ) ( a n ) +  * 

Equation (174) must now be used in (170), which also requires specifying 
the prior, n(o;, a:). And (174) is both used in the numerator of ( 170), and has 
to be integrated in the denominator of ( 170). All this is not at all tractable. Hill 
(1965) tried all manner of approaches to simplify the process, for he had no 
computing facilities of today's power. Fortunately, on many occasions one does 
not really need to consider the denominator of (170). I t  is just a function of y 
and so, given y, is effectively a constant. Therefore the numerator of (170) 
commands attention. That requires looking at (174) and at the same time 
ascertaining if we can have a prior density n(o,Z, 0 3 )  that is both realistic and 
tractable. 

The right-hand side of (174) looks a little like a product of inverted 
gammas-except that the ranges of of and op2 + no: are connected through 
of + na: never being less than a;. That makes for complications. For n(o;, 0.' 

one possibility is a product of inverted gammas defined in (154): 

exp( - SSE/2o:) exp[ - $3A/(o,2 + naf)] 
f(Y I 

(I75 

foraconstant kthatisafunctionofc,b,pandqsuch thatfn(a;, o:)da: do: = 1. 
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Then, on substituting (174) and (175) into (170), and ignoring terms that 
are not functions of a: and a,”, the log of the numerator of (170) is 

SSE a(n- 1 )  SSA a -  1 
logo,---- log 1 log f(y, a:, a,”) = - - - 

2a: 2 21 2 

1 
(p + 1) log 0: - 7 - (c  + 1) log a,” 

1 

40: baa 

a - 1  1 -- log(a: + no,”) - - (c + 1)logrz 
2 baa 

Differentiating this expression with respect to of and a: and equating the 
derivatives to zero will yield the posterior modes, which are reasonable Bayes 
estimators of variances: 

SSA 

a - 1  
2(a: + nu:)’ 

- 

n(a -1 )  1 c +  1 - +7-- 8 log f ( Y ,  a:, a:) - nSSA 
2 .  

- 
aa: 2(a: + no,”)’ 2(a: + nu,”) baa a ,  

Equating these two expressions to zero and denoting the solutions by 8: and 
6,” gives 

+SSE + f. + -)SSA ( ” )’ 
+(a - 1)s: +a(n - 1) + p + 1 + 
82 + nd,” 

4 S: + nd: 
6: = 

and 

8,” = 

fnSSA( a,” ) ’ + i  1 
82 + nd,” 

-)(a - l)nd,” 
d: + nd,” 

+ c + l  

Solution of these equations and plotting of the solutions then indicates the 
behavior of these as Bayes estimators. Figures 3.3a and 3.3b show an example 
of plots of ANOVA and Bayes estimates of a:, and Figures 3.4a and 3.4b show 
similar plots for a:. All four of these plots are for a = 12 and n = 5, and for 
the parameters of the prior distribution (175) being p = 10, q = 1, b = 2 and 
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Figure 3.3a. ANOVA estimator B: = MSE = &SSE of (M), for a = 12 and n = 5. 

Figure 33b. Bay- estimator 8: of (176h for a = 12 and n = 5, with parameters of the pnor 
distribution (175) being p = 10, q = 1, b = 2 and c = 6. 
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f 

C3.91 

Figure 3.41. ANOVA estimator 8: = (MSA - MSE)/n = [SSA/(a - 1) - SSE/a(n - l)] /n = 
ASSA - &SSE of ( 5 5 ) ,  when a = 12 and n = 5. 

6:. BAYES 

f 

Figure 3.4b Bayes estimator 13; or (176). for a = 12 and n = 5, with parameters of the prior 
distribution (175) being p = 10, q = 1 ,  h = 2 and c = 6. 
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c = 6. Two features of the figures warrant comment. First, negative ANOVA 
estimates S: are evident in Figure 3.4a, but the Bayes estimates 8: in Figure 
3.4b are never negative. (This is, of course, also true for any values of a and n 
and for any prior distribution.) Second, applying (155) to the two inverted 
gammasof(l75)givesE(af)= l /[q(p- l)]  =$andE(a:)= l / [b(c-  l ) ]  = 
&. Equating these means to the ANOVA estimators, i.e., 

4 = MSE = &SSE and & = -f(-ifSSA - &SSE), 

gives SSE = 5.33 and SSA = 6.72, and indicates approximately how these values 
relate to SSE and SSA. Examination of Figures 3.3 and 3.4 suggests how Bayes 
estimation pulls the ANOVA estimates towards prior values af = $and at = & 
at SSA = 6.72 and SSE = 5.33. This effect is, perhaps, easiest to see as between 
Figures 3.3a and b. There, Bayes estimation of a: in Figure 3.3b seems to 
represent a non-linear pull of the ANOVA estimate in Figure 3.3a toward (0, 0), 
which is an approximation of the prior values. 

3.10. A SUMMARY 

We list here a brief summary of many of the main results from this chapter. 
Alongside each of them is the equation number (or other reference) where it is 
derived. 

The chapter is sectionalized (aside from Sections 3.5 and 3.6) by methods; in 
contrast, this summary is dichotomized into balanced and unbalanced data, so 
that results will be easily available for the analyst whose data will always be either 
one or the other. 

a. Balanced data 
/ 

Model 

Y i j  = p + @i + eij, with i = 1,. . ., a and j = 1,. . ., n; 
a - (0, d I . ) ,  e - (0, afIan), cov(a, el) = 0, on, 

E(y) = p1 and var(y) = V = {,, 0021, + a:J,}i91 . 
Estimating p 

GLSE(0) = j . .  = OLSE(p) . 
Predicting ui 

no: 
no: + uf 

BLUP(p + a i )  = j . .  + ( j , .  - ?..I . 
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Sums of (and mean) squares 

SSA = nC,(jj,. - J J 2 ,  SSE = C,X,(yij - j j , . I 2 ,  (43) 

SSE 
MSE = 

SSA 
a - 1  a ( n  - 1) 

MSA = -, 

Normality assumptions 

a - M(0,  a:Ia) and e - M(0,  a:Ian) . (57) 

Everything that follows, except what is marked Mnn (normality not needed), is 
based on normality assumptions. 

ANOVA estimation 

1 

n 
8: = -(MSA - MSE) [Mnn]; 

+ a,2 1. 2 (na; + 6:)’ [ a - 1  a(n - 1) n 
var(8:) = 

( 5 5 )  

Unbiased estimation of (69): 

+ 1; (70) “ 
a(n- 1 ) + 2  

var(6;) is estimated unbiasedly by - 

2af 282 
var(8:) = ~ estimated unbiasedly by * (661, (67) 

a(n - 1)’ a(n - 1) + 2’ 

- 2af - 282 
cov(8,2, 8: )  = , estimated unbiasedly by . (71),(72) 

an(n - 1) n[a(n - 1) + 23 

Testing H: a: = 0 

Confidence intervals (Section 3.5d-v). Based on normality assumptions 
(Section 3.5d), 

For a,” see Table 3.4. 

Probability of negative 8: 

Pr{8; < 0} = Pr{s;(!;” > 1 + na f /q? } .  (74) 
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Maximum likelihood estimation 

M L  solutions: 

(1 - l/a)MSA - MSE 
6: = MSE, 6: = 

n 

M L  estimators: 

when 6: 2 0, Bf = 63, 15; = 6:; ( 1  15) 

(1  15) when 6: < 0, t?f = - , a:=o. SST, 
an 

Large-sample variances: 

20: var( 5:) 
var(d,2) = - cov(d,2,6:) = - -, 

a(n - 1)' n 

+ 
a ( n -  1) 1. 

Restricted maximum likelihood estimation 

When ANOVA &: > 0, REML estimators are ANOVA estimators; 

SST, 
an - 1 

when ANOVA S; < 0, REML (Bf)  = - , REML (3:) = 0 .  (146) 

Large-sample variances: these are the same as (126) above. 

Bayes estimation 

Simple example: 

x = [ x ,  ,..., x.]' - N(p1, 02I,), 

s2 = C,(X, - Z ) 2  

n - 1  

Inverted gamma density with a = 2 and b = 1 as prior: 

~ ( 0 2 )  = (02) -3e- - l /az ,  

(n - l )s2 + 2 

n + l  
Bayes (d;) = 9 

204(n - 1) 
var[Bayes(b;)] = 

(n + 1)' ' 

I-way classijcation: this demands numerical solution. See ( 176). 
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b. Unbalanced data 

Model 

Y ~ J  = p + al + ei j ,  with i = 1 , .  . . , a  and j = 1 , .  . ., n,; 

N = n. = n,; 

a - (0, dI,,),  e - (0, a:I,), cov(a, el) = 0, ,,,, 

a 

i= 1 

E(y) = p1, V = var(y) = { d  azI,,, + a,ZJ,,},Z1 . 
Estimating p 

p niji. 
' i  

.- ni 
a: + nla: BLUE(p) = GLSE(p) = CNnnl ;  

L. 
I a: + nla: 

1 
var[GLSE(p)] = [ N n n ]  . 

n, 

a: + nla: 

Predicting al 

SSA 
a - 1  

MSA = -, SSE 
N - a  

M S E = - .  

ANOVA estimation 

MSA - MSE 
8: = "nnl; 

( N  - Z,$ / N ) / a  - 1 

for S ,  3 Gin: and S ,  = Z,n; 

(75) 

N ( N  - l ) (a  - 1)af NZS2+Si-2NSj + 2a,2a: + 
( N  - a) (N2  - S,) N ( N ,  - s,)  
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20: 
var(8;) = -. 

N - a' 

- 20: 
cOv(d,2,8;) = 

( N  - a ) ( N  - C i n ; / N ) / ( a  - 1) 

(95) 

Unbiased estimates. The terms (102), (95) and (96) can be estimated 

Testing H: 0: = 0. Use F = MSA/MSE. See Table 3.9. 

unbiasedly: see Section 5.2e. 

Confidence intervals. For 0 2 :  Pr 

For 0: see Section 3.6d-vi. 

Maximum likelihood estimation. First obtain solutions 8, 6: and A to 

and 

Large-sample variances: 

with 

1 " i  - -- ni = [NXiwf - (Z,w,)*]r~,-~ for w. 1 .  = - = 
A, 0,2 + nio: var(yi.) 
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Restricted maximum likelihood estimation. The general procedure of Section 

Bayes estimation. This is very intractable. See (172). 

3.6 has to be used. 

3.1 1. EXERCISES 

E 3.1. For each data set A and B write the model equation (1 )  in matrix 
and vector form including the use of direct products where 
appropriate. 

Data A 

~ _ _ _ _ _  ~ 

i=  1: 10 12 8 
i = 2 :  10 12 14 
i = 3 :  6 1 1  7 
i = 4 :  18 17 7 

Data B 
~ 

j = 1  j = 2  j = 3  j . = 4  

i =  1 :  12 8 6 10 
i = 2 :  17 13 
i = 3 :  16 1 1  15 

E 3.2. Suppose Data A are to be analyzed using the model equation 
y,, = p + ai + 8, + e,,. Write this equation for Data A, both with 
and without using direct products. 

E 3.3. Suppose a data set consists of n observations in each of b columns 
that are nested within each of a rows. Write the model equation 

Yi jk  = p + dli  + b i j  + eijk 

for such data, using direct products. 
E 3.4. With the notation 

P, = GLSE(C0, P, = OLSE(p0, 

and with varR(.) and varF(*) denoting variance in the random and 
fixed models, respectively, show that 

(a)  in the random model, var,(fl,) < var,(pw) 
(b)  in the fixed effects model, var,(fl,) < varF(pw) 
(c) var,(Fn) < VardP,) 6 varR(fin)* 



C3.111 EXERCISES 109 

Hint: Use the Cauchy-Schwartz inequality 

E 3.5. 

E 3.6. 
E 3.7. 

E 3.8. 
E 3.9. 

E 3.10. 

E 3.11. 

E 3.12. 
E 3.13. 
E 3.14. 
E 3.15. 

E 3.16. 

E 3.17. 
E 3.18. 

E 3.19. 

For the model having equation (30) and dispersion matrix V of 
(31), show that di of (40) comes from 

ti = o:Z'V-'(y - p l )  for Z = { d  . 
Why in (28) must p exceed - l/(a - l )?  
Use the method (a) of subsection i, and (b) of subsection ii of Section 
3Sa, to derive E(MSE) = of. 

Show that 83 and 8: of (54) and ( 5 5 )  are unbiased. 
Using Theorem S2 of Section S.4, together with the algebra of 
J-matrices and Kronecker products in Appendix M, derive the 
results in (60), (61) and (63). 
Derive the confidence intervals for a:/(o: + of) and for of/ 
(a: + of) shown in Table 3.4. 
Suppose an experimenter sets out to estimate 6: and of from an 
experiment of 4 observations from each of 5 classes, with prior 
knowledge that 0.' is likely to be SliY' of of. What is the probability 
that the ANOVA estimate of 0." will be negative? 
Derive (102) and (101). 
Derive (126). 
Why from ( 106) can the MLE of p be derived without differentiation? 
Show that 

(a) Using log Lof ( 130), show that ML estimators when 5: = 0 are 
5: = SST,/N and ji = j... 
(b) Show that ( 134) and ( 135) reduce for balanced data to ( 108). 
Derive the expected values in Table 3.10. 
Verify ( A )  and (B) following ( 139). 

For (B) recall that CiafCibf - (Ziuibi)2 = CC(a,b ,  - a,bi)' and 

that wi = ni/j.i implies wi/ni = ( 1  - w,o:)/of. 

Suppose x = [x ,,.. ., x,,]' - N ( p 1 , 0 2 1 ) .  
(a) 
for s2 = & ( x i  - z ) ~ .  

1 +I  

Using L ( p ,  o2 I x), show that the ML estimator of o2 is s 2 / n  
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(b) Derive L(a2 I sz)  and use it to show. that the REML estimator 
of o2 is s 2 / ( n  - 1 ) .  

E 3.20. Show that minimizing (141) subject to 6:(,) = 0 yields 8:(,) = 
SST,/(an - 1). 

E 3.21. (a) Fc-fixedoifindthelimitingvalueofji = Pof( 133)and( 136): 

( i )  as o: -+ 0 and (ii) as ut + 00. 

(b) Forfixedof,find thelimitingvalueofji = @of(133)and(l36): 

( i )  as 0.' -+O and (ii) as of -+ 00. 

(c) What is an explanation for your results in (a) and (b)? 
(d) Prove that the likelihood function implicit in (128) can have 
a maximum ( i )  at a negative value of at, but (ii) at only positive 
values of 03. 

E 3.22. Derive (14) and (15) of Section S.6. 
E 3.23. Verify ( 155). 
E 3.24. For the following data from a 1-way classification having a = 3 and 

N = 7  

(a) calculate ANOVA estimates of variance components, their 
sampling variances and unbiased estimates thereof; 
(b) try to repeat (a), using ML estimation: at least write out the 
ML equations, and the terms of the asymptotic sampling dispersion 
matrix for u,' and 6:. 

Data 

10 3 17 
14 7 
18 
22 

E 3.25. Consider the following three separate variations on the I-way 
classification, random model, with var(a) = ail and cov(a, e') = 0 
as is usual. With e, = [ e , ,  et2 . .-e,, , ,]' for i = 1 , . . . , a ,  and with 
every e, and e,, having zero covariance, 

( i )  var(e,) = o;I,,, 

(i i)  var(e,) = 0,21,,, + poZ(J,,, - I,,,) 

( i i i )  var(e,) = cr;I,,, + pio,2(J,, - I,,,) 

(a) For balanced data derive ANOVA estimators of o,' and of.  

(b)  For balanced data under normality, derive sampling variances 
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of your estimators in ( i ) ,  and unbiased estimators of those 
sampling variances. 

( c )  Try repeating (b) for ( i i )  and (i i i ) .  
E 3.26. Try using equations (176) for Data A of E 3.1. 
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B A L A N C E D  DATA 

Balanced data, as discussed in Section 1.2, are defined by the nature of the 
numbers of observations in the cells of the data. A “cell” is a subclass of the 
data defined by one level of each factor by which the data are being classified. 
To emphasize this we might use the descriptor “sub-most cell”. For example, 
in Table 1.1, the data for married men receiving drug A are a sub-most cell of 
the data; married men are a subclass, too, but not a sub-most cell. We defined 
balanced data as data wherein every sub-most cell has the same number of 
observations. This omits what we have called planned unbalancedness such as 
Latin squares and variants thereof (see Section 1.2b-i). 

Estimating variance components from balanced data is, generally speaking, 
much easier than from unbalanced data. We therefore devote a chapter to 
balanced data. Admittedly, balanced data are usually the outcome of a designed 
experiment, wherein the number of levels of each factor is usually relatively 
small, say 6, 10 or maybe 20. This is not an ideal situation for estimating the 
variance component for any such factor, because if that factor has, say, 6 levels, 
then no matter how many observations there are in each level there are still 
only 6 levels, and the situation is akin to estimating a variance from 6 
observations. Indeed, a sample of only 6 effects (from a hypothesized population 
of effects) occurs in the data. Nevertheless, there are many circumstances where 
researchers do want to estimate variance components from balanced data. Such 
data have a number of interesting characteristics that lead in many cases to 
ANOVA estimators of the variance components being not only easy to calculate 
(e.g., Tables 4.8, 4.10, 4.12 and 4.14) but having attractive optimal features. 
Also, although ML methodology does not require ANOVA tables, ML 
estimators from balanced data are, in a number of cases, simple functions of 
the mean squares in an ANOVA table, e.g., Tables 4.9, 4.1 1, 4.13 and 4.15. On 
the other hand, there are also some balanced data cases for which MLEs do 
not exist in any explicit form, e.g., Sections 4.7f-i and ii; they can be derived 
only as numerical solutions of non-linear equations. 

We begin with ANOVA estimation from balanced data that are classified 
in a factorial manner, consisting of crossed and nested classifications and 
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combinations thereof. For such data, there are easy rules of thumb by which, 
no matter how complicated the classifications are, nor how numerous, the 
ANOVA estimators of variance components can be straightforwardly derived. 
These rules lay out procedures for determining (1) the lines in the analysis of 
variance, (2) their degrees of freedom, (3) formulae for calculating sums of 
squares and (4) expected values of mean squares. Most of the rules are based 
on Henderson ( 1969) except that Rule 9 comes from Millman and Glass ( 1967), 
who rely heavily on the Henderson paper for a similar set of rules. 

The description of the rules is purposefully brief, with no attempt at 
substantiation. For this the reader is referred to Lum ( 1954) and Schultz( 1955). 

4.1. ESTABLISHING ANALYSIS OF VARIANCE TABLES 

a. Factors and levels 
The analysis of variance table is described in terms of factors A, B, C, ..., 

with the number of levels in them being n,, nb, n,, . . . , respectively. When one 
factor is nested within another the notation will be C:B for factor C within 
factor B, and C : B A  for C within AB subclasses, and so on. A letter on the left 
of the colon represents the nested factor and letters on the right of the colon 
represent the factors within which the nested factor is found. With a nested 
factor, C for example, n, is the number of levels of factor C within each of the 
factors in which it is nested. Factors that are not nested, namely those forming 
cross-classifications, will be called crossed factors. 

Within every sub-most cell of the data we assume there is the same number 
of observations, n,,either one or more than one. In either case these observations 
can, as Millman and Glass ( 1967) point out, be referred to as replications within 
all other subclasses. Following Henderson (1969), we refer to these as the 
“within” factor, using the notation W:ABC ..., the number of levels of the 
“within” factor (i.e., number of replicates) being n,. The total number of 
observations is then the product of the ns, namely N = n&n, . . . n,. 

b. Lines in the analysis of variance table 

Rule 1. There is one line for each factor (crossed or nested), for each 
interaction, and for “within”. 

c. Interactions 

Interactions are obtained symbolically as products of factors, both factorial 
and nested. Any possible products of two, three, four, ... factors can be 
considered. For the sake of generality all crossed factors are assumed to have 
a colon to the right of the symbol; e.g., A: and B: and so on. 

Rule 2. Every interaction is of the form ABC ... : XYZ . . ., where ARC .. . 
is the product on the left of the colon of the factors being combined and XYZ 
. . . is the product on the right of the colon of the factors so associated with A, 
Band C .... 
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Rule 3. Repeated letters on the right of the colon are replaced by one of 
their kind. 

Rule 4. If any letter occurs on both sides of a colon that interaction does 
not exist. 

Examples 

Factors Interaction 

A and B AB (Rule 2) 
A and C:B AC:B (Rule 2) 
A:B and C:B AC: BB = AC: B (Rule 3) 
A:B and B:DE AB:BDE, nonexistent (Rule 4) 

The symbolic form W:ABC ... for replicates does, by Rule 4, result in no 
interactions involving M! Furthermore, the line in the analysis of variance labeled 
W: ABC . , , , being the “within” line, is the residual error line. 

d. Degrees of freedom 
Each line in an analysis of variance table refers either to a crossed factor 

(such as A:), to a nested factor (such as C:B) or to an interaction (e.g., AC:B). 
Any line can therefore be typified by the general expression given for an 
interaction in Rule 2, namely ABC . . .: XYZ . . . . 

Rule 5. Degrees of freedom for the line denoted by 

AB:XY are (n, - I ) ( &  - l )nxny.  

The rule is simple. Degrees of freedom are the product of terms like (n, - 1) 
for every letter A on the left of the colon and of terms like n, for every letter 
X on the right of the colon. 

Rule 6. The sum ofall degrees offreedom is N - 1, with N = n,,&nbne . . . . 
e. Sums of squares 

The symbols that specify a line in the analysis of variance are used to establish 
the corresponding sum of squares. The basic elements are taken to be the 
uncorrected sums of squares (see Section 4.lf) with notation 

a = uncorrected sum of squares for the A-factor, 

ab z uncorrected sum of squares for the AB-interaction factor 

= (number of observations in each level of the AB-interaction factor) 

x (sum of squares of the observed mean in each level of the 
AB-interaction factor), 

and so on, and 

1 = N j ’ ,  

the correction factor for the mean, where j is the grand mean of the N data values. 
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Rule 7. The sum of squares for the line denoted by 

A B : X Y  is ( a  - l ) (b  - 1)xy = abxy - axy - bxy + xy . 
Again the rule is simple: symbolically, a sum of squares is the product of terms 
like ( a  - 1) for every letter A on the left of the colon and of terms like x for 
every letter X on the right of the colon. This rule is identical to Rule 5 for 
degrees of freedom: if in the expression for degrees of freedom every n, is 
replaced by f, the resulting expansion is, symbolically, the sum of squares: e.g., 

(n, - l)(n,, - l)nxn,, becomes ( a  - l)(b - 1)xy = abxy - axy - bxy + xy . 
After expansion, interpretation of these products of lower case letters is as 
uncorrected sums of squares, as given by Rule 6. 

Note that all sums of squares are expressed essentially in terms of crossed 
factors. Even when a factor is nested, sums of squares are expressed in terms 
of uncorrected sums of squares calculated as if the nested factor were a crossed 
factor. For example, the sum of squares for A:B ( A  within B) is ( a  - l )b  = a6 - 6, 
where ab is the uncorrected sum of squares of the AB subclasses. 

Rule 8. The total of all sums of squares is Zy2 - N j 2 ,  where Zy2  represents 
the sum of squares of the individuat observations, wabc . . . in the above notation, 
and where N J 2  is the correction factor for the mean, as in Rule 6. 

Example. Table 4.1 shows the analysis of variance derived from these rules 
for the case of two crossed classifications A and By a classification C nested 
within B, namely C:B, their interactions and the within factor W:ABC. 
Application of these rules is indicated at appropriate points in the table. 

f. Calculating sums of squares 
The uncorrected sums of squares denoted by lower case letters such as a and 

ab in Rule 7 have so far been defined solely in words; for example, ab is the 
uncorrected sum of squares for AB subclasses. Henderson ( 1969) has no formal 
algebraic definition of these terms. As the uncorrected sum of squares for the 
AB subclasses, ab is the sum over all such subclasses of the square of each 

TABLE 4.1. CXAMPLE OF RULES 1-8: ANALYSIS OF VARIANCE FOR FACTORS A, B, C: B, 
THEIR INTERACTIONS AND w: ABC 

Line Degrees of Freedom Sum of Squares 
(Rules 1-4) (Rule 5) (Rule 7)  

A n, - 1 ( a - l ) = a - 1  
B n b  - 1 (6- l ) =  b - 1 
C: B (n,  - llnb ( c - l ) b = b c - b  
AB (na - )(nb - ( a  - I)(b - 1 )  = ab - a - b + 1 
AC: B 
W: ABC ( n w  - Inanbnc ( W  - 1)abc = wabc - abc 

(K, - l)(n, - 1 ) n b  ( a  - l ) ( ~  - l)b - ab - 6~ + 6 

Total N - I (Rule 6) Zyz - N j z  E wabc (Rule 8)  - 1 
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subclass total, the sum being divided by the number of observations in such a 
subclass (the same number in each). However, Millman and Glass ( 1967) give 
a neat procedure for formalizing this. It starts from an expression for the total 
of all the observations. We state the rule using as an example the uncorrected 
sum of squares bc in a situation where Y h i J k  is the observation in levels h, i, j 
and k of factors A, B, C and W respectively. 

Rule 9. 
( i )  Write down the total of all observations: 

( i i )  Re-order the summation signs so that those pertaining to the letters in 
the symbolic form of the uncorrected sum of squares of interest (bc, in this case) 
come first, and enclose the remainder of the sum in parentheses: 

(iii) Square the parenthesis and divide by the product of the n s  therein. 
The result is the required sum of squares: e.g., 

bc = 
n a n w  

As a workable rule this is patently simple. 

4.2. EXPECTED MEAN SQUARES, E(MS) 

Mean squares are sums of squares divided by degrees of freedom. Expected 
values of mean squares, to be denoted generally by E (  MS), can be obtained by 
an easy set of rules. They are based on using means, variances and covariances 
of random effects that are applications of equations (6) - (  15) of Chapter 3 to 
all random effects factors. This means that all the effects of each factor are 
assumed to have zero mean, the same variance and zero covariance with each 
other [as in equations (7), (14) and ( lo), respectively, of Chapter 31. Furthermore, 
all effects of each random factor are assumed to have zero covariance with 
those of each other factor and with the error terms. And error terms all have 
zero means and the same variance and zero covariance with each other 
[e.g., equations ( 1  1 )  and ( 13) of Chapter 31. 

Rule 10. Denote variances by a' with appropriate subscripts. There will be 
as many d s ,  with corresponding subscripts, as there are lines in the analysis 
and variance table. The variance corresponding to the W-factor is the error 
variance: at:abr = 0,'. 
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Example. Where there is an AC:B interaction, there is a variance 6 k : b .  

When n,  = 1, there is no Wine in the analysis of variance, although it may 
be appropriate to envisage 0: as existing. 

Rule 11. Whenever a n2 appears in any E( MS), its coefficient is the product 
of all ns whose subscripts do not occur in the subscript of that u2. 

Example. When the factors are A, B, C : B  and W:ABC, the coefficient of 
6 , : b  is n,. 

This rule implies that the coefficient of ui:,k... is always unity. 

Rule 12. Each E(MS) contains only those u2s (with coefficients) whose 

2 -  

subscripts include all letters pertaining to the MS. 

Example. For the AC:B line E [ M S ( A C : B ) ]  = nwu:c:b + 6 , : # ) c .  2 

According to this rule, uf = o&,~. . .  occurs in every E( MS) expression. 

The above examples of Rules 10-12 are part of the expected values shown 
in Table 4.2. These are the expected values, under the random model, of the 
mean squares of the analysis of variance of Table 4.1. 

Rule 13. If the model is completely random, leave as is; for a fixed or mixed 
model, u2-terms corresponding to fixed effects and interactions of fixed effects 
get changed into quadratic functions of these fixed effects. All other a2-terms 
remain, including those pertaining to interactions of fixed and random effects. 

This rule is equivalent to that given by Henderson (1969) but differs from 
that of the 1959 first edition of that paper, where it is stated that some a2-terms 
“disappear” from some of the expectations of mean squares. Explanation of 
this difference is included in the discussion of the 2-way classification that now 
follows. 

TABLE 4.2. EXAMPLE OF RULES 10-12: EXPECTED VALUES, UNDER T H E  RANDOM MODEL. 

OF MEAN SQUARES OF TABLE 4.1 

Variances (Rule 10) and Coefficients (Rule 1 1 )  
Mean 
Square nbnrnwaf non,nwaf nonwuf:b nrnwafb nwuk:b a$:,bc = af 

Terms included (Rule 12) 
MS(A) * * 
MS( B )  * * * * * 
MS( C: B )  * * * 

MS( AB) * * * 
MS( AC: B )  * * 
MS( W:ABC) 

*denotes a o’-term that is included; e.g., nbnrnWu: is part of E [ M S ( A ) ] .  
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4.3. THE 2-WAY CROSSED CLASSIFICATION 

a. lntroduction 
We now introduce a model for one of the most important and useful 

applications of the linear model. It is useful both in the practicalities of analyzing 
data and in illustrating many of the numerous mathematical and statistical 
difficulties that can arise in more general applications of the linear model. Indeed 
it is the simplest situation that illustrates these difficulties. 

Suppose data can be classified by two factors. For example, in horticulture 
plants can be classified by variety of plant and fertilizer treatment used in 
growing them; in animal agriculture beef cattle can be classified by breed and 
the feed regimen they are given; in clinical trials patients can be classified by 
clinic and medication; and so on. In these examples, and whenever data can 
be classified according to the levels of two factors, those data can be conveniently 
arrayed in tabular form where the levels of one factor are rows of the table and 
those of the other factor are columns. We henceforth refer to the factors 
generically as rows and columns, letting Y i J k  be the kth observation in the 
( i ,  j)-cell, namely the cell defined by the ith row and jth column. Denote by a, 
6 and n the number of rows, columns and number of observations per cell, 
respectively, so that i = 1,. . . , a, j = 1,. . ., 6 and k = 1,. . , , n. Then the model 
we use is 

E ( y i j k )  = p + ai + a j  + YiJ, (1)  

where p represents a general mean, ai is the effect due to Yijk being an observation 
in the ith row, fl, is the effect due to column j and yi, is the interaction effect 
of row i with column j. Defining the residual error as 

(2) 

( 3 )  

eijk = Y i j k  - E ( y i j k )  

gives the customary model equation for Y i j k  as 

Y i j k  = + ai + f l j  + YiJ + eiJk * 

The definition of e i j k  in (2) gives the expected value as E(e,,,) = 0, and the 
variance-covariance properties we attribute to the e i j k s  are 

var (e i jk )  = 0,2 
and (4)  

b. Analysis of variance table 
The analysis of variance table for balanced data of a 2-way crossed 

classification is as shown in Table 4.3, where the means of the data in row i, 
column j ,  cell ( i ,  j) and the grand mean are, respectively, 

cov(eilt, e i * J # k P )  = 0 unless i = i', j = j' and k = k' I 
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And the corresponding totals are these means with denominators omitted: 
h n  

y,.. = bnF,.. = 2 2 yijk . 
j= l  & = l  

A popular method of estimating variance components from balanced data 
is the analysis of variance method (ANOVA). For the 2-way classification this 
consists of equating expected values of the sums of squares (or equivalently 
mean squares) of Table 4.3 to their observed values. Depending on whether 
none, all or some of the effects a,, / I j  and y i j  of the model equation ( 3 )  are taken 
as random effects, the model will be a fixed, random or mixed model. And 
although the prime concern of this book is variance components we shall, for 
the sake ofcompleteness, look at expected mean squares here for all three models. 

c. Expected mean squares 
The starting point is to substitute the model equation (3) into the means of 

( 5 )  and then put those into the sums of squares of Table 4.3. We then want 
expected values of those sums of squares. Derivation begins with taking 1 and 
the as, /Is and ys as fixed effects so that with E(ei jk)  = 0 

E ( p e u k )  = E(a,e,) = !?(Pieljk) = E(yi je i j , )  = 0 V i, j and k ;  

and from (4) 

E(Zf.) = o:/bn, 

E(C, .. Z...) = E(2.j.C ... ) = E(2ij.C ... ) = a:/abn, 

E(Zi..Z.j.) = af /abn 

and 
E(Z,.. - C...)’ = (a - l)a:/abn, 

E(C.j .  - C...)2 = ( b  - l)a:/abn, 

E(Ci,. - Z,.. - C.,. + Z...)’ = (a - l ) (b  - l)o;/abn 

and 

E(eijk - eij.)2 = (n - l ) a f / n  . 
Expected values of the mean squares in Table 4.3 then simplify to be 

(7)  

and 

E(MSE) = 0: . 
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Notice that these expected values still contain expectation operators. This is 
because we have not yet specified a model vis-$-vis the a,, b, and y,, effects; i.e., 
we must specify the model as fixed, random or mixed. This is now done, based 
on the expressions in (8) which hold whether the model is fixed, random 
or mixed. Each model determines the consequence of the expectation operations 
shown on the right-hand sides of (8). 

Thefixed eflecrs model. In the fixed effects model all the as, j?s and ys 
are fixed effects. Therefore the expectation operations on the right-hand sides 
of (8) just involve dropping the E-symbol. The results are shown in Table 4.4, 
where 

4. 

and y.,, v., and 1.. are defined similarly. 
Readers may wonder why the expected values in Table 4.4 contain expressions 

such as &(a, - 1. + 7,. - j7..)2 rather than the more familiar Era:. This is because 
Table 4.4 does not involve what are sometimes called the “usual restrictions” 
or “Z-restrictions” such as &ai = 0 and Z,yu = 0 V i. It is these restrictions 
that reduce Z,(a, - ti. + 7,. - 7..)2 to Zia f .  They are equivalent to defining 

E ( y , , k )  = p!, 

and 

ci = ji.., d ,  = pi. - fi.., 1, = ji., - ji.. and i),, = pi, - ji,. - ji., + ii.. . 
( 9 )  

(10) 

Then the model equation is 

Y i j k  = fi  + Oii -k 1, + i),, + e i l k ,  

TABLE 4.4. EXPECTED MEAN SQUARES OF A 2-WAY CROSSED 

CLASSIFICATION INTERACTION MODEL, WITH BALANCED DATA 

Fixed ERects Model 

bn a 

a - l , = l  
E(MSA) = - c (a, - ti. + 7,. - 7.J’ + a) 

E( MSE) = 0,‘ 
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with, for example, Z;=l a, = Z;.. l(ji,. - ji..) = 0; i.e., the dotted terms in (9) 
satisfy the 2-restrictions 

Z,c? =0, Z,b, = 0, Z, j , ,  = O  V i and Z,j, ,= 0 V i ,  (11) 

Nevertheless, on comparing ( 10) and (3), we can conclude from Table 4.4 that 
the expected value of MSA is 

(12) 
bn bn 

a - 1 , = I  a - 1  
E(  MSA) = - c (Oii - z. + 5. - F.,)2 = - cia: , 

because of (11). Hence Z,ci: has precisely the same meaning as 
&(a, - 6. - 7,. + 7..)’ of Table 4.4. It is to be emphasised that the 2-restricted 
models (10) and (1  1) are equivalent in this manner to the unrestricted model 
(3) only for balanced data. This equivalence does not occur for unbalanced 
data, because the sums of squares used with such data have expected values 
that do not involve the means of the effects in such a simple manner as with 
balanced data. [See, e.g., Searle (1987, Table 4.8).] Restrictions that are in terms 
of weighted sums of the effects are sometimes suggested for unbalanced data, 
although these have no simplifying effect when there are empty cells, as is often 
the case with unbalanced data. 

-ii. The random eflects model. In the random model all the a-, P- and 
y-effects are taken as being random, with zero means, variances a:, a; and a:, 
respectively, and all covariances zero: 

E ( a , )  = 0, E(PJ = 0, E(y,,) = 0, (13) 

(14) 

(15) 

with similar statements for the Ps and ys. They represent the customary 
formulation of random effects in random or mixed models, and as such are a 
direct and natural extension of equations (9)-( 15) in Chapter 3. Applying this 
formulation to (8) leads to the expected values shown in Table 4.5. It is left to 
the reader (E  4.6) to derive those expected values. 

var(a,) = E ( a ? )  = a:, cov(a,a,.) = E(a , ,  a,.) = O V i # i ’ ;  

with similar statements for the /3s and ys. Also 

cov(a,, P,) = 0 = cov(a,, r,,) = cov(a,, e,,A 

-iii. The mixed model. Suppose the a-effects are fixed effects and the /3s 
are random. Then the ys, being interactions of the a-factor with the P-factor, 
are random. The expectation operations on the right-hand sides of (8) therefore 
involve dropping the E-symbol insofar as it pertains to as and using properties 
like those of (13), (14) and (15) for the P s  and ys. This leads to the results 
shown in Table 4.6. 

The difference between the random and mixed models is that the as are 
random effects in the random model and are fixed effects in the mixed model. 
Since only the first equation in (8) involves as, only the first entry in Table 4.6 
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TABLE 4.5. EXPECTED MEAN SQUARES OF A 

2 - W A Y  CROSSED CLASSIFICATION 

INTERACTION MODEL. WITH BALANCED DATA 

Random Effects Model 

E(  MSA) = bnu; + nu: + u: 

E( MSB) = anuf + nu: + u3 

E (  MSAB) = nu: + u3 

E( MSE) = d 

TABLE 4.6. EXPECTED MEAN SQUARES OF A 2 - W A Y  CROSSED 

CLASSIFICATION INTERACTION MODEL. WITH BALANCED DATA 

Mixed model: as fixed, /Is and ys random 

bn 
E(MSA) = - 1 (a, - 6.)’ 

a - l , = 1  
+ nu: + uf 

E(  MSB) = 
E (  MSAB) = 

anuf + nu: + u: 
nu: + uf 

E (  MSE) = 03 

differs from the corresponding entry in Table 4.5, and then only through having 
a quadratic term in the as instead of a term in 0:. 

-iu. A mixed model with C-restrictions. The expected mean squares in 
Table 4.5 for the random model have been arrived at without any use of 
C-restrictions of the kind shown in (1  1) for the fixed effects model. This is 
appropriate, because with the ais that occur in the model equations for the data 
being taken as realized values of random variables, it is not realistic to have 
them summing to zero, i.e., Ciai = 0 is not appropriate. Moreover, having 
Ciai = 0 is never even considered in the case of unbalanced data, for which 
expected mean square derivations all reduce to those of Table 4.5 for balanced 
data. 

Likewise, C-restrictions are not involved in Table 4.6 either. Neither do we 
think they should be. Nevertheless, some presentations of the mixed model 
(for the case being considered here, the 2-way crossed classification, mixed model 
with one factor fixed, balanced data) do incorporate, either explicitly or 
implicitly, C-restrictions. This leads to expected mean squares that differ from 
those in Table 4.6. We therefore proceed to give an explanation of those 
differences, similar to Searle ( 1971, Chap. 9). Other explanations are available 
as, e.g., in Hocking( 1973,1985), and Samuels et al. (1991 ), but they are effectively 
equivalent to what follows. 

In the model equation 

Yrir = c1 + ai + P, + YiI + ell& (16) 
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where a, is taken as fixed effect and p, as random, y,, is then the interaction 
between a fixed and random effect. It is therefore taken as a random effect. 
That is how it is treated in deriving Table 4.6. Nevertheless, there is debate 
over whether or not, because it is the interaction involving a fixed effect, it 
should be defined subject to partial C-restrictions in the form that sums of yi, 
over the levels of the fixed effects factor be defined as zero, i.e., Cl, y,, = 0 V j .  
To follow the effect of such a definition we write the model as 

with the restrictions 

a; = 0 and yi, = y’.] = 0 for all j . (18) 
1% 1 i= 1 

The prime notation used here distinguishes the model (1’7) with the restrictions 
(18) from the model (16) with no such restrictions; and it is also distinctive 
from the model (10). In (17) the a’s are fixed effects and the p’s and y‘s are 
random effects with zero means and variances of. and y:., respectively, and 
with the p’s and y’s being uncorrelated with each other and the es. All this is 
exactly the same as in the mixed modcl described earlier, except for (18). 

In (18) it is the restriction on the y;,s that is particularly noteworthy. It 
implicitly defines a covariance between every pair of y i p  that are in the same 
column, i.e., between y;, and y;., for i # i‘. Suppose this covariance is the same, 
for all pairs: 

cov(y;,, y;.,) = c V i # i’ . (19) 

Then, from (18) 

and so 

ao;, + a(a - l)c = 0, 

c = -.:,/(a - 1 ) .  

giving 

(20) 
Note that this covariance pertains only to y’s within the same level of the 
p-factor, arising as it does from (18). The covariance between y‘s in the same 
level of the a-factor is zero, as usual: 

(21 1 cov(y;,, y;,,) = 0 for all i and j # j’ . 

Prior to utilizing (18), the expected mean squares for the model (17) can be 
derived from equations (8) with primes on p, the as, ps and ys. Upon invoking 
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jj:, = 0 from ( la) ,  and hence j?. = 0, equations (8) become 

bn 
E( MSA) = - 

1= 1 

b n 
E (  MSAB) = i c m;, - m2 + 0: (a  - l)(b - l ) i = l  I = 1  

and 

E(MSE) = a: . 
In carrying out the expectation operations in E(MSA) and E(MSAB), use is 
made of (21) to give 

and 

As a result, expressions (22) reduce to those shown in Table 4.7. 
The results in Table 4.7 differ from those in Table 4.6 in two important ways. 

First, in Table 4.7, whenever a: occurs it does so in the form no:./( 1 - l/u), 
whereas in Table 4.6 the term appears as just na:. Second, E(MSB) in Table 
4.7 has no term in a:,, whereas in Table 4.6 it contains no:. This is the reason 
why Rule 13 at the end of Section 4.ld differs from the first edition (1959) of 
Henderson (1969) but is the same as in the second. The first edition specifies 
a general rule that leads to the absence of a:, from E(MSB) on the basis of f, = 0, as in (la),  whereas the second specifies a general rule that retains a: 
in E(MSB) as in Table 4.6, using a model that has no restrictions like (18). 

TABLE 4.1. EXPECTED MEAN SQUARES OF A 2-WAY CROSSED 

CLASSIFICATION INTERACTION MODEL, WITH BALANCED DATA 

Mixed Model, with Restrictions on Interaction Effects: 
y:, = 0 for All j 

E(MSB) = anuj, + uf 

nu:. /( 1 - 1 /a) + uf 

E( MSE) = 4 
E( MSAB) = 
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This dual approach to the mixed model is evident in many places. For 
example, Mood (1950, p. 344) and Kirk (1968, p. 137) use the Table 4.6 
expectations whereas Anderson and Bancroft (1952, p. 339), Scheffe (1959, 
p. 269), Graybill (1961, p. 398) and Snedecor and Cochran (1989, p. 322) use 
those akin to Table 4.7. Mood and Graybill (1963) do not discuss the topic. 
Although results like Table 4.7 predominate in the literature, those of Table 4.6 
are consistent with the results for unbalanced data, and this fact, as Hartley 
and Searle (1969) point out, is strong argument for using Table 4.6. 

The second difference between Tables 4.6 and 4.7 is the occurrence of 
1 /( 1 - 1 /a) in the terms in the interaction variance component in Table 4.7. 
This is a consequence of the restriction yIJ  = 0 of( 18), as shown also, for example, 
in Steel and Torrie ( 1960, pp. 214, 246). 

One criterion for deciding between the two forms of the mixed model is the 
following. Consider, momentarily, the possibility of redefining the f l s  as fixed. 
If that would lead to redefining the ys as fixed then one should, when the f l s  
are random, have &y[J  = 0 as part of the mixed model. But if redefining the f l s  
as fixed would not lead to redefining the ys as fixed but would leave them as 
random then the Z-restrictions &y[J  = 0 should not be part of the mixed model. 
The difficulty with &yiJ = 0 V j is that after using it with unbalanced data the 
resulting analysis does not for “ [ J  = n V i, j reduce to the well-known analysis 
for balanced data. 

A connection between Tables 4.6 and 4.7 can be established as follows. The 
model for Table 4.6 is (16). Suppose it is rewritten as 

Y i j k  = ( p  + @.I + (a, - @.) + ( f l j  + 7 . j )  + ( Y i j  - 7.J) + eljk * 

Then, on defining 

p‘ = p + @., a; = ai - E., fl; = f l j  + 7.) and y;J = yiJ - 7.J, (23) 

we have exactly the models (17) and (18) used for Table 4.7. Not only do the 
definitions in (23) satisfy (18), but it is easily shown (see E 4.6) that (19)-(21) 
are also satisfied and that 

(24) a:. = ( 1  - l/a)a:, 

a,$ = a; + o t / a .  

as is evident from comparing the values of E(MSA) and E(MSAB) in Table 
4.6 with those in Table 4.7. Moreover, 

(25) 

The question of which form of the mixed model to use, that without the 
%restrictions (Table 4.6) or that with them (Table 4.7) remains open; and seems 
likely to remain so. It is irrelevant to ask “Which model is best?”, because this 
question really has no definitive, universally acceptable answer. The important 
thing is to understand that there are two models and that although they are 
different, they are closely related. Then in analyzing any particular set of data 
one is in a position of understanding the two models and their relationship, 
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and can decide which is the more appropriate to the data at hand. Lengthy 
discussion of the models ( 17) and (18) that lead to Table 4.7 is to be found in 
such papers as Wilk and Kempthorne (1955, 1956) and Cornfield and Tukey 
(1956) as well as in Scheffk (1959). Nevertheless, the model that is used for 
unbalanced data (of which balanced data are a special case) is the one without 
the C-restrictions that leads to Table 4.6. And that table is what one gets when 
simplifying the procedures for unbalanced data to the case of balanced data. 
Also, when there is no within-cell replication, i.e., n = 1, and hence no SSE, 
Table 4.6 provides a test of H: 0: = 0 whereas Table 4.7 does not then provide 
a test of the analogous, but distinctly different, hypothesis H: 0:. = 0. 

d. ANOVA estimators of variance components 
The ANOVA method of estimating variance components from balanced data 

is to equate mean squares of the analysis of variance to the expected values. 
The latter are linear combinations of variance components. The resulting 
equations are solved for the variance components and the solutions are the 
estimated variance components. All this is just as was done in Chapter 3 for 
the 1-way classification. Applying it to the fixed effects model of the 2-way 
classification means applying it to just E(MSE) = of of Table 4.4 and so 

= MSE. Applied to the random model of Table 4.5 it yields 

Sf = MSE, 
MSB - MSAB a: = 9 

an 

MSAB - MSE MSA - MSAB a; = , a: = 
n bn 

For the mixed model, without C-restrictions, Table 4.6 leads to 

MSAB - MSE MSB - MSAB 
Sf = MSE, 8.; = and d; = * (27) 

n an 

These estimates, it will be noticed, are the same as in (26) for the random model, 
except that there is no estimator for a:-because, of course, the as are being 
taken as fixed effects. This is the situation with all mixed models using balanced 
data. There will always be as many mean squares having expectation that 
contain no fixed effects as there are variance components to be estimated. 
In the case of Table 4.6 this number is 3. And the estimated variance components 
will thus always be a subset of those obtained if all the fixed effects (except p )  
were taken as random. 

For the mixed model with C-restrictions we use Table 4.7. This gives 

(MSAB - MSE)( 1 - l / a )  MSB - MSE 
dz = MSE, = and 682, = 

n an 
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Other than 8,2, these are different from the estimators of the mixed model 
without X-restrictions. But the two sets of estimators are related: 

from (27), and in accord with (24). And 

, from (28), 
MSB - MSE 

83, = 
an 

MSB - MSAB + MSAB - MSE - - 
an 

an882 + n8; 
an 

- - , from (27), 

in accord with (25). Thus the connection between the two sets of estimators is 
very simple and, naturally, is the same as that between the two sets ofcomponents 
in (24) and (25). 

4.4. ANOVA ESTIMATION 

Having derived estimators, the next step would be to consider their properties: 
e.g., sampling variances, confidence intervals, and so on. But before doing so 
we introduce some general results, which can then be applied not only to the 
2-way classification but also to any combination of crossed and nested fixed 
or random factors. 

The methodology of ANOVA estimation of variance components from 
balanced data is clearly demonstrated using the expected mean squares of Table 
4.5 and the estimators in (26); and equally so for the mixed model by using 
the last three lines of Table 4.6 and (27). Each of these is a special case of 
equating mean squares (of the analysis of variance table) to the expected values 
and using the solutions for the variance components as the estimators thereof. 
The generalization of this is to let m be the vector of mean squares, having the 
same order as d, the vector of variance components in the model. Suppose P 
is such that 

E(m) = Pa2 . (29) 

Then the ANOVA estimator of (I’ is Ci’, obtained from m = Pa2 as 
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provided P is nonsingular, as is the case in most standard analyses. In the case 
of Table 4.6 

b n O n 1  

E(tn)=[' 0 an O n 1  '][:I, 
0 0 0 1  a, 

with 
- 1  

bn 

1 

an 
- 

0 

0 

0 

- 1  
an 

1 
n 

0 

- 

commensurate with (26). 
Clearly, the estimators in (30) are unbiased, because 

E ( a 2 )  = P-'E(m) = P-'Pa2 = a*. 

Thus, when using balanced data, for either random or mixed models, ANOVA 
estimators of all variance components are unbiased. But this unbiasedness is 
not necessarily a feature of all applications of ANOVA methodology to 
unbalanced data-as is discussed in Chapter 5. 

The estimators in (30) have the smallest variance of all estimators that are 
both quadratic functions of the observations and unbiased. That is to say, they 
are minimum variance, quadratic unbiased ( MVQU). This property was 
established by Graybill and Hultquist (1961) and applies to all ANOVA 
estimators from balanced data. Note that it does not demand any assumption 
of normality. When such assumptions are made, the estimators in (30) have 
the smallest variance from among all unbiased estimators, both those that are 
quadratic functions of the observations and those that are not. And this, too, 
is the case for all ANOVA estimators from balanced data. Thus, under normality, 
ANOVA estimators of variance components are minimum variance, unbiased 
(MVU). This result is presented in Graybill ( 1954) and Graybill and Wortham 
(1956). It is to be emphasized that it applies only to balanced data. 

The possibility of ANOVA methodology yielding a negative estimate of a 
variance component is discussed briefly in Section 3.512. Clearly, such an 
occurrence is an embarassment, because variances are positive parameters (well, 
at least non-negative), and so interpretation of a negative estimate is a problem. 
Several courses of action exist, few of them satisfactory. 
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( i )  Accept the estimate, despite its distastefulness, and use i t  as evidence 
that the true value of the component is zero. Although this interpretation may 
be appealing, the unsatisfying nature of the negative estimate still remains. This 
is particularly so if the negative estimate is used in estimating a sum of 
components. The estimated sum can be less than the estimate of an individual 
component. For example, in (56) of Chapter 3 we got 8; = 92 and 8: = - 10, 
giving var(y) = 8; + 8: = - 10 + 92 = 82 c d:, which does not make sense. 

(i i)  Accept the negative estimate as evidence that the true value of the 
corresponding component is zero and hence, as the estimate, use zero in place 
of the negative value. Although this seems a logical replacement such a truncation 
procedure disturbs the properties of the estimates as otherwise obtained. For 
example, they are no longer unbiased, but their mean squared error is less. 

(i i i)  Use the negative estimate as indication of a zero component to ignore 
that component in the model, but retain the factor so far as the lines in the 
analysis of variance table are concerned. This leads to ignoring the component 
estimated as negative and re-estimating the others. Thompson (1961, 1962) 
gives rules for doing this, known as “pooling minimal mean squares with 
predecessors”, and gives an application in Thompson and Moore (1963). 

( iv)  Interpret the negative estimate as indication of a wrong model and 
re-examine the source of one’s data to look for a new model. In this connection, 
Searle and Fawcett (1970) suggest that finite population models may be viable 
alternatives because they sometimes give positive estimates when infinite 
population models have yielded negative estimates. Their use is likely to be of 
limited extent, however. In contrast, Nelder (1965a, b) suggests that at least for 
split plot and randomized block designs, randomization theory indicates that 
negative variance components can occur in some situations. Such an apparent 
inconsistency can arise from the intra-block correlation of plots being less than 
the inter-block correlation. 

( v )  Interpret the negative estimate as throwing question on the method 
that yielded it, and use some other method that yields non-negative estimators. 
Two possibilities exist. One is to use a maximum likelihood procedure, as 
discussed in Chapter 6. A second possibility is to use a Bayes estimator, for 
which the reader is referred to Section 3.9 for an introduction and to Chapter 
9 for more general consideration. 

(vi) Take the negative estimate as indication of insufficient data, and follow 
the statistician’s last hope: collect more data and analyze them, either on their 
own or pooled with thobe that yielded the negative estimate. If the estimate 
from the pooled data is negative that would be additional evidence that the 
corresponding component is indeed zero. 
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Obtaining a negative estimate from the analysis of variance method is solely 
a consequence of the data and the method. It in no way depends on normality. 
However, when normality is assumed, it is possible in certain cases to derive 
the probability of obtaining a negative estimate, as illustrated in Section 3.5d-vi. 
Generalization of this is shown in Section 4.5, which follows. 

4.5. NORMALITY ASSUMPTIONS 

No particular form for the distribution of error terms or of the random 
effects in a model has been assumed in this chapter up to now. All the preceding 
results in the chapter are true for any distribution. We now make the normality 
assumptions that the error terms and the random effects factor are normally 
distributed with zero means and the variance-covariance structure discussed at 
the start of Section 4.2. That is, the effects of each random factor have a 
variance-covariance matrix that is their variance (component) multiplied by 
an identity matrix; and the effects of each random factor are independent of 
those of every other factor and of the error terms. Under these conditions we 
assume normality. Thus, for example, for the 2-way crossed classification of ( 1 )  
and (2) we define 

a = { c  a,),41, 8 = { c  B,),Pl,  

7 = { E  Y i j ) i . j  and = { c  e i j k } i , j , k 9  (31) 

where in 7 and e the elements are arrayed in lexicon order, i.e., ordered 
respectively by j within i, and by k within j within i. Then the normality 
assumptions, based on ( 13)-( 15), are 

a. Distribution of mean squares 
Let L, S, and M, be the degrees of freedom, sum of squares and mean square 

MI = & / A  (33) 

in a line of an analysis of variance of balanced data. Under the normality 
assumptions just described it can be shown that 

x / ;  and the S,s are independent. 
s, 

E ( M , )  
- N  

Hence (34) 

AM, 
UM,) 
- - d; and the M , s  are independent . 
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Result (34) is derived by writing S, / E (  M,) as a quadratic form of y'Ay in 
the observation vector y, and applying Theorems S2 and S3 of Appendix S. In 
applying these theorems to random or mixed models V is not .,"I, as it is in 
the fixed model, but is a matrix whose elements are functions of the 0 2 s  of the 
model, as illustrated in (58) of Chapter 3. Nevertheless, for the A-matrices 
involved in expressing each S, / E (  M,) as a quadratic form y'Ay it will be found 
that AV is always idempotent. Furthermore, for the random model, p has the 
form pl ,  and p'Ap = p1'Alp will, by the nature of A, always be zero. Hence, 
for the random model the x 2 s  are central, as indicated in (34). Pairwise 
independence is established from Theorem S3, whereupon the underlying 
normality leads to independence of all the Ss (and Ms). For the mixed model, 
(34) will also apply for all sums of squares whose expected values do not involve 
fixed effects; those that do involve fixed effects will be non-central x 2 s .  This is 
illustrated further in Section 4.6. 

b. Distribution of estimators 
The ANOVA method of estimation, that of equating mean squares to their 

expected values, yields estimators of variance components that are linear 
functions of mean squares. These mean squares have the properties given in 
(34). The resulting variance components estimators are therefore linear functions 
of multiples of x2-variables, some of them with negative coefficients. No closed 
form exists for the distribution ofsuch functions and, furthermore, the coefficients 
are themselves functions of the population variance components. 

Example. In Table 4.5 

(a - 1)MSA 2 
- L - 1  bna; + no: + a: 

and, independently, 

( U  - l ) (b  - 1)MSAB 
x(a- l)(b- 1 )  * no: + o,2 

Therefore 

8: = 

d - - 

MSA - MSAB 
bn (35) 

1 bno: + no: + of nu: + o," 2 
20-1 - & - l ) ( b - l )  9 (36) bn(a - 1) bn(a - l ) (b  - 1) 

d 
where the notation x = y means that x and y have the same distribution. No 
closed form of the distribution of (36) can be derived, because linear combinations 
of independent x2-variables (other than simple sums) do not have a x2- 
distribution. This state of affairs is true for these kinds of variance components 
estimators generally. Were the coefficients of the x2s known, the methods of 
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Robinson ( 1965), Wang (1967) or Fleiss (1971), or numerical integration, could 
be employed to obtain the distributions. 

In contrast to other components, the distribution of 8: is always known 
exactly, under normality assumptions: 

where fMsE is the degrees of freedom associated with MSE. 

of m follow (34) and so, for example, M, - E ( M , ) f ;  x2(fr). Now write 
Generalization of (36) arises from (30), which is d2 = P-’rn. The elements 

where there are k lines in the analysis of variance being used. Then from (30) 

(38) 
d d 

8’ = P-’CE(rn) = P-’CPa2.  

In this way the vector of estimators is expressed as a vector of multiples of 
central X2-variables. 

c. Tests of hypotheses 
Expected values of mean squares (derived by the rules of Section 4.2) often 

suggest which mean squares are the appropriate denominators for testing 
hypotheses that certain variance components are zero. Thus in Table 4.6 
MSAB/MSE is appropriate for testing the hypothesis H: a: = 0; and 
MSB/MSAB is the F-statistic for testing H: a$ = 0. In the random model all 
ratios of mean squares are proportional to central F-distributions, because all 
mean squares follow (34). In the mixed model the same is true of ratios of mean 
squares whose expected values contain no fixed effects. 

The table of expected values will not always suggest the “obvious” 
denominator for testing a hypothesis. For example, suppose from Table 4.2 we 
wished to test the hypothesis a: = 0. From that table we have, using M,,  M2, 
M 3  and M,, respectively, for MS(B), MS(C:B), MS(AB) and MS(AC:B), 

E ( M 1 )  = E[MS(B)] = &,a; + k2a:b + k,a:b + k,a:c:b + af ,  

E(M2) = E[MS(C:B)] = &2 .bb k4aiC:b + 0,. 
2 

E(M3) = E[MS(AB)] = 
2 E ( M , )  = E[MS(AC:B)] = k4a:c:b + 

where we have here written the coefficients of the a’s, the products of ns shown 
in the column headings of Table 4.2, as ks:  e.g., k ,  = n,,n,n,. It is clear from 
these expected values that no mean square in the table is suitable as a 
denominator to M, for an F-statistic to test H: a; = 0, because there is no 
mean square whose expected value is E( M, )with the a; term omitted, namely 
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However, there is a linear function of the other mean squares whose expected 
value equals E ( M , )  - k l  a:, namely 

E ( M z )  + E ( M 3 )  - E ( M 4 )  = k,O:::, + k3a;b -k k,a;c:b + 6: . (40) 

From this we show how to use the mean squares in (39) and (40) to calculate 
a ratio that is approximately distributed as a central F-distribution. 

In (40) some of the mean squares are involved negatively. But from (39) and 
(40) together it is clear that 

E ( M , )  + E ( M , )  = k,a; + E ( M , )  + E ( M 3 ) .  

E ( M ,  + . . *  + M,) = ka,2 + E ( M ,  + * . *  + M,) 
From this let us generalize to 

(41) 

and consider testing the hypothesis H: a; = 0 where af is some component of 
a model. The statistic suggested by Satterthwaite (1946) for testing this 
hypothesis is 

(42) 
M' M, + * * .  

M" 
F = - =  + Ms, which is approximately N F;, 

M, + a * *  + M, 
where i t  is implicitly assumed that no mean square occurs in both numerator 
and denominator of (42), and where 

In p and q the term fr is the degrees of freedom associated with the mean square 
Mi. Furthermore, of course, p and q are not necessarily integers and so, in 
comparing F against tabulated values of the 9-distribution, interpolation will 
be necessary. 

The basis of this test is that under H: a," = 0 both numerator and denominator 
of (42) are distributed approximately as multiples of central X2-variables (each 
mean square in the analysis is distributed as a multiple of a central x * ) .  
Furthermore, in (42) there is no mean square that occurs in both numerator 
and denominator, which are therefore independent, and so F of (42) is distributed 
approximately as as shown. 

Both M' and M" in (42) are sums of mean squares. p of (43) was derived 
by Satterthwaite (1946) from matching the first two moments of p M ' / E ( M ' )  
to those of a central xz with p degrees of freedom. This yielded p of (43) with 
p M ' / E ( M ' )  being distributed approximately as x i .  (A  similar result holds for 
M" with q degrees of freedom.) More generally, consider the case where some 
mean squares are included negatively. Suppose 

M, = MI - Mz > 0, 
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where M ,  and M 2  are now sums of mean squares having fi and f2 degrees of 
freedom, respectively. Let 

and 

Then, simulation studies by Gaylor and Hopper (1969) suggest that 

30 M o  is approximately - 
E ( M 0 )  

provided 

P > 9fi,Q975, f l  Q 100 and f l  Q 2f2, 

where 92.0.975 is defined by Pr { 9fi < 92,0.975} = 0.975. They further suggest 
that p > 9jjo.975 “appears to be fulfilled reasonably well” when 

b > 9f i ,  0.975 sf:, 0.50 

Under these conditions, Satterthwaite’s procedure in (42) and (43) can be 
adapted to functions of mean squares that involve differences as well as sums. 

d. Confidence intervals 
In ANOVA tables of balanced data, mean squares are, under normality 

assumptions, distributed independently as multiples of X’-distributions, as in 
(34). Therefore an exact 1 - a confidence interval on any E(  M,) is, similar to 
line 1 in Table 3.4, 

where x : , ~  and x : , ~  are, for the X2-variable ~ 3 ,  defined by 

Pr{Xj.L < 2: < x:,,} = I - a .  (45) 

E ( M , )  is, of course, a linear combination of n2s, e.g., anai + no: + 03 of 
Table 4.5. 

Likewise, a 1 - a confidence interval on a ratio E( M , ) / E (  M , )  is 

where the 9-values for the St-distribution with fi and fi degrees of freedom 
are defined by 

(47) 

The intervals (44) and (46) are those of Theorem 15.3.6 of Graybill ( 1976, p. 625). 

PrWh*/;,L Q 9 4 4  Q 4tJ,,/;,u} = 1 - a * 
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Suppose, as is often the case with balanced data, that two expected mean 
squares differ by only a (multiple of a) a’; e.g., 

E(  M,) = ko’ + E(  MI) . (48) 

Then a 1 - 2% approximate confidence interval on a’ is 

where F = M,/M, and the 9 are just as in (47), except that there fi is the 
numerator degrees of freedom and here it is fi. This is a special case of Theorem 
15.3.5 of Graybill (1976, p. 624), which has a linear combination of variance 
components in place of a2 in (48) and hence in (49) also. That in turn is an 
extension of the Williams (1962) result given as line 2 of Table 3.4. 

One general method for deriving approximate confidence intervals on a linear 
function of expected mean squares is that given by Graybill (1961, p. 361; 1976, 
p. 642) using upper and lower limits of the X2-density, as defined in (45). An 
approximate confidence interval on &kil l (  M,), provided Xi&, M, > 0, is given by 

where 

analogous to (43). Since r will seldom be an integer, ~ l ‘ , ~  and x,fU are obtained 
from tables of the central X2-distribution, using either interpolation or the 
nearest (or next largest) integer to r .  An adjustment to x , ” . ~  and x ; , ~  in (50), 
when r < 30, is given by Welch (1956) and recommended by Graybill (1961, 
p. 370), where details may be found. 

An improved confidence interval for C , k l E ( M , )  when every k ,  is positive is 
given by Graybill and Wang (1980). For u - 9; we define P:,,, akin to F, 
and Fu of Chapter 3, by Pr{u > F;,,} = a so that 

Pr{u < 9:,,} = 1 - a, and hence Pr{ u < 9;,l-a} = a 

For independent mean squares M, with degrees of freedom, define 

and 4, =-- l 1  
I 

p , =  1 - 
PL, I - a, S’L, a, 

for 1 > a, > 0 and i = I ,  2,. . . , s. Then an approximate 1 - a confidence interval 
on C , k , E ( M , )  is 

X,klMi - 4- < C , k i E ( M , )  < C , k , M ,  + ,/-. 
Khuri (1984) shows, with balanced data, how to deal with the general mixed 

model so as to develop simultaneous confidence intervals for functions of the 
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variance components based on Khuri ( 1981); and, when the ANOVA table 
provides no exact confidence intervals on estimable functions of fixed effects, 
Khuri (1984) develops a method for deriving suitable intervals. His work is 
inspired by results given in Scheffk (1956; 1959, Chap. 8) for the 2-way 
classification, extended by Imhof ( 1960). 

Other methods for finding simultaneous confidence intervals on ratios of 
variance components are to be found in Broemeling (1969). And Boardman 
(1974) contains results of some Monte Carlo studies for comparing some of 
these intervals for cases like (48). These and a host of other (mostly approximate) 
confidence intervals are reviewed in very readable form in Burdick and Graybill 
(1988). 
e. Probability of a negative estimate 

Whenever Miand MIaresuch that(48)is true, theANOVAestimatorofu2 is 

b2 = (Mi - Mj)/k . 
Then the probability of b2 being negative is 

Pr(b2 is negative} = Pr{Mi/MI < 1) 

This provides a means of calculating the probability of the estimator (51 ) being 
negative. It requires giving numerical values to the variance components being 
estimated because E( MI) and E( M,) are functions of the components. However, 
in using a series of arbitrary values for these components, calculation of (52) 
provides some general indication of the probability of obtaining a negative 
estimate. The development of this procedure is given by Leone et al. (1968). 
Clearly, it could also be extended to use the approximate F-statistic of (42) for 
finding the probability that the estimate of u: of (41) would be negative. 
Verdooren ( 1982) also deals with the probability of obtaining negative estimates. 

An example of (52) is Pr( 6: < 0) given in Section 3.5d-vi. 

1. Sampling variances of estimators 
Sampling variances of variance component estimators that are linear functions 

of X2-variables can be derived even though the distribution functions of the 
estimators, generally speaking, cannot be. The variances are, of course, functions 
of the unknown components. 

From d 2  = P-’m of (30), where m is a vector of mean squares, 

var(ci2) = P - ’  var(m) P - ”  . 
And with 

var(M,) = 2cE(Mi)12 and cov(M,, M I )  = 0, 
si 

(53) 

(54) 
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from (34) 
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Then on using M z / ( S ,  + 2) as an unbiased estimator of [ E ( M i ) I 2 / f i ,  from 
Appendix S.3b, we have an unbiased estimator of var(6’) as 

An example is given in Section 3.5d-iii. 

4.6. A MATRIX FORMULATION OF MIXED MODELS 

Section 3.2 shows a matrix formulation of the model for balanced data from 
a 1-way classification, introduced there largely by means of an example. We 
now extend that formulation, first to be applicable to any mixed model and 
then show the specifications for balanced data. 

a. The general mixed model 
The starting point is the traditional fixed effects linear model written as 

y = Xp + el 

where y is an N x 1 vector of data, p is a p x 1 vector of fixed effects parameters 
occurring in the data, X is a known N x p coefficient matrix and e is an error 
vector defined as e = y -- E(y) = y - Xp and thus has E(e) = 0. To e is usually 
attributed the dispersion matrix var(e) = a:1,. X is often a matrix of zeros and 
ones, in which case it is known as an incidence matrix, because then, in the 
expected value of the data vector, it indicates the incidence of the parameters 
that are in p. But X can also include columns of covariates, and in regression 
these may, apart from a column that is IN, be its only columns. To cover 
all three of these possibilities, X is nowadays called a model matrix 
(Kempthorne, 1980). 

In variance components models the random effects of a model can be 
represented as Zu, of a nature that parallels XP when X is an incidence matrix. 
u will be the vector of the random effects that occur in the data and Z the 
corresponding matrix, usually an incidence matrix. Moreover, u can be 
partitioned into a series of r sub-vectors 

u = [u; u; ... Ui]’, (57) 

where each sub-vector is a vector of effects representing all levels of a single 
factor occurring in the data, be it a main effects factor, an interaction factor or 
a nested factor. r represents the number of such random factors. For example, 
the I-way classification random model, with model equation y i j  = p + ai + ei j ,  
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has r = 1 and u1 = a. The 2-way classification random model, ylik = p + a, + 
/3, + y,, + elg,  has r = 3 with u1 = u, u2 = fl and u j  = y. 

Incorporating u of (57) into y = Xfl + e gives a general form of model 
equation for a mixed model as 

y = Xp + Zu + e, ( 5 8 )  

with fl representing fixed effects and u being for random effects. X and Z are 
the corresponding model matrices, with Z often an incidence matrix, and e is 
a vector of residual errors. Definition of e is based on first defining 

E(y) = Xfl and E(y I u) = Xp+ Zu (59) 

e = y - E(y1u). (60) 

E(y 1 u)  is the conditional mean of y, given that u represents the actual random 
effects as they occur in the data. Put more carefully, by E(y I u )  we would mean 

(61 1 
where Y and U would be veczors of random variables for which y and u are 
the realizations in the data. Thus (61) would be the expected value of the 
random variable Y, given that the random variable U has the value u. This use 
of capital letters as random variables is standard in much of the writing of 
mathematical statistics, but when used as here in vector form it conflicts with 
our preferred use of capital letters as matrices. Therefore the notation of (58) 
is retained: y and u do double duty as random variables and as realizations 
thereof. 

and then 

E(Y(U = u)  = xp + zu, 

For ( 5 8 )  we therefore have 

E(y)=Xfl and E ( e ) = O .  (62) 

To e we now attribute the usual variance-covariance structure for error terms: 
every element of e has variance uf and every pair of elements has covariance 
zero, i.e., 

var(e) = of I, . (63) 

Similar properties are attributed to the elements of each u,: 

var( u,) = u: I,, V i, (64) 

with qr being the number of elements in u,, i.e., the number of levels of the 
factor corresponding to u, that are represented in the data. And to elements of 
u, and to those of u, are attributed a zero covariance. Thus 

cov(u,, u)) = 0 V i # j ;  (65) 

(66) 

and similarly for all elements of u and e: 

cov(u, e’) = 0 . 
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Models incorporating (64)-( 66) have all possible covariances zero, and so 
provide no opportunity for dealing with situations where components of 
covariance would be appropriate. Models that do include components of 
covariance are discussed in Section 1 1.1. 

Utilizing (64)-(66), the variance structure of u is 

Then partitioning Z conformably with u of (57) as 

Z = [ Z ,  zz ... ZP] 

gives 

Hence, from (58)-(67) 

v = var(y) = ZDZ' + ~ Z I  = ~:z,z;  + U:I,. 
I =  1 

A useful extension of this is to observe that since e is a vector of random 
variables just as is each ui, we can define e as another u-vector, uo say, and 
incorporate it into (68); i.e., define 

u,, =e ,  Zo = I, and ui =oZ 

and so have 
r 

Y = XS + c z,ui 
i = O  

and 
r 

i = o  
v = z,z;o: . 

The originators of this formulation were Hartley and Rao (1967), who use 
it to great advantage for unbalanced data. We now illustrate this formulation 
for balanced data from a 2-way classification, from which we generalize to any 
multi-factored model for balanced data. 

b. The 2-way crossed classification 

4. Model equation. Section 3.2a develops the general form 

y = (1, C3 l n ) p  + (1, C3 1,)a + e 
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- 
Y 1 1  

Y 12 

713 

YZl 

Y 2 2  

Y23 

and 
2 V = (1, @ J,).,’ + (I ,@ In)O, 

for the 1-way classification having model equation y i j  = p + ai + ell for 
i = 1 ,..., a and j = 1 ,..., n. We now do the same for the 2-way crossed 
classification with interaction with model equation, of (3), 

Y i j k  = p + + + Y i j  + e i j k ,  (72) 

for i = 1,. . ., a, j = 1,. . ., b and k = 1,. . . , n. Suppose a = 2, b = 3 and n = 2; 
then arraying the Y r j k  in lexicon order (ordered by k within j within i )  in a 
12 x 1 vector gives 

Y =  

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

[::I + 

. ,  

81 
8 2  

D 3  

+ 

I . . . . .  

I . . . . .  

. I . . . .  

. I . . . .  

. . I . . .  

. . I . . .  

. . . I . .  

1 . ’  

1 .  

1 .  

1 

1 

. . .  

. . . .  

. . . .  

. . . . .  

. . . . .  

t e .  

y = (1, @ @ 1 n ) p  + (1, @ I b  @ l,)a + ( l a  @ I b  @ I n ) B  

+ (1, @ 1, 8 l n ) Y  + 8 I, 8 ‘ (73) 

Several features of (73) need to be noted. First, every coefficient matrix in 
(73) is a Kronecker product (KP)  of three terms: three, because it is a 2-way 
classification and 3 = 2 + 1 (two main effect factors plus error). Second, every 
term in every K P  is a I or an 1. Third, the orders of the three terms in every 
KP are a, b and n, respectively, the number of levels of the two factors and the 
number of observations in each cell; and the sequence of these orders, a, b and 
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then n matches, and is determined by, the nature of the lexicon ordering of the 
data in y, i within which j is ordered, within which k is ordered. 

Fourth is a characteristic that determines the form of each K P  that is a 
coefficient matrix in (73): every term in every K P  is a 1 except that it is I for 
the term corresponding to the parameter vector which that K P  is multiplying. 
For example, in (I, Q 1, @ 1,)a the vector being multiplied is a ,  and so the first 
term in the KP is I, and not 1,. Similarly, in (1, Q I,@ 1,)p the second term 
of the K P  is I,, corresponding to the p being multiplied. This principle easily 
adapts itself to the other K P  matrices in (73). Thus by thinking of y as requiring 
a and p for its definition (since yi, is an interaction effect of the a-factor with 
the b-factor), then in the term (I, @ I b  Q 1,)y in (73) the I, and I b  occur rather 
than 1, and 1,. Likewise for the last term, (I, Q I b  Q IJe, thinking of eijk as 
being nested within the ( i , j )  cell then requires a, and e itself for defining eijk, 
and so I,, 1, and I, is appropriate. And finally in the first term, (1, Q 1,)p, 
defining p requires neither a ,  fl nor e, and so the K P  has I,, 1, and 1,. 

4. Random or mixed? In comparing (73) with y = Xp + Zu + e, the 
determination of which parts of (73) constitute Xfl and which are Zu depends 
entirely on the decision as to which parts of (73) are fixed and which are random; 
and this decision is quite external to the algebraic form of (73). p is always 
fixed: and so in random models Xp is ( la@ lb @ 1,)~. If a is also to be considered 
fixed then in the resulting mixed model Xp is the first two terms of (73). 

-iii. Dispersion matrix. The terms of (73) that determine V do, of course, 
depend upon which terms of (73) are taken as random. Whichever are so defined, 
they are assumed to have variance and covariance properties in accord with 
(64)-(66). Hence, for example, on taking a as random 

varC(Ia Q Q 1,)aI = ( I , @  1, Q 1n).:I,(I,q Q 1, Q In)' 

= (1, (8 1b @ 1,).:(1: @ 16 @ 1:) 

= .,"(I, Q Jb Q J n h  

after using the properties of KPs in Appendix M.2. Using this kind of result, 
and results like cov(a, b') = 0 and cov(a, e') = 0 from (65) and (66), it is easily 
seen that for the as, P s  and ys all being taken as random in (73) 

V = (1, Q Jb Q J,).: + (J, @ 1, @ Jn).; 

+ (1, Q I b  Q J,)O: + (1, Q 1, @ I,)O,Z - (74) 

And for a mixed model with a representing fixed effects the term in a: in (74) 
would be dropped. 

c. The 2-way nested classification 

air is 
The model equation for a 2-way nested ciassification, with Pi, nested within 

Yijk = p + ai  + Pij + eijk, (75) 
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with, for balanced data, i = 1 , . . . , a ,  j = 1 ,..., b for each i ,  and k = 1 ,..,, n. 
Algebraically, this is the same as (72) for the 2-way crossed classification except 
that in (72) is deleted and yi j  is replaced by /3,, in (75). Making these changes 
in (73) leads to the vector form of the model equation (75) being 

Y = ( I , @  1 b @  1n)p + (I ,@ f b  @ 1,)a 

+ (I, @ I,@ 1 n ) $  + (1, @ 1, @ I,,)e, (76) 

(77) 

with, for the random model, 

V = ( I ,@ Jb @ Jn)g:  + (1, @ I b  8 Jn)bgZ + (1, @ I b  @ 1 n ) g :  * 

d. Interaction or nested factor? 
In the with-interaction model equation of (73), note that the coefficient of 

y, namely (I, @ I, @ ln), is the same as the coefficient of $ in the nested model 
of (76). How then, one well might ask, does one identify y in (73) as representing 
interactions and $ in (76) as representing a nested factor? The answer relies on 
characteristics of this way offormulating models. Consider y in (73). It represents 
interaction between factors A and B, and so they are both needed for defining 
y. Therefore its KP has I for both A and B and so is (I, @ I,@ l,,). Next consider 
$ in (76). It represents a B-factor that is nested within A. Therefore it needs 
both A and B for defining it, and so it too has (I, @ I, @ 1,) as its KP. Therefore, 
since both 7 in (73) and $ in (76) are pre-multiplied by the same KP, the 
question is how, without knowing that y in (73) and $ in (76) represent different 
kinds of factors, can we ascertain this distinction just from the model equations 
(73) and (76)? Easily. In (73) there is a term that represents the A-factor, and 
there is also one that represents just the B-factor: therefore, in answering our 
question, the y-term that has both A- and B-factors represented by I in its KP 
is an interaction term. And complementary to this, in (76), where there is no 
term representing a main effect B-factor, that tells us that $ (which also has 
both A- and B-factors represented by I in its KP) must represent a factor nested 
within A. It is that absence of a term in just B in (76) that triggers the conclusion 
that $ represents nesting within A. 

e. The general case 
The preceding examples and as many more as one cares to consider will 

provide convincing evidence that (even in the absence of rigorous proof) this 
style of formulation applies quite generally. As Cornfield and Tukey (1956) so 
rightly say in a similar context, in carrying out detailed steps such as those of 
the examples, the “systematic algebra can take us deep into the forest of notation. 
But the detailed manipulation will, sooner or later, blot out any understanding 
we may have started with.” Furthermore, having accomplished this, we would 
then, so far as developing general results is concerned, be no more than “ready 
for another step of induction and so on” as Cornfield and Tukey aptly put it. 
We therefore give the general result towards which this type of induction 
apparently leads. 
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4. Model equation. In the model equation for a linear model of p - 1 
main effect factors (crossed and/or nested) the coefficient of the vector of effects 
corresponding to each factor, and to each interaction of factors, can be 
represented by a K P  of p matrices each being an I-matrix or a I-vector. Thus 
each term in the model equation can be represented in the form 

( 1 k p @  1ki-1~ @ I~;J*@ @ Ijll,)a, (78) 

where 1,, is a summing vector of order np, with i, = 0 or 1, with l& being the 
zero'th power of the l,,-vector and hence (in accord with scalar algebra where, 
for example, 7' = 1 ) is given the value 1. Since in (78) it is the values of i,, , . . , i, 
that determine the nature of the KP, and which are determined by what the 
factor (represented by a) is, we can in fact use i = Lip . . , i ,  J and write any 
linear model equation as 

In this general formulation, every element of i is 0 or 1. When every element 
is unity, i = l,, every term in the K P  is a 1-vector, and the corresponding a1 
is p; hence the term in ul is pl;  and when every element in i is zero, i = 0, every 
term in the K P  is an I-matrix and the corresponding uo is e. And since every 
value of i in (79) is a binary number, there are 2, possible terms in (79). In 
practice, of course, the ui corresponding to many of those binary numbers will 
not exist in the model and so (79) will have fewer than 2 P  terms. An example 
is (73) where p - 1 = 2, with 2 p  = 8, but only 5 terms occur in (73). 

This formulation of a model for balanced data has been used by a 
variety of authors; e.g., Nelder (1965a, b), Nerlove (1971), Balestra (1973), 
Smith and Hocking ( 1978), Searle and Henderson (1979), Seifert (1979) and 
Anderson et al. ( 1984). 

We can also note that the order of ul is the product of the ni,s that correspond 
to non-zero i ,  in i. This can be written as np, [ 1 + (n,, - 1 )it] since i, is either 
Oor 1 .  

-id. Dispersion matrix. When (79) represents a random model, with every 
ui therein being a random effect (except ul = p) the variance-covariance matrix 
of y is 

where 
Bi = var(a,) .  

Searle and Henderson (1979) have a useful result for the inverse of V. First 
define 

Tp=[' 0 np '].[' 0 n P - ]  ]@**..[' 0 n1 '3 



14.61 A MATRIX FORMULATION OF MIXED MODELS 145 

and 

8, = coo ..., 60 ... 01 80 ... I0 . * I  ~1...111" 
Then the vector of 2p (possibly) distinct eigenvalues of V is given by 

kP = TPOp , (81) 
Now define 

1 
1 '1, [ '  ;co...oo J.0 ... 01 l o  . . .  10 J.1 ... I 1  

v P =  - - - 

the vector of reciprocals of the eigenvalues of V (and thus the eigenvalues of 
V - ' ). Then write 

Calculate 

r p  = T i  ' v,, 

and the inverse of V is 

v;' = 9 ri(Jkp @ Jk;-I, @ .-. @ J:,) . (84) 

It is to be noticed that V-' in (84) is a linear combination of the same 
matrices (KPs of Js to the power of 0 or 1) as is V of (80). The only difference 
is in the coefficients: 8s in (80), which are d s ,  and T S  in (84); and through 
(8 1 )-( 83) the T S  are derived from the 8s. An interesting feature of this relationship 
is that the pattern of non-zero os is not necessarily the same as the pattern of 
non-zero 8s. Thus it is possible to have a zero 8i for some i and ri for the same i 
can be non-zero. An example of this is shown in Searle and Henderson (1979), 
wherein the only non-zero 8s for the random model of the 2-way classification 
with interaction (Table 4.5) are Om = a:, = 0; and 8,o1 = 0;. 

These are the four non-zero coefficients in V. In V-', the four r-values with 
the same subscripts as these 8s are non-zero, but so also is rill, whereas O I l 1  
is zero. 

The determinant of V is also available from Searle and Henderson. With the 
eigenvalues of V being given by (81), and labeled &, through 41, as indicated 
in (82), 

i - 0  

= of, 

the multiplicity of li = lice_ is mi = (n, - 1)' - i r ,  

r =  1 

where the number of levels of the rth factor is n,. Therefore 
1 

i = o  
I V I  = n ( W l  . 
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4.7. MAXIMUM LIKELIHOOD ESTIMATION (ML) 

Many of the general principles of estimating variance components by 
maximum likelihood are discussed in Section 3.7: the use of normality, the 
derivation of ML equations, the solutions of which [e.g., (108) of Chapter 31 
are ML estimators only if they are in what is called a feasible region (Section 
3.7a-iii) wherein uf is positive and all other 0’s are zero or positive. And if one 
or more solution is negative then the whole set of solutions has to be adapted 
[e.g., as in ( 1  14) and ( 1  15) of Chapter 31 in order to have estimators that are 
in the feasible region. 

a. Estimating the mean in random models. 
As noted following (79), the term in al in (79) is pl, or, more exactly, plN 

when N = nf,, n, is the number of observations. Hence the likelihood under 
normality is 

as following (103) of Chapter 3. Differentiating log L with respect to p, and 
equating to zero, gives as the equation for the ML solution ofp, namely p, as 

1’Vllf i  = l’P-’y, (86) 

where fr-’  is V - ’  of (84) but with ML estimators of the 6’s replacing the u2s 
themselves. V - ‘ is given by (83); and for (86) we want 

1 

I I 

i = o  r = p  
= C Ti @ (la,Jk,). 

But, because i ,  = 0 or 1, 

lL,J:, = nil;, . 
Hence 

1 
l’v-’ = 1 Ti ( fi “f) 1; = 41; 

i = o  , = 1  

1 

i = o  
and so (86) is ql;lNfi = q l h y  for q = 1 7i 

fi = j j ,  (87) 

the grand mean of all N observations. Thus for all random models the ML 
estimator of p is the grand mean of the data. 
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b. Four models with closed form estimators. 
We here summarize the ML estimators of variance components obtainable 

from balanced data of four different models. The first, for the sake of 
completeness is the 1-way classification of Section 3.7. For none of them do we 
show the derivation, preferring to simply quote the results so that they are 
readily available for use by an interested reader who can, if so inclined, carry 
out the derivation based as it is, on assuming that y follows a multi-normal 
distribution. There are at least two ways of doing this. One starts with 
partitioning the sum of squares in the exponent of the likelihood of y. That 
partitioning is done so as to be in terms of the sums of squares that occur in 
the analysis of variance for the model at hand. Then differentiating the likelihood 
will lead, via what is often tedious algebra, to ML equations for the variance 
components. An example of this is the 1-way classification, random model, 
balanced data, in Section 3.7a-i. 

A second method is to use the result for the general model 
r 

y = xp + c ziu, 
1=0 

introduced in (70). That result, derived in Section 6.2b, is that the ML equations 
are 

{,,, s e s q ( Z ~ ~ - ' ~ ~ ) } ~ , j c , ~ ~ ~  = {c sesq(Z,Py)},:,, 

P = v-' - v-'x(x'v-'x)x'v-' . 
where sesq ( A )  represents the sum of squares of every element of A; and 

Whichever of these methods is used the algebra can, as just mentioned, get to 
be quite tedious. 

4. The I-way random model. The model equation is 

Yij = C1 + Qi + eij; 

i = 1, ..., a, and j = 1, ..., n . 

TABLE 4.8. ANALYSIS OF VARIANCE OF A 1-WAY CLASSIFICATION 

Source d.f. Sum of Squares Mean Square 

A a - 1  SSA = Z,n( j , .  - j .J2 MSA = SSA/(a - 1) 
Residual a(n - 1 )  SSE = &Zj(yi j  - ji.)' MSE = SSE/a(n - 1 )  

Total an - 1 SST, = Z,Zj(yi, - j..)' 

ANOVA estimators: 

M L  solutions: 

8: = MSE 

6: = MSE 

c?: = (MSA - MSE)/n 

6: = [( 1 - l/a)MSA - MSE]/n 
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TABLE 4.9. 

Conditions 
satisfied by ML Estimators 
the M L  

M L E S T I M A T O R S O F U ~  ANDU: I N A  I-WAY RANDOMMODEL 

solutions at at 

6: < o  SST, /an 0 
6: 20 6: = MSE 6: = [( 1 - l / a ) M S A  - MSE]/n 

4. The 2-way nested random model. The model equation is 

Yijk = + al + P i j  + e i i k ;  

i =  1, ..., a, j = I ,  ..., b and k = I ,  ..., n . 

TABLE 4.10. ANALYSIS OF VARIANCE OF A 2-WAY NESTED, RANDOM MODEL 

Source d.f. Sum of Squares Mean Square 

A a - 1  SSA = Z,bn(j,.. - j... )* MSA = SSA/(a - 1) 

B within A SSB:A = Z,Z,n( j , , ,  - j,..)’ 
Residual ab(n - 1 )  SSE = Z,Z,Z,JY,,~ - j,,.)’ MSE = SSE/ab(n - 1 )  

Total abn - 1 SST, = Z,Z,Zk(y,,, - jj...)’ 

a(b - 1 )  MSB:A = SSB:A/a(b - 1 )  

ANOVA estimators: 

MSA - MSB:A MSB:A - MSE 
8: = , 8f = and 8: = MSE 

bn n 

ML solutions: 

( 1  - l /a )MSA - MSB:A 
6; = , 6f = df and 6: =8: = M S E .  

bn 

The ML estimators are as shown in Table 4.1 1. 

obtained by reading down the columns of Table 4.1 1, e.g., 
The formal statement of the M L  estimator of each variance component is 

when 6; Z 0 and 6f 2 0, 
[ SSAIa ;-MSB:A 

when 6: 2 0 and af c 0, 

otherwise. 

In contrast, each row of Table 4.1 1 indicates what the M L  estimators are for 
a particular set of circumstances that the data can produce, v i s -h is  positive 
and negative values of 6: and 6;. 
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TABLE 4.1 1. MLESTIMATOWSOF6~,6~ ANDbf INA2-WAY NESTEDCLASSlFlCATlON.RANDOMM0DEL 
~ ~~~ ~~~ ~~ 

Conditions 
satisfied MLE 
by the ML 
solutions a: 5; df 

~~ ~~ ~~~ ~ ~ ~ _ _ _ _  ~ ~~ 

MSE 

SSE + SSB:A 

SSAIa - MSB: A MSB:A - MSE 
d ;  2 0,a; 2 0 

6: >, 0, ti; < 0 

bn n 

0 
bn a(bn - 1 )  

SSA/a - 5: 

0 

0 

- M E >  MSE 
1 S S A + S S B : A  -( n ab 

0 
SST, 

abn 
- 

4ii. The 2-way crossed, with interaction, mixed model. The model equation 
is 

Y i j k  = + aI + f l j  + Y i /  + ei/&; 

i = 1 , . . . , a ,  j = 1, ..., b and k = I ,..., n; ais fixed . 

TABLE 4.12. ANALYSIS OF VARIANCE FOR THE 2 - W A Y  CROSSED CLASSIFICATION WITH INTERACTION 

Source d.f. Sum of Squares Mean Square 

SSA 
a - I  
SSB 

A a - I  SSA = W n ( j , . .  - j...)* MSA = - 

B h - 1  SSB = Ejan(j.j. - i...)’ MSB = - 
b - l  

SSAB 

(a - I)(h - I )  
SSE 

ah(n - 1 )  

AB ( a  - I ) (h  - 1 )  SSAB = ZiZjn(jij. - j,.. - j . j .  + j...I2 MSAB = 

Error ah(n - I )  SSE = zizj&(yijk - j i j . ) *  MSE = - 

ANOVA estimators: 

MSAB - MSE , a; = , a : = M S E .  
MSB - MSAB a; = 

an n 

ML solutions: 

, c+:=MSE. ( 1  - I/b)MSAB - MSE 
, c+; = 

( 1  - I/b)( MSB - MSAB) 6; = 
an n 
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TABLE 4.13. ML ESTIMATORS OF O;,  0 ;  AND 6: IN THE 2-WAY CROSSED CLASSIFICATION, MIXED 

MODEL 
~ 

Conditions 
satisfied by MLE 
the ML 
solutions a; a; 5: 

6; 2 0,ti; 2 0 ti; 6; ti: 
SSE + SSAB t i ;2OO,6 . f<O - 1 (SSB -- SSE + SSAB ) 0 

an b a b n - a - b + l  a b n - a - b + l  

ti: ZiZ,n(ji,* - Y...)’ 
ab - 1 

ti; < 0,6; 2 0 0 

6; < 0, &; < 0 0 0 
SST, 
abn 
- 

-iu. The 2-way crossed, no interaction, mixedmodel. The model equation is 

Yijk = + ai + P j  + eiJk;  

i - 1  , . . . , a ,  j = 1, ..., b and k = 1, ..., n; ais fixed. 

TABLE 4.14. ANALYSISOF VARIANCE FOR A 2-WAY CROSSEDCLASSIFICATION.” INTERACTION MODEL 

Source d.f. Sum of Squares Mean Square 

A a - 1  SSA = Zibn(ji.. - j...)’ M S A  = SSA/(a - 1 )  

Error abn - a - SSE = &xj&(yijk - j i . .  - j e j .  + j...)2 

B h - 1  SSB = Z,an(j.,. - Y...)’ MSB = SSB/(b - I )  

MSE = SSE/ 
b + l  ( a b n - a - b +  1)  

Total abn - 1 SST, = &xj&(yi]k - j...)’ 

ANOVA estimators: 

MSB - MSE 
8; = and ff: = MSE 

an 

ML solutions: 

b(an a - 1  - 1 )  ]MSE.  
SSB/b - 6: 

an 
&.a’ = 

Notice that the form of the ML estimators in Table 4.15 is the same as that 
in Table 4.9 for the l-way classification. 
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TABLE 4.15. M L  ESTIMATORS OF 0; AND 

0: IN A 2-WAY CROSSED CLASSIFICATION, 

MIXED MODEL, %EFFECTS FIXED 

Conditions 

the ML 
satisfied by MLE 

solutions a; at 
6; 2 0 

6; < 0 SST, 
abn 
- 0 

c. Unbiasedness 
Most ML estimators are biased, and so are many ML solutions if they are 

used as estimators. For instance, the example of Table 4.12 has E ( 6 : )  = 
E(MSE) = uf, and so bf is unbiased. But 

(1  - l/b)E(MSAB) - E(MSE) 
E(b;) = 

n 

no: + of 

n bn ’ 
= 0; - - (1  - l/b)(nat + of) - uf - 

showing tha 6; is not unbiased for 0:. Second, the solutions of the ML equations 
are not, as has been emphasized, the ML estimators. The estimators are truncated 
versions of the solutions, as for example in Table 4.13; and this truncation 
further negates unbiasedness. For example, suppose 17.” = 0 in the 1-way 
classification. The ANOVA estimator S: is unbiased yet it can be negative. And 
it will be negative often enough to balance out the occurrence of positive 
values to average zero. Deleting those negative values and substituting zero, to 
get the ML 3: therefore gives 3; as biased upwards. Moreover, in Table 4.13, 
the ML estimator of u,‘ is represented by the last column of the table, and the 
expected value of that estimator will involve the probabilities of solutions dB2 
and 6; being negative either singly or together-just as such a probability is 
illustrated in Section 3.7a-iv. 

Readers interested in the bias of the solutions of the ML equations for the 
four models of sub-section b will find details in Corbeil and Searle (1976b)- 
wherein the solutions are wrongly referred to as ML estimators! 

d. The 2-way c r d  classification, random model 
Lest the reader be led astray by the preceding examples into thinking that 

ML estimators of variance components from balanced data are always in closed 
form (as in those examples), we now consider the 2-way crossed classification 
random model, for which the ML estimators from balanced data are not in 
closed form. 
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Replacing p in L of (85) by jl = j of (87) leads to what is called the profile 
likelihood, which can be used for deriving ML estimators of variance components 
of the random model. Using balanced data, it is 

where V is the appropriate form of (80) and V-’ is available from (84). 
ML equations are obtained by equating to zero aL/aa2 for each u2 in the model. 
Applying this methodology to any particular random model involves nothing 
that is particularly difficult except that the whole process can be somewhat 
tedious (see E 4.1 1 for the 2-way nested classification). An alternative method 
of derivation, applicable to unbalanced data, but for which balanced data are 
a simplifying case, is given in Chapter 6, and even that simplification can be 
tedious. We therefore omit derivation of the ML equations that follow for the 
2-way crossed classification, random model. 

With interaction. Details of this model are given in Section 4.3. For 
writing the ML equations we define the following linear combinations of the 
vdriance components: 

4. 

eo = a:, el, = of + na: + bna;, 

el = a: + na,, 2 e12 = af + na: + anaf 

and (89) 

8, = of + na: + bno; + ano; = ell + 012 - O1 . 
Then, using the sums of squares defined in Table 4.3, tne ML equations are 

1 a -  1 b -  1 (a-  l ) (b-  l ) + a b ( n -  1) SSA SSB SSAB SSE +- - 
&+8,, 4, 2 + 4 1  40 -e:,+e:,+e: 4; +- 
1 a - 1  -+- 
I 

44 41 ,  

44 4 1 2  

b - 1  +- - 

SSA 
=- 

4: 1 

SSB =- 
4:2 

1 a - 1  b - 1  (a -  l ) ( b - 1 )  SSA SSB SSAB -+-+- + =-+-+-. 

Despite the tantalizingly apparent simplicity of these equations [which were first 
derived by Miller (1977)], they are in fact nonlinear in the 4 s  (even after using 
0, = dl I + t9,, - B,)except, through subtracting the last equation from the first, 
for df = MSE. Otherwise, there is no closed form of solution for the b2s. It has 
to be found, for each particular set of data, by using numerical methods. Since this 
is also the manner in which ML estimates have to be calculated from unbalanced 
data, discussion of such techniques is left until Chapter 8. 

44 4 1 1  412  4, e:, 4:2 4: 
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A re-writing of(90) that might be useful for iterative purposes is the following. 
First, requiring no iteration, subtracting the last equation of (90) from the first 
gives 

= MSE . SSE 
ab(n - 1) 

8, = 

Then the second and third equations can be written as 

e:1 

( 0  - 1 ) ( 4 1  + 4 2  - 41)’ 
d l1  = MSA - 

d12 = MSB 

And subtracting the second and third equation from the fourth gives 

Bf 
- 1  8, = MSAB + 

(a  - - 1 ) ( 4 1  + 412  - 4) 
These last three equations are clearly amenable to iteration. 

-ii. Nu interaction. If the no-interaction form of the model is used, its ML 
equations are derived from (89) and (90) by putting a: = 0 and combining SSAB 
and SSE, and omitting the last equation of (90). Thus with 

(91 1 8, = 8, = be ,  2 e l l  = 0,‘ + bna;, 012 = 03 + anaf 

and 

e4 = 03 + ana; + 6na; = e l ,  + el, - 8, 
the ML equations are 

1 a -  1 6 -  1 a b n - a - b +  1 SSA SSB SSAB+SSE 

1 a - 1  -+- 
& 011 

SSA =- 
@ l ’  

6 - 1  SSB 
=-, 

1 
- +- 
4 4  4 1 2  4 2  

These two are nonlinear in the 4s and have no closed form solution for them or 
the 6’s. 

e. Existence of explicit solutions 
The absence of explicit, closed form solutions to the ML equations in the 

preceding example may come as a surprise, considering that it is for balanced 
data, for which one so often has a strong intuitive feeling along the lines that 
“everything is straightforward”. But this is not so. Indeed Szatrowski and Miller 
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(1980) have a theorem that tells us when explicit ML solutions exist for balanced 
data from a mixed model. 

Suppose a mixed model has r random factors (excluding the error terms); and 
denote the number of different symbols used as subscripts in the model equation 
by s. Define tk as a row vector of order s that is null except for unity as its qth 
element when the pth random factor of the model has the qth subscript; and 
define to = 1,. Let T(r + = [to . . . t,]’. Let w1 ,. . . , w, be the columns of 
T and wo = 1. 

Recall a * b as the Hadamard product of two vectors a and b, it being a vector 
having elements qb , .  Define W as the smallest set containing wo, wl, ..., w, 
closed under Hadamard multiplication of vectors. Let n(W) be the number of 
distinct columns in W ;  distinct, not necessarily linearly independent. 

Theorem. The model has explicit ML solutions if and only if n( W )  = r + 1. 
Example 1. The 2-way crossed classification, with interaction, random 

model has equation Y i j k  = p + u, + /?, + y,, + efjk with r = 3 and s = 3. 

1 1 1  1 1 1 1 1  

T = [  0 1 0  1 0 01, w = [  1 1 0 0 0  1 0 1 0 0  ] * n ( w ) = s > 4 = 3 + 1 = r + t .  

1 1 0  1 1 1 0 1  

Therefore this model has, as we have seen in (90), no explicit ML solutions. 

with as fixed has r = 2 and s = 3. 
Example 2. The 2-way crossed classification, with interaction, mixed model, 

T =  ““I. 0 1 0 W =  [ “ ‘ ]  1 0 0 * n ( W ) = 3 = 2 + 1 = r + l .  

1 1 0  1 1 0  

Therefore this model has explicit ML solutions, as in Table 4.15. 

f. Asymptotic sampling variances for the 2-way crossed classification 
The general theory of maximum likelihood estimation has it that the 

large-sample dispersion matrix of a vector of ML estimators is the inverse of 
the matrix whose elements are minus the expected value of the second derivatives 
of the likelihood function. Details of this are shown in Chapter 6 in terms of 
the matrix formulation of a linear model 

I 

y = Xg + 1 Z,ui + e 
I =  1 

of (68) with V of (69). The result is that 
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consequences and implications of which are dealt with in Chapter 6. It suffices 
to say here that (93) can be used for the 2-way crossed classification, with 
interaction, random model of the preceding subsection, c-i. That in turn can be 
used for the no-interaction case of d-ii, and also for all of the four cases of the 
preceding subsection b, each of which can be treated as a special case of c-i. 
We deal with these six cases. 

4. The 2-way crossed classilfcation, with interaction, random model. The 
result of applying (93) to the 2-way crossed classification, with interaction, 
random model is that 

for 

b - 1  (a -  l ) (b -1 )  a - 1  b -  1 1 + - + - + z], 
$:I ( 3 2  

tap = a2n2( e:, + &) and t,, = n2 

with the 6s of (89). Note that (94) is an asymptotic equality, because it is a 
large-sample result. 
Note: The occurrence of “symmetric” (or “sym”) in a matrix as in (94) indicates 
that the matrix is symmetric. 

-ii. The 2-way crossed classilfcation, no interaction, random model. For 
this model put a: = 0 in (95) and delete the last row and column of (94). This 
gives for the 8s of (91), with 

a b n - a - b + I  a - I  6 - 1  1 

4 =  9; +B:,+O:,+B: 
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I - 
a(n- 1 )  an 

+ w  - nw 

a2n2 an2 

G Z  

symmetric n2w 

95, 0:2 
2 
b 

- - -  - -  

- I 

We can now use (94) and (95) to derive large-sample dispersion matrices for the 
four cases in sub-section b-the cases where the ML solutions are in closed 
form. In each of those cases the solutions are linear functions of independently 
X2-distributed mean squares and so sampling variances and covariances of those 
solutions could easily be found, as was done in Section 4.5f for ANOVA 
estimators. This was also done for the 1-way classification in (123) of 
Chapter 3. And at (127) of that chapter an expression for var(6:) was obtained 
taking into account the probability of 8: being negative. Neither of these 
derivations are being made here. What is being derived is large-sample variances 
and covariances, akin to (126) of Chapter 3. Indeed, we show in detail how that 
result is derived from (96). 

The 2-way crossed, with interaction, mixed model. With as taken as 
fixed effects all we need to do is use a: = 0 in the 9s of (89) and delete the 
second row and column of (94). This gives, with 

-iii. 

- 1  

a - 1  1 , for w =- + F  (99) 
9: I 2  

go = a:, 8,  = a: + no: = e l l ,  
g I 2  = a,' + na: + anat = e4, (97) 

ab(n- 1) t,, a2bnZ a - 1  + 7, t p p  = - and t,, = bnz( e: + &) (98) 
95, n e:2 

tee = 

1" a(n - 1) 0 1 4 - 6, 
I 

an(n - 1 )  I 

symmetric 
I 

a(n - 1)  

( 100) 

The &way crossed, no interaction, mixed model. In taking the as as 
fixed effects we adapt the preceding case to have no interactions by putting 

-iv. 
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o: = 0. This gives (97) and (98) as 

8, = of = 8, = e l ,  and e,, = 0,' + anoi = 8, 

and 

a - 1  + 
so that 

a2bn2 
and t,, = 

b(an - 1 )  b 
tee = + 

of (of + ana,2)2 (of + anaj)2 

This leads to (99), after deleting its last row and column, being 

1 an + 
of (of + (of + anoj)2 

(0: + anoi)2 
an a2n2 

(of + anoi)2 

1 - 1  r l  _. 

. (103) 
an 

a2n2 

- - 
1 + (an - 1 ) ( 1  + a n o i / a f ) 2  

Note that although putting of = 0 in (99) and deleting its last row and column 
yields (102), the same operations on (100) do not yield (103)-as neither they 
should. (The inverse of a submatrix is not necessarily part of the inverse of the 
matrix of which it is a submatrix.) 

g. Asymptotic sampling variances for two other models 

-i. The 2-way nested c/ass@cation, random model. Taking the model 
equation as yijk = p + ai + pi, + eijk of sub-section 4b-ii, we can derive its 
information matrix from (94) by putting o i  = 0 in (89), changing of to a: and 
deleting the third row and column of( 94). The changes in (89) and (95) lead to 

8, = of, 8, = of + no; = 8,,  and tI4 = of + no; + bna: = e l ,  
with (104) 

ab(n - 1 )  t,, ab2n2 and t,, = b - 1  ) 
+s:, + 7, t,, = - 

8: n e:, 
t e e  = 

These t s  are exactly the same as in (98) except for notation changes: t,, instead 
of t,,, t8, in place of t,,, o i  in place of o:, ot in place of u i ,  a and b interchanged, 
and 8,  in place of O I 2 .  Therefore the dispersion matrix will be the same as 
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(loo), only with these same changes. Thus, with 

b - l  ’ 
(of + no;)’ 

6 =  

(105) 

- o,* 

6 + B:,  - 6  

0 .,* 
b(n - 1 )  bn(n - 1 )  

b’n2 bn ’ 

4. The I-way classification, random model. The 2-way crossed classifica- 
tion, no interaction, random model can be converted to the 1-way model 
equation by dropping pij and effectively putting a: = 0 and b = 1. Doing this 
in (9 1 ) gives 

8, = of = 0, = R 1 2  and B , ,  = of + no: = 8, . 

Making these changes in (96), along with dropping its last row and column, gives 

6,z 

a: 
2 2  

- a ( n  - 1 )  a an + 
uf (a: + (a: + no,”)’ 

- (0: + na:)’ (a: + no:)’ 

an an ’ 

- 1  

which is, of course, the same as (126) of Chapter 3. 

h. Locating results 
The sequence chosen for presenting the preceding results was governed by 

ease of derivation. As a consequence, locating results for each of the six cases 
presented might be found a little confusing. Table 4.16 should ease this confusion. 

4.8. RESTRICTED MAXIMUM LIKELIHOOD (REML) 

The general concept of REML estimation is introduced in Section 3.8. Details 
of REML applicable to unbalanced data are given in Chapter 6. Moreover, in 
Chapter 1 1  it is shown that when we seek minimum variance quadratic unbiased 
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TABLE 4.16. SUBSECTIONS CONTAINING RESULTS FOR M L  ESTIMATION 

Subsection 

Asymptotic 
Classification and Model Estimators Dispersion Matrix 

I -way, random b-i g-ii 
2-way nested, random b-ii g-i 
2-way crossed 

with interaction, mixed b-iii f-iii 
no interaction, mixed b-iv f-iv 
with interaction, random d-i f-i 
no interaction, random d-ii f-ii 

estimators of variance components for unbalanced data generally, under the 
usual normality assumptions, we arrive at the same equations as are used for 
REML. But since, for balanced data, we already know that ANOVA estimators 
under normality assumptions are minimum variance unbiased, and are quadratic, 
we therefore have the result for balanced data that solutions of the REML 
equations are the same as ANOVA estimators, i.e., 

for balanced data: REML solutions = ANOVA estimators , 

Other derivations of this result are available in Anderson (1979b) and 
Pukelsheim and Styan (1979), who add the telling phrase that this result “need 
not be checked explicitly” (as they do for unbalanced data-see Section 6.7). 
We therefore say no more about REML solutions for balanced data. 

REML estimators are obtained from REML solutions by applying the same 
procedures to ensure non-negativity requirements as is done with deriving ML 
estimators from ML solutions. This has been illustrated in Tables 4.9,4.11,4.13 
and 4.15. 

4.9. ESTIMATING FIXED EFFECTS IN MIXED MODELS 

In random models the only fixed effect is p, and its MLE has been shown 
in (87) to be p = j .  Its sampling variance is var(p) = 1‘V1/N2, using var(y) = V 
as in Section 4.6a. In that same section the fixed effects of the mixed model 
equation y = Xg + Zu + e are fl with the elements of Xfl always being estimable 
functions of elements of 8. The ordinary least squares estimator of fl 
(see Appendix S. 1 ) is 

OLSE(Xfl) = X(X’X)-X’y.  (107) 

This, it will be noticed, does not involve V, and so OLSE(XP) can be derived 
without having to estimate variance components. Moreover, for balanced data, 
X can always be written as a partitioned matrix of submatrices that are 
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Kronecker products of I-matrices and l-vectors. For example, in the 2-way 
crossed classification of (73), were a to be taken as fixed (along with p )  then 
X would be 

x = [ l a @ 1 b @ l m  I a @ 1 b @ l # # ]  * (108) 

A consequence of this is (e.g., Searle, 1988b) that OLSE(Xp) of (107) always 
has a simple form, For example, X of (108) reduces (107) to be the familiar 

OLSE(p + a,) = j,.. . (109) 

This style of result is true for all cases of balanced data from mixed models: 
OLS estimators of estimable functions of fixed effects are based on cell means 
and factor level means, the kind of result that one sees in standard analyses of 
designed experiments. 

The variance components are taken into account when estimating fixed effects 
by utilizing V as in 

GLSE(Xfl) = X(X'V- 'X)-X'V-'y, ( 1  10) 

as outlined in Appendix S.1. But for balanced data V is a linear combination 
of Kronecker products of I- and J-matrices, as exemplified in (74). Indeed, for 
the 2-way crossed classification with as fixed, for which (108) is the X-matrix, 
V is (74) without the a:-term: 

(111) V = (J, @ 1, @ J n ) a i  + (1, @ Ib @ Jn).? + (1, @ 1, @ In).: * 

Using this and X of( 108) in ( 1 lo), it will be found( E 4.23) that (1 10) reduces to 

GLSE(p + a,) = j,.., (112) 

GLSE(XP) = OLSE(XB), (113) 

the same as OLSE of (109). Thus in this case 

However, this is a result that is true for all cases of balanced data from any 
customary mixed model (e.g., Searle, 1988b) excluding the use of covariates, 
which effectively causes data to be unbalanced. Result (1  13) is true, as shown 
by Zyskind (1969), if and only if there is some matrix Q for which VX = XQ. 
For unbalanced data this is established using (70) developed in Chapter 12, 
namely that there does exist a Qi such that Z,Z;X = XQ,. Then it follows for 
V = X;=oafZ,Z; of (71) in this chapter that 

VX = C a?Z,Z;X = X C a?Qi = XQ 
i = o  i = O  

for Q = a f Q i .  

model is simple for balanced data. This is so because the MLequation for X I  is 
Maximum likelihood estimation (under normality) of fixed effects in a mixed 

X'P - 'XI  = X'V - 'y, 
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which leads to 

xg = x(x' t-1x)-x'V-'y,  (114) 

v- '  being the ML estimator of V, namely V with each cr2 replaced by its 
corresponding 6'. But since, for balanced data, Xg of (114) is the same as 
GLSE(XB) of (110), only with v in place of V, and from (113) we have 
GLSE(XB) = OLSE( XB), which involves no variance components, so likewise 
for XI .  Thus, for balanced data 

OLSE(XB) = GLSE(XB) = MLE(XB) = BLUE(XB), (115) 

where the last of these four is the best linear unbiased estimator. 
Insofar as REML estimation is concerned it is an estimation method 

applicable only to variance components and it gives no direction whatever on 
how to estimate Xfl. But in view of ( 1  15) this is of no concern. 

4.10. SUMMARY 

Establishing analysis of variance tables: Section 4.1 
Lines in the table: 
Interactions : 
Degrees of freedom: 
Sums of squares: 
Calculating sums of squares: Rule 9 
Expected mean squares: Section 4.2 

Rule 1 
Rules 2, 3 and 4 
Rules 5 and 6 
Rules 7 and 8 

Rules 10, 1 1 ,  12 and 13 

Table 4.3 

Fixed effects model: Table 4.4 
Random effects model: Table 4.5 
Mixed model: Table 4.6 
Mixed model with C-restrictions: Table 4.7 

ANOVA estimation and negative estimates: Section 4.4 

The 2-way crossed classification: Section 4.3 
Sums of squares and mean squares: 
Expected mean squares: 

ANOVA estimators of variance components: Section 4.3d 

E(m) = Pa2; 
62 = P - l m .  

Normality assumptions: Section 4.5 

6' 'y P-'{d X//J;:}Pd. 

(34) 

(38) 
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Hypothesis testing: Section 4 . 5 ~  
Satterthwaite procedures 

Confidence intervals: Section 4.5d 
Probability of a negative estimate: Section 4.5e 
Sampling variances: Section 4.5f 

Matrix formulation: Section 4.6 

v = var(y) = ZDZ’ + a:~ = 2 ziz;a: + a z ~ ;  
i =  1 

2 - 2 .  uo = e, Z, = I,, no = a,, 
r r 

y = xp + c ZiUjr v = c z,z ;of  . 
i = o  i = O  

Kronecker product notation: Sections 4.6b, c, d, and e 

Maximum likelihood: Section 4.7 
Estimating the mean in random models: Section 4.7a 

p = y .  
Closed-form estimators: Section 4.7b 

Classification and model 
(b-i) l-way random 
(b-ii) 2-way nested random 
(b-iii) 2-way crossed classification mixed 
(b-iv) 2-way crossed, no interaction, mixed 

No closed-form estimators: Section 4.7d 
The 2-way crossed classification, random model: 

(d-i) With interaction 
(d-ii) No interaction 

Tables 4.8 and 4.9 
Tables 4.10 and 4.1 1 
Tables 4.12 and 4.13 
Tables 4.14 and 4.15 
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Existence of explicit solutions: Section 4.7e 
Asymptotic samp’.’ ig variances 

The 2-way crossed classification: Section 4.7f 
Model 
(f-i) With interaction, random 
(f-ii) No interaction, random 
(f-iii) With interaction, mixed 
(f-iv) No interaction, mixed 

Two other models 
(g-i) The 2-way nested random 
(g-ii) The l-way random 

Note: The preceding sub-sections pair up as follows: Table 4.16 

b-i and g-ii; b-ii and g-i; 
b-iii and f-iii; b-iv and f-iv; 
d-i and f-i; d-ii and f-ii . 

Restricted maximum likelihood: Section 4.8 

Estimating fixed effects: Section 4.9 

OLSE(XB) = X(X’X)-Xy, 

GLSE( Xg) = X( XV-’X) - X’V-’y. 

4.1 1. EXERCISES 

E 4.1. Suppose you have balanced data from a model having factors A, 
B, C within AB-subclasses, and D within C. Set up the analysis of 
variance table, and give expected values of mean squares for (i) the 
random model, ( i i )  the mixed model when A is a fixed effects factor 
and (iii) the mixed model when both A and Bare fixed effects factors. 
Repeat E 4.1 for a model having factors A, B, D, and C within AB. 
A split plot experiment, whose main plots form a randomized 
complete blocks design, can be analyzed with the model equation 

E 4.2. 
E4.3. 

Yijk = + + P j  + 6ij + P k  + ejk  + e i jk ,  

where a, represents a treatment effect, pj  is a block effect and /?k is 
the effect due to the kth sub-plot treatment. Set up the analysis of 
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E 4.4. 

E 4.5. 
E 4.6. 

E 4.7. 

E 4.8. 

E 4.9. 

variance table, and give expected values of mean squares for the 
following cases: 
(a) random model; 
(b) mixed model, ps and 6s random; 
(c) mixed model, only the fls fixed; 
(d) mixed model, only the as fixed. 
(a) From (4) derive (6) and (7). 
(b) Derive (8). 
(c) Using( 11),showthat E(MSB)ofTable4.4isanZj.@/(b - 1). 
Use (13), ( 14) and (15) to derive Table 4.5 from (8). 
In the context in which (23) is used, show that it leads to (18)-(21) 
being satisfied; and to 

0;; 
0; = - , cov(&, y;) = 0 and cov(y;i, yi,,) = 0 for j # j '  

1 - l/a 
Calculate ANOVA estimates of variance components from the 
following data of 3 rows, 4 columns and 2 observations per cell. Use 
(a) the random model; 
(b) the mixed model with rows fixed; 
(c) the mixed model of (b), with C-restrictions. 

Data 

10 16 12 9 
14 22 18 19 
23 17 24 18 
25 21 32 24 
13 8 16 7 
17 12 12 19 

(a) Use (49) and (50) to derive confidence intervals on 0: and 0; 
of Table 4.5. 

(b) Use the data of E 4.7 to calculate values of the intervals derived 
in (a). 

(a) Use (56) to derive unbiased estimators of sampling variances 
of and covariances between estimated components of variance 
derived from Table 4.5. 

(b) Use the data of E 4.7 to calculate estimates from the unbiased 
estimators in (a). 

E 4.10. For the model of Table 4.5 find V = var(y) and V-'. 
E 4.1 1. Use (76) of Section 4.6c, together with (80) and (81), to derive the 

ML solution of Section 4.7b-ii. 
E 4.1 2. Confirm V - ' and I V I obtained in E 4.1 1 by writing V as 

v = I,@(D - C A - ~ B )  
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for D = I, @ (0: J, + cf1.) with A -  = -0: and C = B' = I, @ 1, 
and use Appendix M.5. 

E 4.13. Derive the dispersion matrix (100) from equation (99). 
E 4.14. Consider data sets A and B: 

A B 

8 8 11 1, 7 2,6 4, 7 
4 10 19 I ,  3 4,6 8, 11 

Treating Data Set A as a l-way classification of 3 classes and 2 
observations, calculate for a random model 
(a) ANOVA estimates of variance components; 
(b) unbiased estimates of the sampling variances and covariances 

of estimators, assunling normality, used in (a). 
E 4.15. Repeat E 4.14 with A but treat it as having 2 rows and 3 columns. 
E 4.16. Repeat E 4.14 with B but treat it as having 2 rows and 3 columns 

with 2 observations per cell. 
E 4.17. Data sets P-U are examples of a 2-way nested classification with 

a = 3, b = 2 and n = 4. 

P 

a1 a2 a3 

6 4 4 1 0  5 4 
4 2  5 6  6 8  
5 3  6 8  3 1  
5 3  6 8  2 3  

- - -  

R 

a1 a2 a3 

2 3  1 3  6 2  
2 2  1 3  7 1  
1 6  2 1  4 4  
3 5  0 5  7 1  

- - -  

T 

Q 
a1 a2 a3 

3 2  2 3  3 2  
4 3  1 2  2 1  
3 1  3 3  1 1  
2 2  1 1  1 1  

- - -  

S 

a1 a2 a3 

2 1 4  8 4 8 6  
4 1 0  5 0 6 4  
6 1 0  5 4 1 2 6  
4 1 4  6 8 1 4 8  

- - -  

U 

a1 a2 a3 

3 2 8 1  10 7 
4 1 11 4 14 10 
7 4  1 0 6  1 2 5  
6 5  1 1 5  1 6 6  

- - -  a1 a2 a3 

6 2  0 1  1110 
8 8  1 2  7 5  
7 1  2 6  1 0 7  
3 5  1 3  1 2 2  

- - -  
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(a) Calculate ANOVA estimates of the variance components for 
the random model. 

(b) Under normality assumptions, derive sampling variances and 
covariances of the estimators in (a). 

(c) Derive unbiased estimators of the sampling variances in (b). 
(d) Re-do your calculations using b = 4 and n = 2. 

E 4.18. Suppose a clothing manufacturer has collected data on the number 
of defective socks it makes. There are 6 subsidiary companies 
(factor C) that make knitted socks. At each company there are 5 
brands ( B )  of knitting machine, with 20 machines of each brand in 
each company. All machines, of all brands, are used on the different 
types of yarn (Y) from which socks are made: nylon, cotton and wool. 
At each company data have been collected from just two machines 
( M )  of each brand, when operated by each of 4 locally resident 
women (F), using each of the yarns; and on each occasion the 
number of defective socks in two replicate samples of 100 socks was 
recorded. 
(a) Key-out the analysis of variance for these data: for each line 

in the analysis give a label (both symbolic and verbal); and give 
the degrees of freedom. 

(b) Decide which factors are to be considered random-and give 
brief reasons for your decisions. 

(c) For each of just the random main effects factors, and their 
interaction with each other, 

( i )  derive the expected mean square in the analysis of variance 
of part (a) using (b); 

( i i )  using x for an observation, with appropriate subscripts (that 
include those for the factors in the sequence C, B, Y, M, F) show 
what the sum of squares is corresponding to each expected mean 
square of (i). 

(iii) Write down the terms of V = var(y) that involve the 
variance components u ~ : ~ ~ ,  u& and ~ i ~ ~ ~ ~ .  Use Kronecker 
products of I-matrices and J-matrices. 

E 4.19. In the 2-way crossed classification show that 

2 

b(a  - l ) ( b  - 1 )  bn 

and hence that its expected value is 0:. This is the estimator 
suggested by Hocking et al. (1989), as providing an explanation as 
to why 8; can be negative. It is a pooled product-moment 
correlation, of the gi,.-means in each pair of columns, pooled over 
all pairs. 
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E 4.20. Using either the likelihood function or the general results given in 
Chapter 6, derive ML results given in Section 4.7 (sub-sections 
containing the results are shown in parentheses): 

(a) l-way random model (b-i and g-ii); 
(b) 2-way nested random model (b-ii and g-i); 
(c) 2-way crossed, with interaction, mixed model (b-iii and f-iii); 
(d) 2-way crossed, no interaction, mixed model (b-iv and f-iv); 
(e) 2-way crossed, with interaction, random model (d-i and f-i); 
( f )  2-way crossed, no interaction, random model (d-ii and f-ii). 

E4.21. Show for balanced data from a 3-way crossed classification with 
all interactions and one fixed effects factor, that explicit ML solutions 
for the variance components do not exist. 

E 4.22. Derive (109) from ( 107) using (108) for the model equation (72). 
E 4.23. Derive (1  12) from ( 1  10) using (108) and ( 1  11). 



C H A P T E R  5 

A N A L Y S I S  O F  V A R I A N C E  
E S T I M A T I O N  F O R  U N B A L A N C E D  

D A T A  

The previous chapter describes the ANOVA method of estimating variance 
components from balanced data. Extending that method to unbalanced data 
began with the l-way classification (Chapter 3) as in Cochran ( 1939) and Winsor 
and Clark ( 1940)-see Chapter 2. Extending it to higher-order classifications 
would nowadays appear to have been an obvious thing to do, and yet it seems 
to be that it was the Henderson (1953) paper that gave this extension its first 
major fillip-prompted, no doubt, by his interest in estimating variance 
components in a genetic setting where available data can be voluminous but 
severely unbalanced. 

This chapter considers somewhat briefly the ANOVA method generally, as 
applicable to unbalanced data, and gives lengthy description of the three 
adaptations of ANOVA methodology suggested by Henderson ( 1953). Although 
those Henderson methods (as they have come to be known) are coming to be 
superseded by maximum likelihood (see Chapter 6 )  and other techniques, we 
know of no book that gives a detailed account of the Henderson methods, so 
this we proceed to do. For some readers this chapter may be mainly of historical 
interest. But it is important history, because for nigh on forty years the Henderson 
methods have been very widely used, in many cases on enormously large data 
sets. Moreover, they are methods that are likely to go on being used. This is 
because some researchers have solid confidence in understanding analysis of 
variance of balanced data and of expected mean squares derived therefrom, and 
feel that they can easily transfer that confidence to using the same concepts for 
unbalanced data. Furthermore, there is attraction in the fact that one of the 
Henderson methods is relatively easy to understand and to compute. In contrast, 
those same researchers can be quite apprehensive about maximum likelihood, 
for example. They might feel it is “too theoretic”, and they might be overawed 
by the mathematics involved, by the lack of closed form expressions for 
estimators, and by the need for iterative techniques and sophisticated computing 

168 
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programs to carry out those techniques. In addition, of course, there are 
situations where the necessary computing power may not be available, and so 
resort has to be made to something more easily computed than maximum 
likelihood estimators, such as some kind of ANOVA-style estimates. We 
therefore deem it worthwhile to describe ANOVA methodology and especially 
the Henderson applications of it. 

5.1. MODEL FORMULATION 

a. Data 
We take unbalanced data to be data in which there is not the same number 

of observations in every sub-most cell (see Section 1.2). For fixed effects models, 
emphatic distinction between all-cells-filled data and some-cells-empty data has 
been made by Searle (1987), but there seems to be less need for this distinction 
with mixed models. Nevertheless, in many applications where variance 
components are of interest the data frequently have empty cells, often with a 
very large percentage of the cells being empty (e.g., 70% empty). The problem 
of connectedness of the data (e.g., Searle 1987, Sec. 5.3) therefore raises its ugly 
head. It is important because for disconnected data (e.g., loc cit., p. 157) certain 
calculation procedures are not appropriate when singular matrices occur where 
they would not do so with connected data. 

The reader is assumed to be familiar with the R(  * 1.) notation for reductions 
in sums of squares. For example 

R(a I p) = R ( P ,  a )  - R(C0 

is the difference between R ( p , a ) ,  the reduction in sum of squares due to fitting 
E(y , , )  = p + a, and R ( p ) ,  the reduction in sum of squares due to fitting, to the 
same data, the model E(y,J = p. R ( a l p )  is thus often referred to as the sum 
of squares due to a after p. Lengthy discussion of R (  * 1 * ) is given in Searle ( 1971, 

In the 2-way crossed classification the sums of squares R(fl 1 p) and R(f l  I p, a )  
are equal for balanced data but not for unbalanced data. Using the model 
equation 

pp. 246-247; 1987, pp. 26-28). 

E(Y,,d = cc + a( + B, 
for i = 1, ..., u, j  = 1, ..., b and k = 1, ..., n,, with nlf 2 0 when a cell has 
no data, 

a 

R(flIp) = 1 n,.(jj,.. - J...)* * 
I =  1 

But 
b -  1 

R ( f l l p ,  a )  = r’T-lr for r = { y.,.  - n, j , . . }  
C i =  1 I =  1 
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where T, symmetric of order b - 1, has elements for j Z j ’  = I , .  . ., b - 1 
that are 

Details of these derivations are found, for example, in Searle (1971, p. 267; 1987, 
pp. 124- 129 ,  wherein the letter c is used in place of t .  

b. A general model 
The general model equation 

y = XP + Zu + e 

developed in Section 4.6 for balanced data can still be used with unbalanced 
data, although in the form 

the matrices Z,, . . . , Z, are no longer Kronecker products of identity matrices 
and summing vectors. Taking the Zs as incidence matrices (with 0s and 1s as 
elements) they still have structure, but not such that it can be neatly formulated 
as with balanced data. 

4. Example I :  the 2-way crossed classifcation, random model. Suppose in 
the 2-way crossed classification that the numbers of observations in a set of 
data are as shown in Table 5.1. Then for the model equation 

with i = 1,. , , , a, j = 1,. . . , b and k = 1,. . ,, ni j ,  with nij  = 0 when cell ( i ,  j) has 
no data, the vector form 

y = XP + Z,u, + + Z,U, + e (1) 

Y1jk = p + OLi + P j  + Y i j  + eljk 

y = pl  + Z,a + Z,P + Z,y + e 

is 
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TABLE 5.1. VALUES OF n 

Note that the matrix multiplying fl can be partitioned into 3 sets of rows 
corresponding to the summing vectors in the matrix multiplying a. But in 
contrast to that matrix, which can be described quite generally as {d ln, ,} ,f l ,  
the matrix multiplying $ has no general specification. This is because the order 
of the summing vectors in the coefficient of depends on the numbers of 
observations in each row of Table 5.1 and the manner in which those numbers 
are spread across the columns of the table. For example, in Table 5.1 there are 
five observations in row 1, two of them being in column 1 and three in column 2. 
This gives rise to having 1, and 1, in columns 1 and 2 of the matrix multiplying 
$ in (3). Unfortunately, in the presence of empty cells, i.e., with some-cells-empty 
data, there is no useful notation for this matrix, except that it is Q { d  

where Q is a permutation matrix (and thus orthogonal) that is determined by 
the actual pattern of observations. As a result, a general form of (3) is 

Y = P ~ N +  { d f n , . } i l i a + Q { d l n . , } , , b i $ +  { d { d l n , , } j ~ i } i f i Y + e .  (4) 

-u. Divpersion matrix. For the random effects represented by the ufs in ( 1 )  
we adopt the usual conventions of 

E(u,) = 0, var(u,) = a&,, (5a) 

cov(u,, u;) = 0, cov(u, e') = 0 and var(e) = 0:1, . (5b) 

where 4f is the order of ul, and 

Applying this to ( 1 ) gives 
r 

I =  1 
V = var(y) = C ZfZ;aZ + 031, . 

This notation can be made more compact by defining 

uo =e,  a$ =a: and Zo = I N .  

Then we have 
r r 

y = X$ + Zp, and V = Z,Z;a:, 
f = O  f = O  

just as in (70) and (71) of Chapter 4. Considerable use is made of (7) and (8). 
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-iii. Exampre I (continued). From (4), on omitting thi  limits on i and j ,  

Z1 = {d Inl,}, with Z1Z; = {dJn,.), (9) 

ZZ = Q{d In.,}, with ZZZ; = Q { d  Jn.,)Q’,  (10) 

z3 = {d {d l n , , > j > l  with z3z\ = {d { d  Jnl , } j} i ,  (11) 
Zo = I,, with ZoZb = I,. (12) 

The 2,-matrices are used in the equation for y, and the Z,Z;-matrices occur in 
V = var(y). Simplification of Z,Z; is not readily apparent. 

5.2. ANOVA ESTIMATION 

As developed for balanced data, ANOVA estimation is derived from equating 
analysis of variance sums of squares to their expected values. 

a. Example 2-the 1-way random model, balanced data 
From equations (52) and (53) of Section 3.5b we have 

From this come the estimation equations 

a(n-  1 )  0 
a - 1  ( a -  1 ) n  

These are, of course, easily solved in this simple case. 

b. Estimation 

For a mixed model 
4. The general case. The principle of (13) and (14) is easily generalized. 

y = X p +  Zu + e 

having r random factors suppose 

s = {E s , ) ,=‘o = {c  Y’A,Y),=’o (15) 

is a vector of r + 1 quadratic forms in y such that A, is symmetric, i.e., A, = A; V i. 
Then, from Theorem S1 of Appendix S.5, 

U s , )  = E(Y’A,Y) = tr(A,V) + E(Y’)A,E(Y) 

= tr(A,V) + p‘X’A,Xp, (16) 

since E(y) = XP. This expectation will contain no terms in p, the fixed effects, 
if X‘A,X = 0. Thus, providing A, = A; is chosen so that X’A,X = 0, the expected 
value of y’A,y contains only a’-terms and no fixed effects. A series of such 
quadratic forms can then be used in a generalization of the ANOVA method 
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of estimating variance components, namely equating observed values of such 
forms to their expected values. With balanced data, X‘AiX = 0 always holds 
for the sums of squares of the analysis of variance table. With unbalanced data 
it holds for some sums of squares and not others, and it depends on the model 
being used, i.e., on X, as well as on A,. For the usual completely random models 
X’A,X = 0 reduces to l’Ail = 0 (all elements of Ai summing to zero) because 
Xp is then Xp = pl.  

Then, because 

E(s i )  = t r (AiV) = tr Ai i ZjZjaf] = i tr(Z;AiZl)af, [ / = o  j = O  

(17) 2 E ( s )  = {m tr(ZiAiZ/)}i,j{c a/ I/* 
which we write as 

E ( s )  = Cu2, with C = {,,, tr(Z;A,Z,)},,/ and u2 = {c cf}llo . (18) 

This immediately provides extension of the balanced data ANOVA method of 
estimation given in (29) and (30) of Chapter 4: from (18) equate the expected 
value of s to s and solve for the variance components. This gives 

Ca2 = s ,  or a2 = C-Is, (19) 

providing C is non-singular. This procedure, which includes the balanced data 
case, of course, can be viewed in some sense as a special form of the method 
of moments. 

Equation (19) is what is called the general ANOVA method of estimating 
variance components from unbalanced data: equate observed values of a set of 
quadratic forms to their expected values and solve for the variance components. 
The solutions are called ANOVA estimators of variance components. The only 
limitations on what one chooses for those quadratics is that their expectations 
contain only variance components; i.e., that X’A,X = 0. When symmetric A, is 
non-negative definite, the condition X’AiX = 0 reduces to A,X = 0. 

-ii. Exumpfe 2 (continued). An example of (19) is (14): 

a(n - 1 )  
a -  1 (a -  1)n 

C d = s  is 

0 
1 

- 1  1 ][ iiz] = [(MSA - MSE)/n 
an(n - 1) (a - l )n 

as in (55) of Chapter 3. 

Example I (continued). Although (18) applies for any choice of A, 
that satisfies X‘A,X = 0, when we decide to use some particular sum of squares 

-iii. 
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E(SSA) = [tr(Z;AZ,) tr(Z;AZ,) tr(Z;AZ,) tr(ZbAZ,)] 

as an element of s it is the nature of that sum of squares that determines its 
corresponding A,. We illustrate this for SSA, one of the sums of squares in the 
2-way crossed classification. It  is 

a f 
4 

Using the random model, E(y) = p l N  and 1LA = 1; - 1; = 0. Therefore 
E(SSA) as an element of E ( s )  of (17) is 

= a,' tr(AZ,Z;) + af tr(A2,Z;) + a: tr(AZ,Z;) + a: tr(AZ,Zb) 

On using Z, from (9), the first term in this expression is 

',' t r (AZIZ;)  = tr[({d Jnl , }  - JN){d Jnl.}] 

The second term, using Z2 from (lo), is 

af tr(AZ,Z;) = af tr[z;({, J,,,} - JN)zZ] 

To simplify this, we use tr(XX') = sesq(X), the sum of squares of elements of X, 
from Appendix M.5. Then 

sesq(1;Z2)1 a: tr(AZ2Z;) = .:[ tr( z;I, - 1 ln,.)c - 1 1;,.}z2) - 

f i  4.6- 

= a:( xi __ Zjn: j  - W), 
ni . N 
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the last expression's first term being evident from the nature of Z, illustrated 
in (3). The complete expression for E(SSA) is shown in E 5.2. It is left for the 
reader to derive the terms other than those in 0." and 0;. 

set of quadratic forms y'A,y having A, = A; and X'A,X = 0. 
Thus does (17) provide a mechanism for deriving the expected value ( 

c. Unbissedness 
Turning to properties of6,, it is easily seen that 6' is unbiased since, from 

E ( 6 2 )  = E ( C - ' s )  = C - ' E ( s )  = C-'Ca2 = u' . 
No matter what quadratic forms are used in elements of s, so long as C of 
E ( s )  = Ca' is non-singular, 8' = C-'s is an unbiased estimator of u2. 

In ( 18) and hence ( 19) we have implicitly assumed that s has as many elements 
as does u'. Then C6' = s has as many equations as there are variance 
components, C is square, and 6' = C-'s provided C-' exists. But C does not 
have to be square. s can have more elements than uz. There are then more 
equations than variance components in C6' = s, and the equations are unlikely 
to be consistent. However, providing C has full column rank, one could always 
adopt a least squares outlook and use G2 = (C'C)- C's as an unbiased estimator 
of a'; it reduces to 6' = C-'s if C is square. 

This unbiasedness arises without this method of estimation containing a 
word of how to choose what quadratic forms shall be used as elements-only 
that X'A,X = 0 be satisfied and that C-' exist; and these are not severe 
limitations. But they provide no optimality characteristics of any sort for the 
resulting estimators. The only built-in property is that of unbiasedness. 

In the context of designed experiments, where estimation of treatment 
contrasts, for example, is a prime consideration, unbiasedness may be a useful 
property. This is because we conceive of repeating the experiment, and 
unbiasedness means that over all conceivable repetitions the expected value of 
our estimated contrast will equal the true contrast: e.g., E ( J ,  - J , )  = r1 - r2. 
But when estimating variance components this concept of repeating the data 
collection process may not be a practical feasibility. Many situations in which 
variance components estimates are sought involve very large amounts of data; 
e.g., a project having three million records at its disposal. Repetitions of the 
process by which such data were gathered may be simply impractical. In those 
circumstances unbiasedness may not be as useful a property as when estimating 
treatment contrasts from designed experiments. Nevertheless, we can still 
imagine conceptual repetitions of data collection and think of unbiasedness as 
being over those conceptual repetitions. However, since unbiasedness is the 
only property that is built into ANOVA estimators of variance components, i t  
may be worthwhile to abandon it as a property in favor of other estimators 
that are not unbiased but which have better large-sample properties such as 
large-sample normality and efficiency, as do maximum likelihood estimators, 
for example. It is therefore useful to appreciate this situation as we discuss a 
variety of ANOVA estimators that are available, some of which have received 
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widespread use in applications. t d notice that in mentioning large-sample 
normality we are at once conceptualizing the idea of repeated sampling. 

d. Sampling variances 
Since ANOVA estimators are derived without reference to their variances, 

and yet are quadratic functions of the observations, it is natural to think of 
deriving sampling variances. We do this on the basis of assuming normality 
throughout. 

4. A general result. With y - N(Xj l ,V) ,  we use var(y’Ay) = 2 tr(AV)’ 
+ 4p‘AVAp of Theorem S4 in Appendix S.5, together with X’A,X = 0 and (19). 
With p = Xjl this gives 

var(y’Ay) = 2 tr(AV)’ and cov(y‘Ay, y’By) = 2 tr(AVBV) . 
Then the variance-covariance matrix of 6’ = C- ‘s is 

var(ii2) = C-1  var(s)C-” 

= 2C- ’ {, tr(  A,VA,,V)},,,,C- ” 

= 2C-l{, t r (Ai  ZIZ;afA,. ZI.Z;.ai,)} C-” (21a) 
j = O  i ’ = O  i . i ’  

In (21 b) the inner matrix is not symmetric and so no further useful simplifications 
seem readily available. 

Since the derivation of (21b) from (21a) may not be clear to all readers, we 
demonstrate their equivalence for the case of r = 2. Let W denote the expression 
in braces in (21a). Then 

W = {, tr( A, Fo Z,ZjofA,. Z .Z’.a3 
2 2 2 

I = O  4,,,=” 
= {,,, tr[A,(ZoZbaX + Z1Z;a: + Z~Z;O:) 

x A,.(ZoZbag + Z1Z;a: + Z~Z;C$)]},,,, 

= {, a: tr(A,ZoZbA,.ZoZb) + a:(A,ZIZ;A,.ZIZ’,) + a: tr(A,Z,Z;A,#Z,Z;) 

+ a~o~[tr(A,ZoZbAi.ZIZ’,) + tr(A,Z,Z;A,.Z,Zb)] 

+ a;ai[ tr(A,Z,ZbA,.Z,Z;) + tr(A,Z,Z;A,.Z,Zb)] 

+ [ tr( A,Zl Z’, A,.Z,Z;) + tr( A,Z,Z;A,,Z, Z’,)] },,,, . 
For the coefficient of .fa: note that the two trace terms are equal: 

tr(AiZoZbA,,Z1 Z’,) = tr(A,ZoZbA,.Zl Zi)’ = tr(Zl Z’, A,.ZoZbA,) 

= tr(AiZIZ;A,.ZoZb). 
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Hence 

w={ [bi b: 4 1  
m 

tr(AiZ,ZbAi.Z,Zb) tr(A,Z,ZbA,.Z, Z; ) tr(A,Z,ZbAi.Z,Z;) 

tr( AiZ, Z; A,.Z, Z’, ) tr(A,Z1 Z’, A,.Z,Z;) 

symmetric tr(AiZ,Z;A,.Z,Z;) 

for i ,  i’ = 0,1,2. This is the essence of (21b). 
Notice that in using (19) as a method of estimation, nothing has been said 

about what quadratic forms of the observations shall be used as elements of s. 
Nothing. Results (19) for any quadratic forms y’A,y having X’A,X = 0 lead to 
(20) and (21); and that methodology gives no guidance whatever as to what 
quadratics are optimal. Moreover, it is the quadratics that do get used as 
elements of s that determine C of (18) and (21). This all leads to an extremely 
difficult optimization problem, which is developed thoroughly in Malley ( 1986), 
wherein, building on results of Zyskind (1967) and Seely (1971), conditions are 
developed under which quadratic functions of data can be optimal estimates 
of variance components. 

4. Example 2 (continued). To illustrate the use of(2lb), we use the 1-way 
classification random model, balanced data, giving some of the details here and 
leaving others to the reader as an exercise (E  5.1). Starting from (14), 

I[ :I}* 

r i  1 

1 
- 

for C, = In - J, . 

an(a- 1) (a- 1)n 
Then for 

1 

an(n-  1) (a- 1)n 

“ = ‘- [ ytAly]  y’Aoy with A, = 1, @ Cn and A ,  = C, 3, . 
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We then have (21b). with V = (I, 8 1,)af + (I, 8 J,)ai, as 

Write this as 

It is left to the reader ( E  5.1) to show that t o ,  = 0 and t l l  = (a - l)(af + no:)’, 
and hence that (22) reduces to 

2 4  - 2u: ] (23) 
an(n - 1 )  

I ’  ”.[;;]-[.”-” sym - [ ~ 2 4  + 2(uf + nat)’ 
n2  a ( n -  1 )  a - 1  

which has the same results as (66),  (68) and (71) of Section 3.5d-iii. 

-iii. A direct approach. In each of the preceding examples we have seen 
that derivation of even one element of E ( s )  or of var(8’) through using tr(AV) 
or 2tr ( AV)’, respectively, is usually very tedious. That is why for any particular 
model, e.g., 

yiJk = + aj + FJ + YiJ + eiJk, 

one often derives expected values and variances directly. For example, substituting 
the preceding model equation into j,.. and y... gives 

2 E(SSA)  = E v4.($i.. - Y...) 
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Then, using properties of the random effects, stemming from ( 5 ) ,  such as 
E(a:)  = a:, E(a,ai.) = 0 for i it i’, and so on, one can evaluate this expectation 
quite straightforwardly. 

Similarly, deriviw var(SSA) can tae achieved a little m ~ ~ e  easily than 
using (21). Its original derivation was obtained (Searle, 1958) by writing 
SSA = Z,nijj;.. - N j ! .  and obtaining the individual terms in 

var(SSA) = var(Ciniji..)’ + var(Njj!.) - 2cov(C,n,jjf, Njjf . . )  . 
Thus by writing TA = Zini j f . ,  and T,, = N j f . .  for what may be called the 
uncorrected sums of squares, we have SSA = TA - T, and 

(24) 
Using TA and its natural extensions to other factors provides (see Appendix F) 
a reasonably economic procedure for deriving variances of SSA and its 
extensions, and of the covariances between these terms. 

Variances of Ts and covariances between them were obtained directly from 
applying the expressions for var(y’Ay) and cov(y’Ay, y’By) from Appendix S.5. 
Although terms in p occur in the Ts they do not occur in sums of squares like 
SSA. They were therefore ignored. Then although, as (21) shows, var(si) is a 
quadratic form in the a’s, the coefficients of the squares and products of the 
a2s turn out to be fairly complicated functions of the nijs. And derivation is 
tedious. We therefore omit the derivation and simply quote one result: excluding 
terms in p, and under the normality assumption y - M(p1, V) 

var(SSA) = var( TA) + var( T,,) - 2 cov( T’, T,) . 

Of course, given a data set and a model, the A for each sum of squares (or 
quadratic form) expressed as y‘Ay is known numerically; and if V is known, 
or one is prepared to assign numerical values to the a’s and hence to V, then 
one need not bother with algebraic forms of tr(AV)2. Instead, with today’s and 
tomorrow’s supercomputers, one can calculate it directly. Nevertheless, there 
is value to having algebraic techniques available for when something other than 
numerical results are needed. 

e. Unbiased estimation of sampling variances 
Unbiased estimation of sampling variances (of estimated components), under 

normality assumptions, can be achieved for unbalanced data by a direct 
extension of the method used for mean squares in Appendix S.3b. 
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With 6’ being the vector of all the variance components in a model, and 6’ 
an unbiased ANOVA estimator, define 

v = v e c h [ ~ a r ( 6 ~ ) ]  and y = vech(a’a’‘), 

where the matrix operator vech(X) is defined in Appendix M.7. Thus v is the 
vector of all variances of, and covariances between, the estimated components, 
and y is the vector of all squares and products of the 6’s. 

What we seek is an unbiased estimator of v = vech[var(&’)]. By (21), every 
element in var(a2) is a linear combination of squares and products of 0 2 s .  

Hence every element in v = vech[var(6’)] is a linear combination of elements 
in y = vech(a2a2’). Hence there is always a matrix, call it B, having elements 
that are not functions of n2s, such that 

v = B y .  (26) 

Now ANOVA estimators are unbiased; and for any pair of unbiased estimators, 
8; and Sf, 

E ( 8 ; )  = var(8;) + 6: and E(8:Bf) = cov(b:,df) + u;r~j  

Therefore with 9 = vech(B26”) being y with each 0’ replaced by the 
corresponding 8 ’, 

E ( 9 )  = v + y = ( I  + B)y, 

from (26). Hence 9 is an unbiased estimate of (I + B)y. Thus (I + B)-’9 is an 
unbiased estimator of y; and since (26) has v = By, 

0 = B(I + B)-’f  (27) 

is an unbiased estimator of v. Thus for B defined by 

~ e c h [ v a r ( 6 ~ ) ]  = B vech(a’a’’) 

B(I + B)-’  vech(6’BZ’) estimates v = vech[var(d2))3 (28) 

unbiasedly. Mahamunulu ( 1963) uses elements of this principle, although Ahrens 
(1965) derived (28). In passing, note that B(I + B)-l  = (I  + B)-’B. 

Example 2 (continued). In the I-way classification, with balanced data, we 
have, from writing (23) in the form of (28), that B is the 3 x 3 matrix in 

var(8:) = 1 - var(8f) 

-var(8,2,8:) 

2 
a(n - 1) 

2(an - 1 )  
an’(a - l ) (n  - 1 )  

2 - I an(n - 1)  

0 

2 

0 

4 
a - 1  

0 

n(a  - 

0 
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Then calculating B( I + B)- gives (27) as 

r 2 
a(n - 1) + 2 

-2 

0 

2 
a + l  
- 

0 

0 

4 

n(a + 
0 

which is equivalent to the expressions in (67), (70) and (72) of Chapter 3. It is 
left to the reader as E 5.3 to carry out the details, and as E 5.4 to do the same 
for unbalanced data. 

5.3. HENDERSON’S METHOD I 

The Henderson (1953) paper is a landmark in the estimation of variance 
components from unbalanced data. It established three different sets of quadratic 
forms that could be used for s in the ANOVA method of estimation of (19). 
All three sets are closely related to the sums of squares of analysis of variance 
calculations for unbalanced data: an extension to multivariate data is suggested 
by Wesolowska-Janczarek (1984). Although the methodology is the same with 
each set of quadratics (equate them to their expected values), the three uses of 
them have come to be known as Henderson’s Methods I, I1 and 111. In brief, 
Method I uses quadratic forms that are analogous to the sums of squares of 
balanced data; Method I1 is an adaptation of Method I that takes account of 
the fixed effects in the model; and Method 111 uses sums of squares from fitting 
whatever linear model (treated as a fixed effects model) is being used and 
submodels thereof. Henderson ( 1953) describes these methods without benefit 
of matrix notation. Searle ( 1968) reformulated the methods in matrix notation, 
generalized Method 2, and suggested it had no unique usage for any given set 
of data. But Henderson, Searle and Schaeffer (1974) show that this suggestion 
is wrong, and they also give simplified calculation procedures. We draw heavily 
on these papers in what follows. And in doing so, much of the description is 
in terms of the 2-way crossed classification, with interaction, random model 
and, of course, unbalanced data. This is the simplest case that provides 
opportunity for describing most, if not all, of the features of the Henderson 
methods. 

a. The quadratic forms 
Method I uses quadratic forms adapted directly from the sums of squares 

of the analysis of variance of balanced data. In some cases these are sums of 
squares and in others they are not. We use the 2-way crossed classification for 
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illustration and begin with a familiar sum of squares used with balanced data; 
namely bnC,( j i . .  - jJ2 .  The corresponding form for unbalanced data is 
SSA = Zini.(j$.. - 

SSA can also be seen as a generalization of the balanced data sum of squares 
(to which it is equal, of course, when all n!j = n), obtained by replacing bn by 
ni., in both cases the number of observations in j ,  ... Henderson’s Method I 
uses SSA; and it also uses a quadratic form that comes from extending the 
interaction sum of squares, which for balanced data is 

which can also be recognized as R(a 1 p) .  

CiCjn(Iij. - Ii.. - j . j .  - I...I2 = CJjnjf i .  - Cibnjjt. - + abnj?. . 
Unbalanced-data analogues of this equality are 

SSAB = Cixjnij(.Yij. - ji.. - j . j .  + j...)’ 
for the left-hand side and 

for the right-hand side. But, despite what one might anticipate, SSAB and 
SSAB* are, in general, not equal. (They are equal, of course, when all nil = n.) 
But their difference is 

SSAB* - SSAB = -2CiCjn,j(ji.. - j...)(j.j. - J...) 

= -2(C,Cjn,jj$..j .j .  - NI?.). 
SSAB is clearly a sum of squares; it is therefore a positive semi-definite quadratic 
form. It can never be negative (for real values of yi jk) .  In contrast SSAB* can 
be negative. For instance, with data of 2 rows and 2 columns 

SSAB*=-+-+-+-- 62 42 4a2 122 ( -+-  l i 2  6;’) - (5;2 -+- 1;’) + - = - 2 2 .  702 
1 1 2 1  5 

Thus SSAB*, although it is a quadratic form, is not non-negative, and so it is 
not a sum of squares. Nevertheless, this is what is used in Henderson’s Method I. 

The four quadratic forms that are used in Henderson’s Method I are thus 

SSA = xini . ( j i . .  - 

SSB = Z j n . j ( j . j ,  - j j . . . I 2 ,  

SSAB* = Cix,ni,jj& - &ni.jj;.. - Cjn.,jjfj. + N j ? .  

and 
SSE = ~ ~ ~ j ~ k ( y i j k  - y i j . ) 2  * 



C5.31 HENDERSON’S METHOD I 183 

It is interesting to note that although these four expressions never occur all 
together in any traditional partitioning of the total sum of squares for the fixed 
effects model, they do add to that total, 

SST, = ZiZjck(yijk - J... )’ * 

The four never occur together for at least two reasons: SSA is R ( a  I p )  and 
SSB = R(P Ip ) ,  and they never occur together; and SSAB* is not a sum of 
squares. Nevertheless, they do represent a partitioning of SST,. 

b. Estimation 
The estimation method is to find the expected value of each of the four 

quadratic forms and to equate those to the observed values of those forms-the 
values calculated from the data. This gives, for the random model, four linear 
equations in four variance components. 

The tedious part is deriving the expected values. Two terms of E(SSA) are 
shown in Section 5.2b-iii, and the complete expression for E(SSA) is given in 
E 5.2. Expected values of SSB and SSAB* are derived in similar fashion; and, 
of course, E(SSA) = (N - s)a:, where s is the number of filled cells. To simplify 
notation in the estimation equations, define 

k ,  = Zit$., k ,  = Z j n t j .  

k , ,  = Z i Z j n $  

and for any k ,  define 

k: = k , / N  . 
Then for N ’  = s - a - b + 1 the estimation equations are 

where the expected value of the right-hand side of (31) is the left-hand side with 
each d 2  replaced by the corresponding 0’. That, through the A N O V A  estimation 
principle of equating quadratic forms to their expected values, is the origin of( 3 I ). 

Having the condition X‘A,X = 0 in (16) is salient to A N O V A  estimation of 
variance components. It takes the form l ’A i l  = 0 in random models. This 
condition for the terms in (31 ) has, for example, SSA = y‘Aiy for Ai = { ,, &,,} - J,, 
from Section 5.2b-iii, and so 
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Solutions to (3 1 ) can, on defining 

be expressed as 

and 

[+l 

SSA - (a - 1)MSE 

SSB - (b  - 1)MSE 

SSAB* - (N’)MSE 
(33) 

These are the Henderson Method I estimators of the variance components in 
a 2-way cross-classification, random model. 

c. Negative estimates 
It is clear that 8.02 = MSE is always positive. But from (33) i t  is equally as 

clear that estimates of the other variance components are not necessarily 
non-negative. So here we are, back at the familiar problem of having an 
estimation method that does not preclude negative estimates. The reason is that 
nothing is built into the estimation method to ensure that negative estimates 
do not occur. This is true of all applications of ANOVA methodology. 

d. Sampling variances 
On the basis of assuming normality, namely y - N ( p 1 ,  V) for the random 

model, expressions can be derived that lead to sampling variances of the Method I 
estimators. For 8.: we have SSE/a: - xi-s and so 

26: 
var(8.3) = - . 

N - s  

But for the other estimators the results are not so simple. Writing SSA, SSB 
and SSAB* in terms of uncorrected sums of squares, like TA = X,n,.jj;., gives 
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Using Theorem S4 of Appendix S.5 to show that MSE is independent of SSA, 
SSB and SSAB*, and on defining 

1 0 0 - 1  a - 1  

H = [  -; -: -:] and f=[bN-l], (35) 

we can, from (33), write 

= P-'[Hvar(t)H' + var(d;)ff']P-''. (36) 

Searle (1971, p. 482) gives the elements of var(t). There are ten of them, each 
a quadratic in a:, c;, of and 03; and thus each of the ten different elements 
of var( t)  is a linear combination of the ten squares and products of a:, o;, $ 
and a:. The coefficients of those squares and products are therefore set out in 
a 10 x 10 matrix. Those coefficients involve 28 different &-terms, of which but 
five are shown in (30). The full set of 28 is shown in Table F.1 of Appendix F. 
Also shown there are detailed formulae for three nested-classification random 
models, and for four forms of the 2-way crossed classification, embodying the 
double dichotomy of with and without interaction, and of random and mixed 
models. Searle (1971, pp. 491-493) also has details of Henderson I estimators 
for the 3-way crossed classification with all interactions, random model. That 
model has 8 variance components, t has 8 elements and so var(t) has 36 different 
elements, each involving the 36 squares and products of the 8 variance 
components. The required coefficients, developed by Blischke( 1968) as a 36 x 36 
matrix, are given in Searle (1971, pp. 494-514). Printing those twenty-one pages 
is only necessary once! 

It is clear that expression (36) is not at all amenable to studying the behaviour 
of sampling variances of estimated variance components obtained by the 
Henderson Method I. And this is seen to be true for the specific models in 
Appendix F. Each element of (36) is a quadratic form of the unknown 0 2 s ,  But 
the coefficients of the squares and products of the 6's are complicated functions 
of the numbers of observations in the cells and subclasses of the data. For 
example, in (36), the matrix P- ' has, by virtue of (30) and (32), elements that 
are in no way simple functions of the nil-values. This precludes any thought 
whatever of making analytical studies of the variance functions as to how they 
behave either for different sets of values for the a's, or for different sets of 
n!palues. Even for the 1-way classification, as discussed in Section 3.6-iv, these 
kinds of studies were demonstrated as not being readily feasible. With two and 
more factors the intractability of expressions leading to sampling variances 
becomes increasingly aggravated. 
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e. A general coefficient for Method I 
After substituting the model equation yrlt = p + a, + 8, + y r j  + e l j k  into j,.. 

of TA = X,n,j; . , ,  i t  is not difficult to show that the coefficient of a; in E ( T A ) ,  
which we shall denote by c[a; : E(  TA)] is 

One of the minor advantages of Henderson’s Method I is that the quadratic 
forms are all linear combinations of uncorrected sums of squares like Ts. 
Therefore, similar to c [ a f  : E (  T’)]. one can write down a general expression for 
the coefficient of any a2 in the expected value of any such T. 

Suppose there are n.,,,, observations in the tth level of the ith factor of a 
multi-factor model, their total being y. , ( , ) .  Let q, denote the number of levels of 
the ith factor that occur in the data. Then the T for the ith factor is 

T,=  5 n.f(,)fTf(r). 
f( i )  = 1 

Let be the effect for the sth level of the jth random factor, and let n.f(,)s(,) 
be the number of observations in the cell defined by the tth level of factor i 
and the sth 
interactions 

level of factor j. Then, for r random factors (main effect factors, 
or nested) 

Hence, similar to c[a f  : E (  TA)] ,  the coefficient of a; in 7; is 
4. 

I t  is easily shown that 

c [ p z :  E (  T,)]  = N and c[at : E (  T, ) ]  = qiaz . 

These results can be used as needed for the application of Henderson’s Method I 
to any random model. The quadratic forms that are used are analogous to the 
analysis of variance sums of squares for balanced data, like those in the preceding 
sub-section b, for the 2-way crossed classification. They are formed as contrasts 
of the T-terms, of which (34) is an illustration. 

As indicated in sub-section g that follows, Method I should not be used with 
mixed models. Hence the results of this sub-section being confined to random 
models is no restriction so far as Method I is concerned. 
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f. Synthesis 
Synthesis is the name given by Hartley (1967) to his method of calculating 

coefficients of variance components in expected quadratic forms without needing 
to know the algebraic expressions for those coefficients. It operates as follows. 
Denote the sth column of Z, in (1) by zsj. Then in any quadratic form y'Ay 
the coefficient of a: in E(y'Ay) is 

Observe that z:,Az,, is the same quadratic form in z,, as y'Ay is in y. Hence if 
y'Ay is a sum of squares SS(y), the coefficient of of in E[SS(y)] is obtained 
by summing SS(z,,) for every column of Z,. Thus (37) represents a very general 
procedure for calculating the numerical coefficients in any particular case. Use 
each column z,, of Z, as data for the sum of squares and add over s = 1,2,. . . . 
Do this for each j = 0, 1,. . . , r. It is feasible, but not so useful, for algebraic 
derivations, as illustrated in the following example. 

Example 2 (continued). In the 1 -way classification, random model, balanced 
data, Z, corresponding to the random effect u is Z, = I, 63 1,. And in 
SSA = C i n l ( j i .  - j..)2 

a 

s =  I 
c[.,' : E(SSA)] = C SSA(z,,) 

where SSA(z,,) is SSA for the 1-way classification analysis of variance of the 
sth column of Z, = I, @ 1, used as data. Thus, since SSA(y) = Zt= n ( j i .  - j..)', 
and each column of Z, has n unities and an - n zeros, 

SSA(z,,) = (an - n) 0 - -  + n 1 -- ( 3 ( : n r = n ( l - : ) -  

This is the case for all a columns of Z, and so 

as one would expect (see Table 3.3). 
The reason for (37) is almost self-evident: 

E(y'Ay) = tr(AV) = tr A Z,Z)o;) . ( ,=o 

Therefore the coefficient of of is 

9)  

s= 1 
c[oj : E(y'Ay)] = tr(AZ,Z;) = tr(Z;AZ,) = z:jAzsj . 

Something similar can also be done for sampling variances. See Hartley ( 1967). 
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g. Mixed models 
At several points we have stated that Method I can be used only on random 

models. This is so because (with unbalanced data) any attempt at  using Method I 
results in the expected mean squares containing functions of fixed effects that 
do not drop out as do  the terms in p2. We illustrate this for the 2-way crossed 
classification. 

Suppose the A-factor is a fixed effects factor. Then with X l  = {d l,,,}, as is 
Z, in the random effects model, the terms in p and elements ofa that will occur in 
E(SSB)are(pl + X,a)’B(pl + X,a)forBdefinedbySSB = Z,n.,j?,. - N j ? .  = 
y‘By. Motivated by SSA = y’A,y for A = {d &,.} - J N ,  one might expect B to 
be {d J,,,,} - JN. But it is not. The form of A depends on the fact that y has its 
elements ordered by j with i :  if they were ordered by i within j then B would 
be as expected. But with elements of y ordered by i within j ,  the matrix B is, 
for Q being some permutation matrix, 

B = J,,,} - JNIQ’ = Q{d Jn.,)Q’ - J N  

Then the term in p is 
2 

pl’B1p = p2(1’Q{d J,,,,}Q’I - 1 ’ 3 ~ 1 )  = /12 l’{d J,,,}I - ”) = O . ( N 

But using B for the term in as in E(SSB) will be difficult because no 
specific form of the permutation matrix Q is known. Nevertheless, using 
E(  SSB) = E Z,n.,( j.,. - j.,.)2, it is easily shown that the term in as in E( SSB) is 

Similarly in 

the term in the as is 

It can be noted that both 8, and 8, reduce to zero for balanced data; and that 
if the as were random effects, and 8, become the corresponding coefficients 
of a,’ in (31), since the estimators in (31) are unbiased. See E 5.6. 

The important feature of 8, and 8, in (38) and (39) is that they are functions 
of fixed effects that occur in expected values of quadratic forms. Thus in equating 
the observed values of those quadratic forms to their expectations we cannot 
simply solve for the variance components. The 8s get in the way. Although p 
drops out of the expected sums of squares, the other fixed effects do not. What 
this amounts to is that for mixed models X is not just 1, and whereas 1’Al = 0, 
which is X‘A,X = 0 for X = 1 for random models, the X of mixed models and 
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Yijk Yi.. Jib ji.. nu 

1,9 6 2 24 8 6  2 6 2 1 1  
8 4.8 12 32 8 6 1 2  8 1 2 1  

Y . ~ .  24 18 14 56 = y... j . l .  8 6 7 I n.,. 3 3 2 

the A-matrices of Method I are such that, for unbalanced data, X'AX # 0; i.e., 
the condition for fixed effects to drop out of E(y'A,y) of (16) is not satisfied. 
Thus it is that with unbalanced data one cannot use Henderson's Method I 
for mixed models. It is suitable only for random models. 

Because the arithmetic of Method 1 is the easiest of all methods, one can be 
tempted to use it on mixed models, even though one is then knowingly 
introducing error. The two ways of doing this are either (a) ignore the fixed 
effects, i.e., drop them from the mixed model entirely, or (b) treat the fixed 
effects as random and estimate variance components for them under that 
assumption. In either case the resulting variance components estimators for the 
true random effects are not unbiased. 

h. Merits and demerits 
The merits of Method I include the following. 

4. 

4 
4 

8 = n.. 

( i )  Computation is easy even for very large data sets. No matrices are 
involved except for one or two of order no more than the number of variance 
components-and that is usually a small number. 

(i i)  Estimators are unbiased. 
(iii) In many cases unbiased estimators are available for the sampling 

dispersion matrix of the variance components estimators-assuming normality 
of the data. 

(iv) For balanced data Method I simplifies to be identical to the (unique) 
ANOVA method. 

Demerits include the following. 

( i )  
( i i)  

The method does not preclude the possibility of negative estimates. 
Under the usual normality assumptions, the probability density 

function of the estimators cannot be specified in closed form-save for that of 
the error variance, which is often proportional to a zZ. 

(iii) This method can be used only for random models. It cannot be used 
for mixed models. 
i. A numerical example 

We use the small, hypothetical data set of Table 5.2 to illustrate the 
calculations of Method I, for a 2-way crossed classification of 2 rows and 
3 columns. 
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SSA = 4( 6 - 7)’ + 4( 8 - 7)* = 8, 

SSB = 3(8 - 7)’ + 3(6 - 7)’ + 2(7 - 7)’ = 6, 

SSAB* = 2(8’) + 1(6*) + l(2’) + l(8‘) + 2(6‘) + l(12’) - [4(6’) + 4(8’)] 

- [3(8’) + 3(6’) + 2(7’)] + 8(7’) = 42, 

= 10 .  SSE = 2 + 8 

From (29) and (30) 

k ,  = 4’ + 4’ = 32, k ,  = 3’ + 3’ + 2‘ = 22, 

- 43 -3, k 4----+--- - +-- 2’+12 2’+1’ 1’+1‘ 
2 

- 2 ’ + I 2 + l Z  I 2 + 2 ’ + l 2  
4 3 3 

k3 = + 
4 

Then (31) is 

8 - 4  3 - 2 3  3 -  I $  

4 3 - 4  8 - 2 $  43-  11 
4 - 4 3  23 -3  8 - 3 - 4 f + I i  

0 0 0 8 - 6  

with solution 

- 454.6 - 932 
121 121 

a;=-= - 1.6909, a$ = - - - -7.7024, 

1609.6 
121 

8; = - = 13.3025, 8: = 5 . 

5.4. HENDERSON’S METHOD 11 

=[ ;;I9 

The purpose of Method I1 is to provide a method of estimation that retains 
the relatively easy arithmetic of Method I but which is usable for mixed models 
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that contain a term p1 for a general mean p. It achieves this by adjusting the 
data (in some sense) for the fixed effects, and from the adjusted data the variance 
components are estimated by a variant of Method I. Method I1 can therefore 
be thought of as an adaptation of Method I that overcomes the deficiency of 
Method I that the need for having X’AiX = 0 in Method I makes it unavailable 
for mixed models; i.e., Method I cannot be used for mixed models. Method 11 
can be used for mixed models, but only for those containing no interactions 
between fixed and random effects (see subsection f which follows). Method 11 
involves adjusting the data in a manner that produces a vector of adjusted 
observations for which the linear model is a completely random model consisting 
of a general mean and all the random effects parts of the model for y-except 
for a transformation of the error term. Aside from that transformation, Method I 
is then used on those adjusted data based on that random model. This idea 
of adjusting records to get rid of fixed effects and then using a standard method 
on the adjusted records can nowadays, with benefit of hindsight, be viewed as 
a precursor of REML estimation (restricted maximum likelihood, see Chapter 6). 
That method adjusts data for the same reason, and then uses maximum 
likelihood on the adjusted data. Thus the general idea of Method I1 is 
straightforward; and the necessary calculations are mostly not difficult. But 
describing the underlying details and characteristics is. In this respect Method 
I1 is the most difficult of all three of the Henderson methods. 

The general procedure is as follows. In the usual mixed model equation 
y = Xfl + Zu + e separate out p1 from the fixed effects and redefine Sfl as 
excluding p l  and then write the model equation as 

y = p 1 +  Sfl+ Zu + e . (40) 

Throughout this whole section we use this meaning of Sfl: it excludes p l .  
The general procedure of Method I1 is based on computing fi = Ly for L 

chosen in such a way (as described in sub-section a that follows) that 
ya = y - Sfi has a model equation on which it will be easy to use Method I. 
Thus fi = Ly is chosen so that 

i.e., so that the model equation for ya has the random effects in it in the same 
form as they are in y, namely Zu. Then Method I1 consists of using Method I 
on ya. This is straightforward insofar as the random effects of u are concerned, 
because Zu in y,, of (41) is the same as Zu in y of (40)-and we know how to 
do Method I on y. But account must be taken of the fact that E of (41) is not 
e of (40) but is E = ( I  - I L ) e  for 1 = Ly ; also, po depends on L, and is a scalar 
different from p. But its actual value is of no importance. The question is “how 
is fi derived in order to achieve this?” Henderson (1953) shows this largely by 
means of an example; Searle ( 1968) gives a general description, which we follow 
here. 

a. Estimating the fixed etTects 
No matter how fl, as a linear functio? of the data, is calculated, it will be 

fi = Ly for some L. Then ya = y - rt‘p = ( I  - %L)y, for which the model 

y,, = y - Sfl = pol + z u  + E ,  (41 1 
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equation is, using (40), 

y,, = p(I - %L)1 + ( I  - I L ) I f l +  ( I  - XL)Zu + ( I  - I L ) e  . (42) 
In wanting to choose L so that (42) reduces to (41 ), the easiest way of eliminating 
fl from (42) would be to pick L so that the coefficient of fl in (42) is null; i.e., 
so that I - I L I  = 0. Such is achieved by having L as a generalized inverse 
of I. This is what Searle (1971) calls a generalized Method 11. But this is not 
necessarily successful for achieving our ends. 

In addition to ridding (42) of fl by having L be a generalized inverse of I, 
we also want the coefficient of u to be the same in (42) as in (41), i.e., we need 
Z - S L Z  = Z, and hence XLZ = 0. And to get the pol term in (41), we need 
p(1 - I L ) 1  to be of the form I1 for some scalar 1. This is achieved if the 
elements in each row of I L  all add to the same value, say 6,; i.e., I L 1  = 6 , l  
for some 6 , .  Furthermore, although it seems as if we also need I = I L I  as 
already discussed, we can in fact settle for (3 - 3 L I ) f l  having the form 6,1 
for some scalar d2. For then, although (I - I L I ) f l  will not have disappeared 
from (42) through being a null vector, it will have effectively disappeared through 
having the form S21 and ultimately being incorporated in pol of (41). This 
occurs if X - X L 3  has all its rows the same, i.e., I - I L I  = lr’. Thus the 
three conditions required for L are 

( i )  I L Z  = O ;  

( i i )  S L  having all row sums the same, i.e., 

I L 1  = 6,  1 for some scalar 6,; (43) 

(iii) I - I L I  having all rows the same, i.e., 

I - E L I  = lr’ for some row vector r’ . 

With L satisfying (i), (ii) and (iii), we then have (42) reducing to 

y. = pol + Zu + ( I  - XL)e, (44) 

where p o  = p - 6,  + t‘fl. 
b. Calculation 

We now show details of how Henderson’s method of choosing L of = Ly 
satisfies (43). In doing so we are led to the calculation of estimates from 
Method I1 as follows. 

( i )  Use the model 

E(y) = p1 + I f l  + z u  

as if u were fixed effects and where p # 0. The normal equations would be 

(45) 
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(i i)  Since these equations are always of less than full rank, simplify solving 
them by taking f i  = 0. This reduces the equations to 

These equations are usually not of full rank; their many solutions are obtainable 
by using generalized inverses of 

(iii) For Henderson's Method I1 a generalized inverse of C is chosen as 
follows (Searle, 1968, pp. 758-760): 

Strike out from C as many rows and corresponding columns as is necessary to 
leave a matrix of full rank (equal to the rank of C). As many as possible of the 
struck-out rows and columns must be through I'I. (This is the crux of 
Henderson's Method 11.) 

Call the remaining full rank submatrix B. It will consist of some rows and 
columns through I'I and some through Z'Z. Within C replace B by B-', 
element for element, and in the struck-out rows and columns put zeros. The 
result is a generalized inverse 

0 0 0  

C-=[O B-'  O]-[::: p,, p12], 

0 0 0  
(47) 

where the partitioning into the P-matrices is conformable with (46). Then 

1 = Ly = CP,, P',l[~'Y] Z'Y . 
(iv) Carry out Henderson's Method I on 

ya = y - SS = pol + zu + (I - I L ) e .  

Using y:Ayp for each A that would be used in applying Method I to y if there 
were no fixed effects, E(y:Ay,) will contain the same terms in the variance 
components as does E(y'Ay), except for terms in 0 0 2 .  This is because Z and u 
are the same in the model equation for ya as in that for y. 

The term in a; in E(y:Ay,) is ( k ,  + 6,)az, where E(y'Ay) contains 
k,az, and where 6, is calculated as the trace of a matrix derived through the 
following steps. 

(v) 

Partition I and Z as 

$=[I, I,] and Z = [ Z ,  Z,] (49) 

so that in deriving C- of (47) from C of (46) the rows and columns through 
97% of C that are deleted to obtain B correspond to the columns of Il and 
of Z,, with Il having as many such columns as possible. 
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On using (49) in (46), we then have C- of (47) as 

0 0  0 0 0  0 0  

c - = [  

0 0  0 0 0  0 0  

(50) 

where the second equality in (50) defines the Q-matrices, and the third defines 
each P, as a matrix having Qij and three nulls as submatrices. Then (k, + 6,)~: 
of (v), wherein k, is defined, has 

(51) 6, = tr A ( S , Q ,  ,S;) . 
The corresponding value of fi in (48) is 

I.e., 

c. Verification 
We prove that L of (53) satisfies conditions (i), (i i)  and (ii i)  of (43). The crux 

of the proof lies in properties of [S Z] that arise from the manner in which 
rows and columns were deleted from C of (46) to obtain C- in (50). With tz ,  
of (49) defined as having as many columns as possible, the number of columns 
(deleted from C) in 2, is as small as possible-the total number of columns 
in Z2 being dependent on the rank of [S Z]. A consequence of this is that 
among the columns of Z, are those pertaining to all levels of one of the random 
factors. Our proof hangs entirely on this fact. Denote those columns pertaining 
to all levels of whichever random factor has all its levels represented in Z, by 
z1A and partition Z, as 

z l  = c z I l  z l A  z 1 3 1 ,  (54) 

where Z , ,  and/or Z, ,  may be dimensionless. Then, since in [% Z] the sum 
of the columns pertaining to all levels of each factor is l,, we also have 

ZlA1 = 1,. ( 5 5 )  

With L of (53) we now prove (i), (ii) and (iii). 

The matrix S L Z  is  null. In Z = [Z, Z,] each of the random factors 
that has (so to speak) some columns in Z2 also has some columns in Z,; and 
for each such factor adding its columns in Z, and its columns in Z, gives l,, 
which is, by ( 5 5 ) ,  also the sum of columns in Z I A .  Therefore 2, = Z,K for 

4. 
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some K, and so, on using L from (53), 

because, from the non-null submatrices of (50) 

Q l l S > S 2  + QI2Z;S2 = I and Q , , S > Z ,  + Q12Z;Z, = 0 .  (57) 

4. Row sums of S L  are all rhe same. Because of (54) and (55), 

[ S l  5 2  z]l ZlA 2 1 3  z2][0 0 0 1' 0 0]'= 1,; (58) 

z, t = 1, (59) 

therefore,fort' = [O 1' O]conformablewithZ1 = [ Z l l  z 1 A  Z,,],with 

Pre-multiplying both sides of the second equality in (60) by [I Z]' and 
extracting part of the result produces 

Then, using (53), it can be seen that L1N involves the left-hand side of (61), 
from which we get, with the aid of (57), L1N = 0. Therefore row sums of S L Y  
which are elements of S L 1 ,  are zero, i.e., they are all the same. 

4 i .  All rows of S - S L S  are the same. From (49) and (53) 

S - I L I  = [I, I 2 1  - [S, S 2 ]  

The reasoning used with Z, and Z2 concerning sums of certain of their columns 
adding to 1, also applies to X1 and S2: the sum of certain columns in I, and 
in S2 is also 1,. But (58) and (60) give ZlA1 = 1, = Zt. Therefore 
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where S is some matrix of elements that are each 0 or 1, and T = [0 J 01. 
Therefore pre-multiplying (63) by [Q,, Q12][il?2 Z,]’ gives 

from (57). Substituting (64) and (63) into (62) gives 

= [ZIT 0 1 .  (65) 

But 

by ( 5 5 ) ,  and so (65)  becomes % - SLS = [J 03, which has all its rows the 
same. 

d. Invariance 
Since execution of Method I1 depends, as in (iii) following (46), upon deletion 

of rows and columns of C for deriving C-, it might be thought that the resulting 
variance components estimates would not be invariant to the manner in which 
this deletion is carried out (as suggested by Searle, 1971, p. 443). That is false, 
as proved by Henderson, Searle and Schaeffer ( 1974). We give their proof here. 

4. Rankproperties. By the very choice of%, and Z,, the rank of [EZ, Z,]  
equals the number of its columns and it is the rank of C l  Z]; i.e., for r ( l )  
being the rank of %, 

r(%, Z , )  = r ( l , )  + r(Z,)  = r(% Z) . (66) 

r(Z) = r ( Z , ) .  (67) 

r(% Z)  = r(%) + r(Z) - 1 . (68) 
This requirement excludes models that have interactions between fixed and 
random effects, but these are excluded, anyway, by other characteristics of 
Method I1 (see sub-section f which follows). Also excluded by (68) are models 
having any confounding between fixed and random effects. 

Furthermore, since Z ,  has as many columns as possible, subject to (66), 

In addition, we confine attention to models wherein 
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Conditions (66)-(68) are used in provjng that Method I1 is invariant to 
whatever solution is used in y. = y - I s  for applying Method I1 to y.. The 
proof depends upon the es$mability of a certain function of 8, upon the 
relationship of one form of b to another, and upon the quadratic forms used 
in Method I. 

Since (67) is equivalent to r(Z,) = r(Z, Z,), we have 

Z2 = Z,H (69) 

for some H. Also, (59) is Z, t = I,,; therefore, because (I, Z,) has full column 
rank, 1 and columns of I2 are linearly independent. Thus r( 1 12) = 1 + r(%,) 
and so from (66), (67) and (68) 

r ( l  I,) = 1 + r ( I  2) - r(Z,) = 1 + r ( I  Z) - r(Z) = 1 + r(%) - 1 

= r ( I )  = r ( l  I, I,) 

Hence I, = [ I  1 2 ] R  for some matrix R, which can be written as 
R’ = [w W‘] so that 

for some row vector w’ and matrix W. Hence from Z,t = 1 of (59) 

XI = Z,tw’ + I , W .  (71 1 

-id. An estimablefunction. The model (40), y = pl + I s  + Zu + e, is now 

On now using Z,t = 1, of (59) together with (71) and (69) for I, and Z,, 
respectively, this becomes 

Since [I, Z,] has full column rank, we conclude from (72) that 

WfJ, + 8, is an estimable function . (73) 
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-iii. Two solutions. Suppose in the class of models satisfying (68) that flo 
is any solution of the normal equations (45) for the model t!at treats the random 
effects as if they were fixed; and flo is assumed to differ from fl = Ly. Then for 

Y P  = Y - sflo, 
YP - Ya = Y - %Po - (Y - %S) 

= W B l  - fl?) + S z ( B 2  - fl% 

Y P  - Y. = Wi-4 - f ly)  + %CWS1 + B? - (wsy + fl31 * 

and from (70) this is 

(74) 

But Wfl, + f12 is, by (73), estimable. Therefore W@, + b2 = Wfly + fl8 and so 
(74) reduces to 

yP = ya + 11 for I. = w#(S,  - f l y ) .  

-iu. The quadratic forms. Method I1 is to use Method I on yp. But the 
quadratic forms of Method I, say y'Ay, have A = A' and are such that 1'A = 0. 
Therefore when those same quadratic forms are used on ya and yp 

yP'Ay,O = (yb + I.l')A(ya + A l )  = &Ay, . 
Hence Mett-od I on y; calculates the same quadratic forms as on y,,. But, of 
course, for the expected values of those Method I quadratic forms to have the 
same values as they do on y (other than a:-terms) the ya that one uses must 
be of the form required for Method 11, namely ya = y - Ly for L of (53). 

It can be noted in passing that because the only fixed effect term in the model 
equation for ya is pol,  the condition that ybAy, be suitable for ANOVA 
estimation, $ ' A S  = 0, is 1'Al  = 0. This is satisfied because A is defined through 
y'Ay being a Method I quadratic form, for which we know 1'Al = 0. 

e. Coefficients of a," 
Method I1 applied to y = pl + Sfl + Zu + e is Method I used on 

yp = pol  + Zu + E. This means calculating quadratic forms in ya that are the 
same as those in y for Method I used on y = p1 + Zu + e;  for example, y'Ay, 
say. Then Method I1 equates yLAy, to E(y:Aya). Because Zu in ya is the same 
as in y, E (  y:Aya) is identical to E(ybAya) for the y = p1 + Zu + e model-except 
for the term in a:, since y contains e and ya contains E = ( I  - S L ) e  of (44). 
Let the term in a," in E(y'Ay) be k,a," and that in E(ybAya) be (kA + d,)a,". 
Then, since the variance components terms in E(y'Ay) come from tr(AV) and 
because 0," occurs in V as af1, the 0: term in E(y'Ay) is 

(75) k,o: = tr( Aa:l) = a: tr( A )  . 
Similarly, with E = (I - %L)e, the a: term in E(yhAya) is 

( k A  + 6,)a: = tr{A var[(I - S L ) e ] }  . 
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But from (49) and (53)  

I L  = I , U  for U = Q l l s ;  + QI2Z; . 

199 

(76) 

Hence 

k, + 6, = tr[A(I - S,U)(I  - I z U ) ’ ]  

= tr[A(I - U ’ I ;  - S 2 U  + 12UU’%;)1 

= tr{A[I - U ’ I ;  - I , U  + %zU(IzQ; l  + Z l Q \ 2 ) I > ] } ,  (77) 

from (76). But (76) gives (57) as US,  = I and UZ, = 0. Using these and (75) 
in (77) gives 

k ,  + 6, = k, - tr[A(U’S; + I , U  - IzQllX;)] . (78) 

Any Method I quadratic form ykAy, is, in fact, a quadratic form in the 
random factors’ subclass totals-i.e, in Z’y,. Therefore ybAy, = yiZMZ‘y, for 
some M. But Z = [Z, Z,] of (49) is, from (69), Z = Z[I H] = Z,F, say, 
for some F. Therefore y:Ay, = yiZl FMF’Ziy,. Hence for 6, of (78) 

tr(AI,U) = tr(Z,FMF’Z;I,U) = tr(UZ,FMF’Z;I,) = 0, 

because UZ, = 0, as precedes (78); i.e., t r (AIC,U) = 0. Therefore 

0 = tr(A%,U) = tr(U’%;A’) = tr(U’I;A) = t r (AU’I i ) .  

Hence (78) becomes 6, = t r (AS2QI,I ; )  of (51). 

f. No fixed-by-random interactions 
It is a restrictive feature of Method I1 that it cannot be used on data from 

models that include interactions between fixed effects and random effects. This 
is so whether such interactions are defined as being random effects (which would 
be usual) or as being fixed effects. The reason that such interactions cannot be 
accommodated is that their existence is inconsistent with conditions (i)-(iii) of 
(43). This we now prove, taken from Searle (1968). But first an example, to 
illustrate the relationships that exist between I and Z when a model has 
interactions. 

Example. Suppose for the 2-way crossed classification of two rows (factor A )  
and two columns (factor B) that the numbers of observations are 

For these nij-values the model equation 
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written as 

y = p1 + $,a + I B B +  S,,y + e, 

has 

c1 
I . . .  

I . . .  

. I . .  

. I . .  

. I . .  

. . I .  

1 
1 

. . .  

. . .  

By inspection we see that I, and SB each have columns that are sums of 
columns of IAB. This is a direct consequence of there being A-by-B interactions 
in the model. 

Suppose as represent fixed effects and /Is represent random effects. 
Then if the interactions are taken as random in the model equation 
y = p l  + I g +  Zu + e, we would have for the example I= I, and 
Z = [ X B  IAB]. Therefore some columns of I are sums of certain columns 
of Z. This is true generally, whenever interactions of fixed effects factors with 
some random factors are taken as random effects. Then, apart from permuting 
columns of I, we can partition I as 

I=CX1 I 2 1  (79)  

where 3, represents those columns of I that are sums of certain columns 
of Z (e.g., of IAB in the example) and so we have 

I, = ZM for some M . (80) 
Similarly, if those interactions are taken as fixed effects, Z can be partitioned as 

with 
z=cz1 z21 

Z2 = I K  for some K . 
Note: [lz, IJ and [Z, Z,) do not represent the same partitionings of I 
and Z, respectively, as are used in (49). 

Now we prove that interactions of this nature, be they taken as random or 
fixed, are inconsistent with conditions (i)-(iii) of (43). Suppose the interactions 
are taken as random. Then from (80) 

(83) %LIZ, = SLZM = 0, from (i) of (43) . 
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Therefore 

S - S L S  = [ S 1  9 - 2 1  - SL[9-1 9 - 2 1  

= [(S, - SL9-1) (S, - SLSZ)] 

= “$1 - 9-LSl) $ 2 1  

and so by (ii) of (43) every row of [(S, - S L S 1 )  S,] is the same. But this 
means every row of S2 is the same-and that is unacceptable because S, is 
the coefficient of a sub-vector of fl (which does not include p )  in the model 
equation. 

Now suppose the interactions are taken as fixed effects. Then condition ( i )  
of (43) is S L Z  = S L I Z l  Z,] = 0 and so SLZ,  = 0. Therefore using (82) 
gives I L Z ,  = S L S K  = 0. This reduces, after post-multiplying (iii) of (43) by 
K to get S K  - SWK = It’K, to be S K  = It’K, so that by (82) Z, = I t ’K.  
But this means that every row of Z, is the same-again an unacceptable 
situation. Thus data from models that include interactions between fixed and 
random factors cannot be used for estima!ing yariance components by any 
method based on adjusted data y,, = y - Sfl for fl= Ly where L satisfies (43). 
And Henderson’s Method I1 is one such method. Thus, be they treated as fixed 
or random, interactions can be part of the model when Henderson’s Method I1 
is used only if they are interactions of fixed effects with each other, or of random 
effects with each other, and not of fixed effects with random effects. 

g. Merits and demerits 
Merits of Method I1 include the following. 

( i )  The inapplicability of Method I to mixed models is overcome, at least 
partially, by Method 11: it can be used for mixed models that have no interactions 
between fixed and random factors. 

Computation of ya = y - Xg requires care, but after that the 
computation is as easy as is that of Method I, save for coefficients of 8: in the 
estimation equations. 

( i i )  

(iii) Estimators are unbiased. 
( iv )  For balanced data Methods I and I1 are the same, and are the same 

as the ANOVA method for balanced data. (See E 5.18.) 

Demerits include the following. 

( i )  

( i i )  

Models with interactions between fixed and random factors cannot be 
analyzed using Method 11. 

No closed form expressions are available for sampling variances of 
estimators. They could be developed from those of Method I (see Appendix F) 
after taking account of ( k A  + 6 , ) ~ :  discussed in the preceding sub-section e. 

(iii) Negative estimates are possible. 
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5.5. HENDERSON'S METHOD JJI 

Method 111 is based on borrowing sums of squares from the analysis of fixed 
effects models. The sums of squares used are the reductions in sums of squares 
due to fitting one model and various sub-models of it. We therefore begin a 
description of Method 111 with a brief summary of these sums of squares. 

a. Borrowing from fixed effects models 
4. Reductions in sums of squares. In writing a general mixed model 

equation as y = Xfl + Zu + e we clearly distinguish between fixed effects and 
random effects, representing them by fl and u, respectively. Suppose for the 
moment that we remove this distinction and combine fl and u into a single 
vector b and write the model equation as 

y = W b + e .  (84) 

In this sub-section we consider (84) in its own right, forgetting that b contains 
both fixed and random effects. We do this because some of the sums of squares 
associated with fitting (84) as a fixed effects model and with fitting sub-models 
of that fixed effects model are the basis of Method 111. 

In fitting a fixed effects model having model equation (84) it is well known 
that the best linear unbiased estimator of Wb is (see Appendix M for the A -  
and A +  notation) 

BLUE(Wb) = Wb' = W(W'W)-W'y = W W + y .  

SSE = (y  - Wb')'(y - Wb') = y'y - y ' W W + y .  

( 8 5 )  

(86) 

The partitioning of y'y into two sums of squares SSE and y'WW+y (to be 
denoted by SSR) represented by (86) is summarized in Table 5.3. That table 
is, of course, the basis of the analysis of variance table for fitting (84). That 
analysis of variance usually includes calculating mean squares, which, on the 
basis of assuming normality in the form y A"( Wb, u:IN), then provide, 
through the F-statistic 

Then the residual error sum of squares after fitting the model is 

F -  SSE 
r(W) N - r(W)' 

a test of the hypothesis H: b = 0. All this is for the fixed effects model. For 
estimating variance components for mixed models we concentrate attention 
on SSR. 

SSR in Table 5.3 is seen to be the reduction in sum of squares due to fitting 
the model y = Wb + e. We therefore denote it  by R(b) and so have 

R(b) = y'W(W'W)-W'y = y ' W W + y ,  (87) 

Method 111 is the ANOVA method of estimating variance components using 
quadratic forms based on R( b). 
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TABLE 5.3. PARTITIONING THE TOTAL SUM OF SQUARES WHEN FITTING THE 

FIXED EFFECTS MODEL y = Wb + e 
Reduction due to fitting the model SSR = y'WW + y 
Residual error SSE = y'y - Y'WW + y  

Total SST = y'y 

Consider partitioning Wb so that 

E(Y) = Wibi + W2b2, (88) 

R(bl.b2) = Y"W1 W21CWl W21+Y * (89) 

W Y )  = Wlbl,  (90) 

with R(b) now being denoted 

In fixed effects models we might want to compare the fitting of(88) with fitting 

which has 

R(bl)  = y'WIW:y. 

The comparison is based on the difference between the two reductions in sums 
of squares: 

R(b2 I b, )  = R(b,,b,)  - R(b1) 

= Y'CWl W2lCWl W21+Y - Y'w,w:Y. (92) 

Simplification of (92) comes from using WW+ = W(W'W)-W and the 
generalized inverse of a partitioned W'W as given in (21) of Appendix M.4c. 
This results in (92) reducing to 

(93) R(b2 I bi)  = Y ' M ~ W ~ ( W ; M ~ W ~ ) - W ; M ~ Y  

for 

M ,  = I - W,(W;W,)-W; = M; = M:, with M , W ,  = 0 .  (94) 

It is sums of squares like (93) that are used in Method 111. Although with fixed 
effects models such sums of squares are used in numerators of F-statistics, for 
which normality assumptions are required, no normality assumptions are 
implied when using those sums of squares in the Method 111 estimation 
procedure. 

4. Expectedsums ofsquares. Before specifically adapting (93) to the mixed 
models we are interested in (through writing Wb as Xfl+ Zu), we consider a 
general formulation of E[R( b2 1 b, )] that illustrates an important property of 
Method 111. It is not affected by having fixed effects in the model, as is Method 
I; nor is it affected by having fixed-by-random interactions, as is Method 11. 
To do this, think of b as being any mixture of fixed and random effects, so that 
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without knowing which is which we can, in broad generality, have 

var(b) = E(bb’) - E(b)E(b’) . (95) 

For a sub-vector of b having elements that are the effects due to a random 
factor, the corresponding diagonal elements in (95) will be a variance component; 
and all other elements of (95) in the same rows and columns as those diagonal 
elements will be zero. This arises from the properties given in (5a) and (5b). 

Without having to know or formulate which elements of b are fixed effects 
and which are random, the generalization (95) proves useful in considering 
what we need for any form of the ANOVA method of estimation, namely the 
expected value of a quadratic form y‘Ay. With (95) we have 

V = var(y) = var(Wb) + aZI, = W var(b)W’ + at1 

and so 

E(y’Ay) = tr[AW var(b)W’ + AazI] + E(b‘)W’AWE(b) 

= tr[W’AW var(b) + W’AWE(b)E(b‘)] + rT,’tr(A) 

= tr[W’AWE(bb’)] + af tr(A). (96) 

This, for the quadratic form R(b, I b,) of (93), where W = [W, W,], gives 

+ a; tr[M,W,(W;M,W,)-W;M,] . (97) 

Using M1 W, = 0 from (94), together with b’ = [b; b;] and the idempotency 
of MW2(W;MlW,)-W,M, reduces (97) to 

(98) 

where the coefficient of n; comes from (26) of Appendix M.4d; and rw, = r(W ,), 
the rank of W,. 

A notable feature of (98) is that, apart from a:, the only parameters of the 
model that are in (98) are those in b,. They occur in the form E(b,b;). There 
is no occurrence in (98) of the parameters of b, in any form. This means for 
Method I11 that expected sums of squares of the form E R(b, I b,) never involve 
b,. Therefore, so long as we formulate b, to always include the fixed effects of 
our model, E R(b, I b,) never includes fixed effects. By this means, Method 111 
avoids the deficiency of Method I being unsuitable for mixed models. And, by 
the general nature of R(b, I b,), there is no restriction, as there is with Method 11, 
of having to do without fixed-by-random interactions. 

b. Mixed models 

For 

E R(b, I b , )  = trCW;M,W,E(b,b;)l + a,‘(r[w, W,] - rw1), 

We now revert to the mixed model having model equation y = Xg + Zu + e. 

(99) M = I - XX’ = I - X(X’X)-X’ = M’ = M’ with MX = 0, 
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analogous to (94), we have from (98) 

E R ( u  I fl) = tr[Z’MZE(uu’)] + a:(r[X Z] - r[X]) 

= tr[Z’MZ{d Ofr,,}] -I- O:(r[X z] - r[X]) 
= Z, tr(Z;MZ,)of + a:(r[X Z] - r[X]) . (100) 

In this we see at once that the fixed effects fl do not occur at all. 

Example 3. The 1-way classification, random model, with unbalanced data 
yi j  = p + ai + el, has X = lN, fl = p, Z = {d lnI} and u = u. Therefore with 
SSA = R ( u J f l ) =  R ( u l p )  

E(SSA) = ER(aIC1) = tr[(I - JN)6:{d Jnl}] a:(r[1, {d Jnl}] - r [ 1 ~ ] )  

= oitr[{dJnI} - N-llN{rnilLl}] + af(a - 1 )  

= (N - &nf/N)a,2 + ( a  - 1)a: 

as in Section 3.6a. 

represented by u1 and u,. Then (100) gives 
Now consider a slightly more general case, of just two random effects, 

E R ( u , , u ,  1 fl) = tr[M(Z,Z’,a: + Z,Z;a:)] + u:(r[X Z] - r[X]) . 
(101 1 

From (98) we can also obtain ER(u, I fl, u,) .  It involves an M, based on 
[X Z,], and is in fact I - [X Z,][X Zl]+,  by the nature of M1 in (94). 
Thus 

ER(U21f l ,U1)= tr{(I-Cx z,lCx Z, l+)Z2z;u t}  

+ a:(r[X Z] - r[X Z,]) . (102) 

(103) 

We also have, of course, that 

E(SSE) = E[y‘y - R(fl, u,, u2)] = (N  - r[X Z])u: . 
Equation (102) demonstrates a feature of Method 111 that can sometimes 

prove useful: just as each of E R(u, ,  u, I fl) and E R(u, I fl, u , )  involve no terms 
in elements of fl, arising from (98) involving no b,, so also does E R(u, I fl, u , )  
of (102) not involve u,;  it involves only u,, in the form of u:. This leads to 
being able to write Method 111 as a series of equations in the estimated 
components that can easily be solved progressively, first for a: and then for 
one of the other components and then for another, and so on. They are, 
effectively, linear equations that have a triangular coefficient matrix. The 
estimation equations from (101)-( 103) are an example: 

R ( u , , u 2  I fJ) = tr(MZ,Z’,)d: + tr(MZ,Z;)B: + (r[X Z] - r[X])Bf, 
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for 

j. = t r ( (1-  [X Z,][X Z,]+)Z,Z;} . 
Note that ER(b, 1 b, )  of (98) not involving bl has an underlying condition 

that must not be overlooked: in deriving (98), bl and b, constitute all the 
parameters of the model. Suppose R(b, I b, )  is such that b, and b, do not make 
up the whole model. Then there are more parameters in b than those in b, and 
b,. Therefore the derivation of (97) from (96) would have to have W partitioned 
not just as [W, W,] corresponding to b, and b, of R(b,Ib,), but as 
[W, W, W,], where W, corresponds to b,, which contains the parameters 
in b that are not in b, and b,. This would lead to (98) containing terms in b, 
and W, as well as b, and W,, and the principle evident in (98) as it stands, 
that E R(b, I b , )  involves only uf and b,, would be negated. And the triangular 
nature of the estimating equations seen in (104) would be lost. 

Although sums of squares defined in terms of only parts of a model 
do not, as just described, fit into the algorithm of (98), they can often be 
adapted so that (98) can be utilized. Consider E R ( u , ( B )  for the model 
E(y)  = XB+ Z,u ,  + Z,uz. Because u, and f! of R(u, I B) do not constitute the 
whole model, consisting of 8, u, and u,, we cannot use (98) to derive E R(u, I B). 
But 

N u ,  I B) = R(B9 u2) - R(B) 

= R(B, u1, u,) - R(B) - CR(B, u1, u,) - R(B, uz)1 

= N u , ,  uz I B) - M u ,  I B, u,), 

with (98) being applicable to each of these last two terms. In this way, reductions 
in sums of squares whose expected values cannot be obtained directly from (98) 
can be expressed as the differences between two reductions that can utilize (98). 

Notice in (104) that in place of R(u, I B, u,)  it would be perfectly permissible 
to have R(u, I 0, u,)-with a correspondingly different expected value. This 
means that there would then be two different sets of three sums of squares from 
which to estimate the three variance components: (104), and (104) with 
R(u, I p, u,) in place of R(u, I B, u,).  There could be a third set: the last two 
equations of (104) together with R(u, I B, u,). Herein lies one of the great 
deficiences of Method 111; it gives no indication as to which of such different 
sets of equations is to be preferred. 

c. A general result 
ul), where each of u, and u, represent 

a single random factor, can be extended to where u1 and u, each represent one 
or more random factors. In particular, partition Z,uz as 

The result given in (102) for ER(u,, 

z ,u ,  = z , ,u , ,  + z , ,u , ,  + ' . *  + Z2r1U2r1 
rl 

= C ZziUZir 
i =  1 
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where r2 is the number 
uZi being the effects foi 
Then with 

of random factors having all their effects in u2, each 
. exactly one of those factors, with var(uzi) = &Iq,,. 

r2 

1=1  
y = X P +  Z,u, + C z2,u2, + e 

the extension of (102) is 
I1 

E R ( u 2 l ~ , u 1 )  = 1 d i t r { ( 1  - CX Zll[X Zl]+)Z2iZ;i} 
i =  1 

+ a m x  z, Z2l -r"X Z l l ) .  (105) 

d. Sampling variances 
In (21), for Method I, we established a general formula for var(s2), knowing 

that in 6' = C-'s each element of s was of the form y'Aly, where X'A,X = 0, 
as in (16). We now show that this is also the case for Method 111 estimation, 
which means that (21) for var(6') can also be used for Method 111. 

In terms of the vector s = { R (  * I .)}  of reductions in sums of squares, we 
have, as usual for ANOVA estimation, E ( s )  = Co2, giving s = Ce2 for some C 
and so 62 = C-'s. Denoting a typical element of s by y'Aly, we know from 
(98) that by y'Aiy being of the form R ( . (  p;), its expected value contains no 
term in 0. Therefore, since in general E(y'Ay) = tr(AV) + P'X'AXP, we know 
for R ( .  I p;) that P'X'AXP = 0 V fl and hence X'AX = 0; also, because 
R( * 18, .) is a sum of squares, A is real and n.n.d. and so X'AX = 0 implies 
AX = 0. 

More direct derivation of this result is achieved by writing R (  - 1 P, a )  as 

(106) 

R ( u 2  1 P, u I )  for some u I  and u2. Then 

R(u2 I P,UI) = Y'M,Z2(Z;MlZ*)-Z;MlY, 

where M I  of (94) is now 

MI = cx &I([ z; x']cx GI)-[  z; x'] * 

Recall that, in general T(T'T)-T'T = T. Using this with T = [X Z,] gives 

Therefore MIX = 0 and so writing (106) as y'Ay gives AX = 
M,Z2(Z;MlZ2)-Z;MlX = 0. Hence the expected value and variance of 
y'M,TM,y for any T (and its covariance with any other quadratic form in y )  
contains the term TM,XP, which, with M,X = 0, is null. Therefore, under 
normality, for Ai having the form M1Z2(Z;M,Z2)-Z;M,, 

var(y'A,y) = 2 tr(A,V)' and cov(y'Aiy, y'Ajy) = 2 tr(A,VA,V) . 
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Therefore, as in (2 1 ), 

. (107) 

This is a succinct expression but its use is bedeviled with the usual complexities 
of a sampling dispersion matrix ofestimated variance components. First, through 
its dependence on V, (107) is in terms of the unknown components, u2. 
Nevertheless, for any particular data set one can always determine C, 
numerically, and then, for any pre-assigned value of d, say a;, one can compute 
var(6’) from (21) or (107). However, this does little for establishing closed form 
expressions for sampling variances and covariances of Method 111 estimators, 
which remains an intractable problem. Second, the numbers of observations in 
the cells and subclass totals of the data occur in (107) in very intractable ways, 
in the As and in the functions that are elements of C. Third, as a result, studying 
the behavior of elements of (107) for changes in the number of observations is 
well nigh impossible, analytically-and arithmetic studies through simulation 
are fraught with the difficulties of all such studies: designing them in such a 
way as to be reasonably likely to be able to draw some conclusions. 

e. Merits and demerits 

var(h2) = C-’ var(s) C-” = 2C-’{,,, tr(AIVAjV)}i,;=, c- I t  

( i )  Method 111 is applicable to all mixed models; the restriction of having 
no interactions between fixed and random factors that applies in Method I1 
does not apply to Method 111. 

(ii) Estimates are unbiased. 
(i i i)  For balanced data Methods I, I1 and 111 are the same. 

But demerits include the following. 

( i )  When there are two or more crossed random factors the method can 
be applied, for a given model, in more than one way; and there is no way, 
analytically, of deciding between one application and another (as illustrated in 
Sections 5.6a-ii and 5 . 6 ~ 4 ,  which follow). 

Computationally, the method can involve the inversion of large-sized 
matrices-of order equal to the number of levels of the effects in the model. 
This disadvantage will decline as today’s computing power increases in speed 
and declines in cost (per arithmetic operation). 

( i i i )  Sampling variances can be calculated arithmetically, through a series 
of matrix operations and with using estimated values for the variance 
components, but specific closed form expressions are not available. 

(ii) 

5.6. METHOD 111 APPLIED TO THE 2-WAY CROSSED CLASSIFICATION 

The 2-way crossed classification is the easiest case for illustrating some of 
the results of the preceding subsections. We begin with the no interaction, 
random model. 
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a. No interaction, random model 
Taking the scalar form of the model equation 

Yijk = f l  + OLi + + e i j k ,  

its vector form is 

y = pl,  + ZAa + ZBfl + e 

where 

zA = {d l n , . } i f l  and zB = { E  i d *  l n , , } , i l } i i l  

In Z, the d* is described at the end of Appendix M.3: it means that for ni, = 0 
the symbol 1, has column position but no dimensions, i.e., no rows. Useful 
products are 

4. One set of sums of squares. One partitioning of the total sum of squares 
(corrected for the mean) that is used in the fixed effects model is 

R ( a l p )  + R(BIp,a)  + SSE = SST, ( 110) 

where 

SSE = Y’Y - R ( p , U ,  B) and SST, = Y’y - Ny2 = x i x j x k ( y i j k  - j...)’ . 
To derive expected values of the terms on the left-hand side of (1 lo), we use 
(100) and (102), and to do so rewrite R ( a  I p )  in (1 10) as 

We now utilize (from Appendix M.6), for any matrix T, 

tr(TT’) = Z,Z , t f ,  = sesq(T), ( 114) 
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where “sesq” is mnemonic for “sum of squares of elements”. This reduces ( 1 13) to 

+ ( U  + b - 2 ) ~ :  

Similarly, using (102) with M = I - [ 1 X,][ 1 XA]+ gives 

E R ( B  I p,a)  = tr(MZ,Z’,o;) + a:[r(l ZA Z,) - r ( l  Z,)] . 
= o;( N -xi %) + ( b  - 1 ) ~ : .  

n,. 
And, of course 

E ( S S E ) = [ N - r ( l  ZA Z , ) ] ~ z = ( N - a - b +  1 ) ~ :  

It is left to the reader as E 5.7 to derive ( 1 17) from ( 1 16) and to explain ( 1 18). 
On defining for any I ,  k: = k , / N  with, as in (30), 

k ,  = Q$., k 2  = Zjnfj, 

and 

k23 = &xjnij, 
the estimation equations can be written in convenient form. They come from 
using ( 1  15)  and (1  18) with ( 1  l l ) ,  together with ( 1  17) and (1 18), and are 

R ( a l p )  = ( N  - k’,)d: + ( k 3  - k;)6$ + ( a  - l)d;, 

R(Blp9a) = ( N  - k3)d$ + ( b  - l)dz,  (120) 

SSE = ( N  - u - b + 1)dz . 

4. Three sets of sums of squares. The preceding results stem from ( 1 lo), 
but that is only one of the two possible partitionings of SST, that are used in 
the fixed effects model. The other is 

(121) R(B I p )  + R ( a  I p, p) + SSE = SST, . 
By direct analogy (interchanging a with B, and i with j )  with (120)-see 
E 5.7(d)-using expected values of the terms in (121) gives 

R(fl1 p )  = (k4 - k ;  )d: + ( N  - k;)d,2 + ( b  - 1)8:, 

R ( a  I p, B) = ( N  - k4V: + ( a  - l)S,2, 

( N  - a - b + 1)s: . SSE = (122) 
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So this is a second set of equations that is available for estimating the 0,s: it 
is not, of course, the same as (120). 

Notation. It is convenient to define 

h,  is defined in (137) and its calculation is described in Table F.3. 

There are now two options for estimation: (120) or (122). Both have the 
same last equation, rewritten as (124a) below. Having thus obtained d:, one 
could use the middle equations of (122) and (120) for calculating 8; and B f ,  
respectively: these are shown as (124b) and (124c). Doing this fails to utilize the 
first equations of (120) and (122). But a feature of them is that in each the sum 
of the first two equations is the same: 

R ( a , B I p )  = R ( a l p )  + R ( B l P , a )  

= R(B 111) + R ( a  I P? B) 
= ( N  - k l ) 8 ;  + ( N  - k;)S,Z + (a + b - 2)8: 

which has been rewritten as estimation equation (124d). 

9 (124a) 

, (124b) 

9 (124c) 

h,B; + h28f  = R ( p , a , B )  - Nj?. - (a + b - 2)8: . (124d) 

- CiCjzky$k - R ( P ~  a, B) - SSE 
r j ;  = 

N - a - b + l  N - ~ - b + l  

R ( a  1 p, B) - ( a  - 1)s: - R ( p , a ,  B) - Zjn.,j?,. - (a - 1)8: 

R ( B I p , a )  - (b  - 1)8: - R ( p , a , B )  - Zini.T?. - ( b  - 118; 

8,' = - 

Bf = - 

h7 h7 

h4 h4 

Therefore, since ( 124c) is the second equation of (120) and ( 124d) is the sum 
of the first and second, equations (120) are equivalent to (124a,c,d). Similarly, 
(122) is equivalent to (124a,b,d). 

Equations ( 124a,c,d) come from the partitioning of SST, shown in ( 1  10). 
Thus they are equivalent to using SAS Type I sums of squares, with the factors 
ordered A, B. Similarly, ( 124a,b,d) come from ( 12 1 ) and are equivalent to using 
SAS Type I sums of squares with the factors ordered B, A. 
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When R(ff I p, a)  of ( 1  10) is used for fixed effects models, it has a different 
purpose from that of R(a  I p, ff) in (128): e.g., R(ff 1 p, a)  tests H: /3, all equal, 
and R ( a  I p, ff) tests H: a, all equal. Distinguishing between the utility of 
R(ff 1 p, a) and of R ( a  1 p, p) is therefore easy in the fixed effects model. But this 
distinction of purpose does not carry over to the use of these sums of squares 
in Method 111. The method includes no way of deciding which of the two sets, 
a, c, d, or a, b, d of equations (124) should be used. Indeed, a third set of 
equations that includes (124a) is now apparent: Method 111 permits us to also 
use a, b, c. This is equivalent to the last two equations of each of ( 120) and ( 122), 
and so is the same as using SAS Type I1 sum of squares. Thus we have three 
possible ways of applying Method 111 to this case. They are set out in Table 5.4. 
That table identifies which equations a, b, c, or d of (124) can be put together 
to form a set of three equations for estimating the variance components 0,2,  C T ~  

and 0:. It can also be interpreted as showing similarities between the three 
resulting sets of estimates. Thus S,2 is the same in all three options, S i  is the 
same in options 2 and 3 as obtained from (124b), and &; is the same in options 
1 and 3, obtained from (124c). 

It is the availability of more than one set of estimation equations 6’ = C-’s 
that gives to Method 111 its unhappy characteristic of not always being uniquely 
defined for a given model. The method contains absolutely no criteria for 
deciding, for example, between options 1, 2 and 3 of Table 5.4. And in models 
with more than two crossed random factors there will be even more than three 
such sets of possible quadratic forms. Moreover, not only does the method itself 
provide no means for deciding between one option and another but, just as 
with trying to compare any forms of ANOVA estimation, the analytic 
intractability of sampling variances, for example, makes comparison on that 
basis effectively impossible. Numerical comparisons can be made, of course, 
but are fraught with all the usual difficulties already discussed. 

TABLE 5.4. THREE OPTIONS FOR USING METHOD 111 ON THE 2-WAY CROSSED 

CLASSIFICATION. NO-INTERACTION. RANDOM MODEL 

Estimate 

Equations from (124) 

Option 1 Option 2 Option 3 
~~ ~ 

a a 
d b 
C d 

a 
b 
C 

Equivalent to 

Partitioning of SST, ( 110) (121) 

Estimation equations (120) (122) Last two of 

SAS sums of squares Type I Type I Type I1 
( 120) and ( 122) 

A, B B,  A 
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Of course, one could always use the least-squares approach and, after arraying 
all the equations in the form E(s )  = Ca2 use e2 = (C'C)-'C's as an unbiased 
estimator of u2. (See Section 5.2~). 

-iii. Calculation. The only difficult term to calculate in equations (124) is 
R ( p ,  u, p), the sum of squares due to fitting the no-interaction model having 
equation E(y i jk )  = p + ai + fl,. A computational method is given in Table F.3 
of Appendix F. It. is exactly the method given in Searle [1971, Chpt. 7, 
equation (26); 1987, Chpt. 5,  equation (32); Chpt. 9, equation (99)]. 

4 0 .  Sampling Variances. Low ( 1964) derived sampling variances (under 
normality) for estimated 0 2 s  obtained by one of the three possible estimation 
options of Table 5.3, namely option 3, based on equations a, b and c of (124). 
Those sampling variances and covariances are shown in Appendix F.6e. 

b. No interaction, mixed model 
Suppose the f l s  in the model equation y i j k  = p + al + pi + eijk are taken as 

fixed effects. Then the sums of squares are calculated exactly the same as in the 
random model of the preceding section. With the f l s  being fixed the only sum 
of squares having expected value that contains no /Is is R(u I p, 0); and that 
expected value is precisely the same as in the random model. Therefore the 
estimation equations are the last two equations of (122), namely (124a,b): 

x C , x j x k Y ~ k  - R ( p ,  u, 8) 
N - a - b + l  

a: = 

w, Q, 8) - Z j R j Y f j .  - (a  - 1 1s: 
h7 

and 

a: = 

These are the only equations for estimating o,' and a: that Method 111 yields 
for this model. Hence this is a case where Method 111 is unique-in contrast 
to the random model case of Table 5.4, where it is not. 

c. With interaction, random model 
The with-interaction model has equation 

Y f j k  = p + ai + f l j  + Y i j  + eijk * 

Its vector form is thus 

y = plN + Z,a + Z,B + Zcy + e, (125) 

exactly the same as in the no-interaction case of (108) except for the addition 
of Zcy with 

which we write more simply as 
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Useful products involving Zc are 

1”Zc = {, n i j } ,  Z& = {d J,,,} and ZkZc = {d n i j }  . 
To take account of the possibility that some cells may contain no data, we 

define 

s = number of filled cells . (127) 

4. One set of sums of squares. Corresponding to (110) for the no- 
interaction case, one partitioning of SST, used in the fixed effects model for 
the with-interaction case is 

R ( a  I p) + R(B I p, a )  + R ( y  I p , a ,  B) + SSE = SST,, (128) 

where SSE = y’y - R ( p ,  a, B, y) and SST, = & x j x k ( y i j k  - j...)’. In order to use 
(100) and (102) for R ( a  I p), we write it as 

R(aICL)=R(a,B,rIp)-R(B,yIp,a). (129) 

For this, similar to ( 112), 

E R ( a ,  p, y I p) = tr { M( Z,Z;az + Z,Zkai + Z,Z&f)} + o,’[r( 1 Z) - r ~ ]  

(130) 

with, as following ( 112), M = I - J,. Comparing this with ( 112), we conclude 
that the first two terms in (130) are the same as in ( 1  15); and the last two terms 
of (130) are 

o: tr(MZ,Zk) + oz[r(l Z) - rl]  = of tr(ZcZk - S,Z,Z;l) + o;(s - 1 )  

=o: N - 3  + o ? ( s - l ) .  (131) ( Yn2) 
Therefore, with (131 ) and those first two terms of ( 1  15) used in (130), 

Similarly, akin to ( 1  16), 

E R ( B , y I p , a )  = tr[M(ZeZkai + ZcZ;70:)] + o:[r(l 2) - r ( l  Z,)] 

(133) 
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with the same M as used in (116). It is left to the reader to show that this 
reduces to 

Its expected value is obtained from using ( 134) and E R ( y  1 p, a, B). But deriving 
the latter is difficult. From (105) it involves only two terms, 0; and of, with 
that in 0,' being 

o:[r(I Z) - r (1  Z, ZB)] = n,'(s - a - 6 + 1 ) .  

Hence, 

E R(y I p, a, B) = h 6 4  + n,'(s - a - + l ) ,  (136) 

h ,  = tr((1 - [ I  z, zB][1 z, zB]+)zczb) . (137)  

where from (105) 

Unfortunately, a tractable form of h6 is difficult to obtain-because 
[ 1 Z, ZB] [ 1 Z, ZB] + has no tractable form. A procedure for calculating 
it is given in Table F.3 of Appendix F, taken from Searle and Henderson (1961). 
It would be nice to have something algebraically tractable rather than just that 
computing procedure. 

On using (132) and ( 134) with ( 129); and ( 134) and ( 136) with ( 135); and 
(136) itself, together with E(SSE) = ( N  - s)a:, we now have estimation 
equations similar to ( 120): 

R(a I p )  = (N - k ; ) B :  + ( k 3  - &;)I+: + ( k 3  - k;3 )B:  + ( a  - 1)Bf,  

R(Blp,a) = 

R(YlP*a9B)= 

(N - k 3 ) B ;  + (N - k 3  - h6)8,2 + ( b  - 1)B:. 

+ (S - a - b -k 1)6f, 

SSE = 

4. Three sets of sums of squares. Just as ( 1  10) and ( 121 ) are two 
partitionings of SST, for the no-interaction model, so are (128) and 

R(B I p )  + R(a I p, B) + R ( y  I p, a, B) + SSE = SST, (139) 

for the with-interaction model. Equation (139) is the with-interaction form of 
(12l)Just as (128) is of(  110). Therefore,just as (122) is a second set ofestimation 
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equations analogous to (120), so is the analogy of (138) for the terms in (139), 
as follows-derivable from ( 138) by interchanging a with B and i with j: 

R ( B l p )  = ( k i  - k;)&,f + ( N  - k ; ) B j  + ( k ,  - k; , )B:  + ( b  - I)&:, 

R(a I P* B) = ( N  - w: + (N - k4 - h,)B: + ( a  - I)&:, 

R(7 I P* a, B) = h,&: + (s  - a - b + l)&:, 

SSE = ( N  - s)&: . 
(140) 

So, just as (122) is a set of equations second to (120) in the no-interaction case, 
so is (140) second to ( 1 3 8 )  in the with-interaction case. 

Both sets of equations, (138) and (140), have the same last two equations 
and in each set the sum of the first two equations is the same: 

R(a,BIPo= R(atIL)+R(BlII,a) 

= R(B I P I  + R(a  I P, B) 
= ( N  - k; )d :  + ( N  - k;)d;  + ( N  - k; ,  - h6)d:  + ( a  + b - 2)d: . 

( 141 ) 

This leads, by exactly the same kind of reasoning as was used in deriving 
(124a,b,c,d) to having the following estimation equations for the with-interaction 
case-using (123). 

( 142a) 

1 
8: = - [ R ( 7  I P,a, B) - (s - a - b + 1)8,2] 

h6 

1 
= - [&Z,n,,$. - R(P,  a, B) - (s - a - b + 1)~?,2], (142b) 

h6 

(142d) 
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Finally, from ( 141 ) 

h,d;  + h2d i  = R(a, p I p )  - (N - 4, - h,)d: - ( a  + b - 2)df 

= Z,Xjn,jP& - N j f .  - h36: - (S - 1)df . ( 142e) 

Equations (142a) and (142b) are the third and fourth equations of (138); 
(142d) is equivalent to the second; and ( 142e) is the sum of the first and second 
equations of (138). Therefore (142a,b,d,e) are equivalent to using (138). This 
in turn is equivalent to SAS Type I sums of squares when ordering the factors 
A, B and AsB. Similarly, ( 142a,b,c,e) are equivalent to (140), which is equivalent 
to SAS Type I sums of squares when ordering the factors B, A and B+A. Finally, 
Method 111 permits using ( 142a,b,c,d), which are equivalent to using R ( a  I fl, p), 
R ( f l J p , a ) ,  R ( y I p , a , p )  and SSE-and so they are the SAS Type I1 sums of 
squares. Thus, as with the no-interaction model in equations (124), we again 
have three possible ways of applying Method 111 to the random model. They 
are set out in Table 5.5. 

Again, it is the availability of more than one set of sums of squares, and 
hence more than one set of estimates, that characterizes Method 111 as being 
not always uniquely applicable to a set of data. 

-iii. Calculation. As with the equations ( 124) for the no-interaction model, 
so also for ( 140) for the with-interaction model. The only difficult sum of squares 
is R(p,  a, p) with the additional difficult coefficient, h,. Computing procedures 
for both of these are given in Table F.3. 

-iv. Sampling variances. No specific expressions are known to be available 
for sampling variances and covariances of the estimates available from equations 
(142). A matrix formulation of the estimators could be used in Theorem S4 of 

TABLE 5.5. THREE OPTIONS FOR USING METHOD 111 ON THE 2-WAY CROSSED CLASSIFICATION, 

WITH-INTERACTION. RANDOM MODEL - 
Equations from (142) 

Estimate Option 1 Option 2 Option 3 

8: a a a 
8; b b b 

88” d e d 
8: e C C 

Equivalent to 

Partitioning of SST, (128) (139) 

Estimation equations (138) ( 140) Last three of 

SAS sums of squares Type I Type I Type 11 
(138) and ( 140) 

A,B, A*B B,A, B*A 
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Appendix S.5, but it  would not be at all tractable. It could yield computational 
procedures, no doubt, and they would involve quadratic forms of the unknown 
variance components. Rohde and Tallis ( 1969) have considered this approach. 

d. With interaction, mixed model 
As was done in the no-interaction model, suppose the P j s  are fixed effects. 

Then since the only trio of equations (for estimating D: ,  u: and 6;) that do 
not have P j s  in them are (142a, b and c), these are the equations that are used. 
Therefore these are the estimation equations for the 2-way crossed classification, 
mixed model, with b j s  being fixed effects. Das (1987) considers the special case 
of this model when eijk - N(0, D ; ) ,  i.e., having a different within-cell variance 
for each cell. 

5.7. NESTED MODELS 

It is difficult to make generalizations about the applicability of ANOVA 
estimation methods to mixed models that include nested factors. But, for 
completely nested models, those having no crossed factors at all, one or two 
general statements can be made. LaMotte (1972), for example, gives a general 
formulation of the dispersion matrix var(y) applicable to any completely 
nested model. 

For completely nested, random models the nested feature of such models 
makes the sequence of sums of squares for Method 111 self-evident, and that 
leads to Henderson’s Methods I, I1 and 111 being all the same for these models; 
and they are the same as using the customary analysis of variance sums of 
squares. Details for the 1-way, 2-way and 3-way nested models are shown in 
Appendix F; also E 5.13. 

For completely nested, mixed models, estimation of variance components is 
easy when all random factors are nested within fixed factors; by this is meant, 
for a 4-factor case, for example, that if the primary and secondary factors are 
fixed, and the tertiary factor nested within the secondary factor and the fourth 
factor nested within the tertiary one are both random, then the variance 
components for those two factors and for error are estimated from the three 
sums of squares for those three random contributions to the data. These will 
generally be the last three of the five sums of squares displayed in a partitioning 
of the total sums of squares. Thus if the factors are represented by A, E, C and D, 
with E nested within A, with C nested within E,  and D nested with C, and with 
C and D being random, then the sums of squares that are the basis of the 
estimation equations are R ( y  I p,u, fi), R ( S  I p,a, p, y )  and R ( p , a ,  g,y,S). 

Some of the papers that deal with nested models include, for example, 
Khattree and Naik (1990) who, for the 2-way nested model, derive locally best 
tests for H: gi = 0 and H: a,$% = 0 using partially balanced data. Burdick and 
Graybili (1985) deal with the same model, and data having the same number 
of observations in each sub-most cell, but unequal numbers of levels of the nested 



c5.81 OTHER FORMS OF ANOVA ESTIMATION 219 

factor. They suggest an approximation for the distribution of a sum of squares 
and use that to develop an approximate confidence interval for the sum of the 
three variance components. And for the 3-way nested classification, random 
model, with unbalanced data, Tan and Cheng (1984) compare four different 
ratios of mean squares as statistics for testing H: 0: = 0. In the case of the 
random effects being distributed in some manner other than normally Westfall 
(1986) provides conditions under which, for nested mixed models, the ANOVA 
estimators of variance components obtained from unbalanced data have an 
asymptotical multivariate normal distribution. 

5.8. OTHER FORMS OF ANOVA ESTIMATION 

Henderson's three methods are just particular ways of using ANOVA 
methods of estimation, just three different ways of choosing quadratic forms 
for the ANOVA procedure of E ( s )  = Ca2 giving 6' = C-'s; indeed, in many 
cases, more than three ways because Method 111 can, as illustrated in Tables 5.4 
and 5.5, provide more than one way. 

There are, of course, other sets of quadratic forms that have been used in 
the ANOVA method. Two that have received some attention are the unweighted 
means analysis and the weighted squares of means analysis, which are now 
described for the 2-way crossed classification, each of which generalizes in a 
straightforward fashion. There is also the symmetric sums method of Koch 
(1967a, b, 1968), but since it has been little used in practice, it is not included 
here, and also the method of Hocking et al. (1989) discussed in section 11.2. 

a. Unweighted means method: all cells filled 
An easily calculated analysis of all-cells-filled data is to treat the observed 

cell means as observations and subject them to a balanced-data analysis of 
variance. This was suggested by Yates (1934) as providing approximate F-tests 
for fixed effects models. In the case of the 2-way crossed classification, random 
model the mean squares from that fixed model analysis of variance provide 
ANOVA estimators of variance components in the following manner. 

Define 
"11 

with 

- xi x jxt j and 2.. =-. Zjxi j  - xixi] 
xi. = - , X . ]  = - 

b a ab 

In doing so, take note that we are dealing only with data for which 

nil > 0 V i and j . 
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Then the estimation equations are (using subscript u to den0te“unweighted”) 

b 
a - 1  

MSA, = - & ( X i .  - f..)’ 

a 
MSB, = - C,(X., - 2.J2 = adf + 8; + n,ff,Z 

b - 1  

Cix,(x,, - fi. - f. ,  - 2 .y  = bf + nh8,Z 
1 

(a - l ) (b - 1 )  
MSAB, = 

(145) 

These arise from the expected values of the mean squares being the right-hand 
sides of ( 145) with 6’s in place of 6’s. (See E 5.9.) 

b. Weighted squares of means: all cells filled 
A second analysis that Yates (1934) suggested for all-cells-filled data from 

fixed effects models is known as the weighted squares of means analysis. Its 
mean squares for the 2-way crossed classification, random model, used in the 
ANOVA method of estimating variance components yield estimation equations 
as follows. 

Define 

where X i .  and z., are as in (144). Then the estimation equations are (with 
subscript w denoting “weighted”) 

1 
MSA, = - 1 Z , W , ( & .  - Z,)2 - - ~ ( Z,wi - g)(6&: + 8 : )  + 8: 

a - I  (a  - I)6 

8; + a: I h6 MSAB = - R ( y  I P, a, B) = 
( a  - I ) (6  - 1 )  ( a  - 1)(6 - 1)  
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Again, the right-hand sides of these equations, with 0 2 s  in place of B2s, are 
expected values of the left-hand sides-in accord with the ANOVA method of 
estimation. (See E 5.9.) 

It is noticeable in both (145) and (147) that c?: = MSE; and (147) has 8; 
the same as in Henderson’s Method 111. [The equation for MSAB contains h6, 

which is the same h6 as used in equations (140)-( 142), and which is defined in 
(137) and for which computing details are given in Table F.3 of Appendix F.] 
Although the sums of squares in (147) are those customarily recognized as 
constituting the weighted squares of means analysis, a variety of other weights 
can be used in place of wi  and ul, as discussed by Gosslee and Lucas (1965). 

The cell means j,,. of (143) have also been used by Thomsen (1975) and by 
Khuri and Littell (1987) to establish tests of hypotheses that variance components 
are zero in the 2-way crossed classification, with interaction random model 
with unbalanced data, all cells filled. 

5.9. COMPARING DIFFERENT FORMS OF ANOVA ESTIMATION 

Applying the general ANOVA method of E ( s )  = Cu2 giving b2 = C-’s to 
the 2-way crossed classification, random model yielded five different sets of 
estimation equations: Henderson I, I1 and 111, and unweighted means and 
weighted squarcs of means. Indeed, more than five because of the three forms 
of Method 111-Table 5.5. This multiplicity of available quadratic forms is 
inherent in the general ANOVA method. So long as 1’Al = 0, the quadratic 
form y‘Ay can be an element of s, for a random model. Any r + 1 such quadratic 
forms can be the elements of s, where there are r random factors (main effect 
or interaction factors). Within this only slightly restricted confine (1’Al  = 0) 
there is an infinite number of sets of quadratic forms that can make up s. They 
all have just one thing in common: they yield unbiased estimators for random 
models; as do the Henderson Method I1 quadratic forms for mixed models. 

This property of unbiasedness might, however, be of questionable value. As 
a property of estimators it has been borrowed from fixed effects estimation; but 
in the context of variance component estimation it may not be appropriate. In 
estimating fixed effects the basis of desiring unbiasedness of estimators is the 
concept of repetition of data and associated estimates. The concept remains 
valid, but not its applicability for unbalanced data from random models- 
repeated data, perhaps, but not necessarily with the same pattern of unbalanced- 
ness or with the same set of (random) effects in the data. Replications of data 
are not, therefore, just replications of any existing data structure. This would 
be particularly so when considering the possibility of repeating the data 
collection of some of the very large data sets (e.g., 500,000 records) that get 
used for variance components estimation in animal breeding work with farm 
animals, such as dairy cows, beef animals and sheep. Under these circumstances 
mean unbiasedness may therefore no longer be pertinent, and replacing it with 
some other criterion might be worth considering. Modal unbiasedness is one 
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possibility, suggested by Searle ( 1968, discussion), although Harville ( 1969b) 
doubts if modally unbiased estimators exist and questions the justification of 
such a criterion on decision-theoretic grounds. Nevertheless, as Kempthorne 
( 1968) points out, mean unbiasedness in estimating fixed effects “. . .leads to 
residuals which do not contain systematic effects and is therefore valuable.. . 
and is fertile mathematically in that it reduces the class of candidate statistics 
(or estimates).” However, “, , .in the variance component problem it does not 
lead to a fertile smaller class of statistics.” 

All five modes of the ANOVA method that have been described reduce, for 
balanced data, to rhe ANOVA method in that case (e.g., E 5.18 and E 5.19), 
which has optimum properties of being minimum variance quadratic unbiased 
and minimum variance unbiased under normality. But for unbalanced data this 
reduction to an optimal balanced data situation and the unbiasedness of the 
resulting estimators are the only known properties of the methods. Otherwise, 
the quadratic forms involved in each method have been selected solely because 
they seemed “reasonable” in one way or another. The ANOVA methodology 
itself gives no guidance whatever as to which set of quadratic forms is, or might 
be, optimal in any sense, It includes no criteria for choosing one set of quadratic 
forms over any other. Moreover, the “reasonableness” of the quadratic forms 
in each case provides little or no comparison of any properties of the estimators 
that result from the different methods. Probably the simplest idea would be to 
compare sampling variances. Unfortunately this comparison soon becomes 
bogged down in algebraic complexity. Not only are the variances in any way 
tractable only if normality is assumed but also, just as with balanced data, the 
variances themselves are functions of the variance components. The complexity 
of the variances is evident in var(8:) for the 1-way classification given in (102) 
of Chapter 3, where its behavior is briefly discussed. Yet that, apart from 
var(8;) = 2af/(N - s), is the simplest example of a sampling variance (under 
normality assumptions) of an estimated variance component. But, as is apparent 
from (36), sampling variances in the 2-way crossed classification are considerably 
more complicated than in the 1-way case. Certainly, they are quadratic functions 
of the unknown variance components, but the coefficients multiplying the terms 
in the a’s are such that their behavior, and hence that of the sampling variance, 
for different sets of n,j-values, cannot be studied algebraically. The functions of 
the n,,-values are just too complicated. Moreover, the behavior depends upon 
what the values of the 0% are. 

Two possibilities exist. One is for whatever particular data set is at hand. It 
will have a set of n,,-values. We call that set an n-pattern, and then have 

var(ci2) = f(u2, n-pattern), (148) 

where f is a vector ofelements that are quadratic forms of the a%, with coefficients 
that are those complicated functions of the n-pattern. Now calculate var(a2) 
for each of a range of values of uz around the estimate 3’. Included in this 
would be itself, used in the manner of (28) to get an unbiased estimator of 
var(a2). This will give information about how changes in u’ affect var(62)-for 
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that n-pattern. And one can do this for more than one estimator of a2, and 
thus compare var(6’) for one estimator with that of another-but only for the 
n-pattern of the data. 

A second, and much more difficult, possibility is to try, arithmetically, to 
study the behavior of var(6’) for different n-patterns. The difficulty is to decide 
what n-patterns to use. Whereas the arithmetic of calculating var(6’) is relatively 
no longer time-consuming, the problem of what different n-patterns to choose 
still remains. One objective might be to see how var(6’) [or even just var(o,?), 
where u,? is some element of a’] behaves for different degrees of unbalancedness. 
But how can unbalancedness be categorized? What n-patterns will typify 
different degrees of unbalancedness? Even in the 1-way classification we saw 
in Section 3.6d-iv that var(8:) was, for certain values of a:/oz, bigger for the 
n-pattern ( 1 ,  1, 1, 11, 1 1 )  than for (1,  1, 1, I ,  21); and yet in some general sense 
the latter would usually be considered to represent greater unbalancedness than 
the former. This inconsistency with one’s intuition about unbalancedness is 
occurring in a 1-way classification with but 25 observations in 5 groups. 
Contemplate how much more this may well arise with, say, 500 observations 
in 80 groups, and even more so with a 2-way crossed classification, wherein 
settling on n-patterns to use we have to decide on not only N but alsoon the 
ni.- and n.,-values, and the ntj-values and the cells in which they will occur. 
Even in the most trite (and totally impractical) case of all, a 2-way crossed 
classification of but 2 rows and 2 columns with 8 observations and all cells 
filled, there are at least 11 distinguishably different n-patterns, as shown 
in Table 5.6. With something of even modest size, such as 50 rows and 
80 columns, the number of n-patterns clearly becomes astronomically large. 
Categorizing them on some monotonic scale of unbalancedness seems quite 
impractical. And even if it were not, one would also need to select sets of values 
for d and, using each set with each n-pattern, calculate var(6’) of (148). The 
hope of matching those calculated values with unbalancedness in a manner 
than informs us about how unbalancedness affects var(6’) seems unlikely to 
be fulfilled. 

Despite the difficulties just described, some numerical comparisons have been 
reported in the literature. Kussmaul and Anderson (1967) studied a special case 
of the 2-way nested classification that makes it a particular form of the 1-way 
classification. A study of the latter by Anderson and Crump (1967) suggests 
that the unweighted means estimator of 0,’ appears, for very unbalanced data, 

TABLE 5.6. ELEVEN DISTINGUISHABLE A-PATTERNS IN A 2-WAY CROSSEDCLASSIFICATION OF 2 ROWS, 
2 COLUMNS AND 8 OBSERVATIONS, WITH ALL CELLS FILLED 

n-pattern 

1 2 3 4 5 6 7 8 9 10 11 

2 2  2 2  1 3  1 3  1 4  4 1  3 2  2 3  4 1  4 1  1 5  
2 2  1 3  3 1  1 3  1 2  1 2  1 2  1 2  1 2  2 1  1 1  
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to have larger variance than does the analysis of variance estimator for small 
values of p = o,'/ot, but that it has smaller variance for large p. The 2-way 
classification, interaction model has been studied by Bush and Anderson ( 1963) 
in terms of several cases of planned unbalancedness. With 6 rows and 6 columns 
in a 2-way crossed classification, three of the designs they used had filled cells 
(each with just one or two observations) either in an L-pattern in the 6 x 6 
grid or in a diagonal band, more or less, across the grid. Designs such as these 
[and others, e.g., Anderson (19791 were used to compare Henderson's 
Methods I and 111 and a weighted means application of the ANOVA method. 
Comparisons were made, by way of variances of the estimators, both of different 
designs as well as of different estimation procedures, over a range of values of 
the underlying variance components. For the designs used the genera1 trend of 
the results is that, for values of the error variances much larger than the other 
components, the Method I estimators have smallest variance, but otherwise 
Method 111 estimators have. Later, Swallow and Searle (1978) and Swallow 
and Monahan ( 1984), in comparing ANOVA with other methods of estimation, 
use 13 different n-patterns for the 1-way classification and in doing so illustrate 
values of var(6') for a variety of values of uf/a:. 

Comparing the three Henderson methods is therefore virtually not feasible. 
Even with using a supercomputer so that vast arithmetic would be feasible, 
there is no assurance that the desired calculations, vbr(6'), say, could be 
displayed in a manner that would reveal any underlying patterns if indeed such 
patterns exist. For example, suppose in the 2-way crossed classification, we try 
planning to calculate vbr(6') for a set of values of u's, and a set of n-patterns. 
How will one choose the set of a's? Certainly we could consider just 
[o,'/cri oj/od u:/u: 13, but even this requires choosing triplets, and even 
for 4 different values of each ratio that gives 64 different triplets. How, one 
wonders, can the ultimate values of vlr(a2) be arrayed over those 64 triplets 
to yield information, if there is any, about how u' affects var(b2)? And the 
difficulty of this question is magnified greatly when one further considers 
choosing a set of n-patterns and looking at each of the 64 values of var(h2), 
itself a 4 x 4 matrix, for each n-pattern. In choosing n-patterns one has such a 
large number of choices available: values for N, a, b and s; values for nl., . . , , no. 
and for r ~ . ~ ,  ..., n.*; values for the n i p ,  of which there are ab, with ab - s of 
them having to be chosen as zero. So even for one set of values for N, a, b, s, n,. 
and n.j ,  there will be a very large set of possible n-patterns. And although the 
computing of var(h2) for the 64 sets of u2 for each n-pattern is nowadays quite 
feasible, the big question is how can we relate those computed values of var(62) 
to the 64 values of u2, and to the multitudinous n-patterns, so as to be able to 
draw conclusions about how var(6') is affected by different values of u' and 
by different degrees of what we implicitly think of as unbalancedness. 

So maybe the only comparisons available are those stemming from the 
establishment of the methods-and they are not really very helpful. Method I 
commends itself because it is the obvious analog of the analysis of variance of 
balanced data, and it is easy to use; some of its terms are not sums of squares, 
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and it gives biased estimators in mixed models. The generalized form of 
Henderson’s Method I1 makes up for this deficiency, but his specific definition 
of it cannot be used when there are interactions between fixed and random 
effects. Method I11 uses sums of squares that have non-central X*-distributions 
in the fixed effects model, and it gives unbiased estimators in mixed models; 
but it can involve more quadratics than there are components to be estimated; 
and it can also involve inverting matrices of order equal to the number of 
random effects in the model. For data in which all subclasses are filled the 
analysis of means methods have the advantage of being easier to compute than 
Method 111; the unweighted means analysis is especially easy. All of the methods 
reduce, for balanced data, to the analysis of variance method, and all of them 
can yield negative estimates. Little more than this can be said by way of 
comparing the methods. 

5.10. ESTIMATING FIXED EFFECTS IN MIXED MODELS 

The basic formulae for estimating XP in the model equation y = X s  + Zu + e 
are the same for unbalanced data as for balanced data of Section 4.8: 

OLSE(XP) = X(X’X)-X‘y 

and (149) 

GLSE(XP) = X(X’V-’X)-X’V-’y . 
However, when data are unbalanced, these formulae are not necessarily equal, 
as they always are with balanced data and the customary mixed or random 
model [see the discussion following ( 113) in Section 4.91; nor do they reduce 
to straightforward expressions for calculating estimates, as they do with balanced 
data, e.g., equations ( 109) and ( 112) in Chapter 4. 

For completely random models, where p is the only fixed effect, X = 1, and 

l’V--’y 
OLSE(p) = jj and GLSE(p) = ___ 

l ’v-  1 

Otherwise, there are few other general simplifications of the expressions (149) 
except, of course, in the case of planned unbalancedness, such as discussed by 
Harville ( 1986). 

The general inequality of the expressions in (149) prompts the question 
“What conditions on X and V will lead to GLSE(XP) equalling OLSE(XP)?” 
This is a question of some practical interest because equality of the two estimators 
means that GLSE can be calculated as the OLSE. And since GLSE utilizes 
variances of the random effects factors, which requires knowing or estimating 
those variances, being able to use OLSE, which does not require variances, is 
very advantageous. Thus answering the question “When does GLSE equal 
OLSE?” is of some importance and has engendered much research. The easiest 
answer is that GLSE = OLSE if and only if there is a matrix F such that 
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VX = XF. This is one of many equivalent answers given by Zyskind (1967) 
and reviewed by Puntanen and Styan (1989). Establishing this condition is 
relatively straightforward when V is nonsingular (see E 5.14). It is somewhat 
difficult when V is singular-see Puntanen and Styan (1989). 

When the condition VX = XF is not met, as is usually the case with 
unbalanced data, the GLSE is an estimator that has two optimal properties: 
unbiasedness and minimum variance. But its use requires knowing V, and this 
is seldom the case. So something must be used in place of V. An obvious choice 
is q = XiJo Z,Z;& where 8: is an estimate of 0;. The difficulty, of course, lies 
in what estimator should be used as the basis for 8; .  Kackar and Harville 
(1981 ) have shown that if the are calculated as even-valued functions of y 
[a function s (y)  is even if s (y)  = s( -y )  for all y] and as translation-invariant 
[meaning that s(y + Xg) = s(y) for all y and 81 then 

GLSE( Xa) = X(X‘8-  ‘X)-X’V- ‘y 

is an unbiased estimator of Xg. ANOVA estimators h2 satisfy these conditions 
(even and translation-invariant), and so do the ML and REML estimators, 
discussed in Chapter 6. 

5.11. SUMMARY 

Few details are given in this summary because details for any particular 
model are mostly somewhat voluminous. Appendix F contains detailed formulae 
for a variety of individual models; and this summary is mostly just a short list 
of topics. The table of contents has the complete list. 

A general model for fixed @ and random u 

y = Xg + Zu + e  
r 

= XfI + C Ziui + e 

= xg + 1 ziu,; 

i= 1 

r 

1=0 

r 

V = var(y) = 1 Z,Z;a: . 
1=0 

Estimation 

s = {E Y’AIY hie; 

E ( s )  = I m  tr(ZjAiZj)li,j{j a;) 

= Cd; 
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Unbiased estimation of var(6’) 

V = v e c h [ ~ a r ( 6 ~ ) ]  and y = vech(a2a2’); 

var(6’) = C-’ var(s)C-’’ =. B exist for v = By; (26) 

(28) 0 = B(I + B) vech(6’6’) is unbiased for v . 

Henderson’s Methods I, I1 and 111: Sections 5.3, 5.4 and 5.5 

The 2-way cross classification: Sections 5.3, 5.6, and 5.8 

Analysis of means methods: Section 5.9 

5.12. EXERCISES 

E 5.1. Show that in (22), tol  = 0 and t l l  = (a - l)(a: + no:)’ and hence 
derive (23). 

Show that E(SSA)  of Section 5.2b-iii is E 5.2. 

E 5.3. 

E 5.4. 

Derive B(I + B ) - ’  of (28) for the ANOVA estimators stemming 
from Tables 4.10 and 4.12. 

Define S, = Z,n: and S ,  = Zin;, 

2 - ~ N ( u  - 1 )  2N2(N - l ) (a  - 1) 
N - u  ( N  - u) (N2  - S , )  ( N z  - S,)’(N - a ) ’  

k ,  =- 9 kz = 9 k j  = 

4N 2(N2S, + Si - 2NS3) 
k4 = 7 9 k, = N - S ,  ( N z  - S2)’ 

Using Section 5.2e, derive unbiased estimators of the variances 
of, and covariance between, the ANOVA estimators of variance 
components [see (95), (96) and (102) of Chapter 31 in the 1-way 
classification with unbalanced data. The results are 

and 

viir(8:) = -- 8: + k46,2d,2 + k,d; 
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E 5.5. Prove that SSAB* - SSAB is as shown in Section 5.3a, and illustrate 
it for the data given there. 

E 5.6. (a) Derive (38) and (39). 
(b)  Show that (38) and (39) are both zero for balanced data. 
(c) Show for the random model that 8, of (38) and (39) reduce to 

what one would expect from (3 1 ). 

E 5.7. (a) Derive ( 117) from ( 1 16). 
(b) Derive ( 1  18). 
(c) Establish (120). 
(d) Derive (122) from ( 120). 

Derive ( 134) from ( 133). 

(a) Derive the expected value of MSA,, MSB, and MSAB,. 
(b) Derive the expected value of MSA, and MSB,. 

E 5.10. (a) From Tables F.l and F.2 write down the variance of SSB. 
(b) For balanced data show that it simplifies as expected. 

E 5.1 1. Consider the following data from a 2-way classification of 2 rows 
and 2 columns: 

E 5.8. 

E 5.9. 

Data 

3.7 17 25 
2 6,lO - 

For a random model, with interaction, calculate 
(a) estimated variance components using Henderson’s Method I; 
(b) the sampling variance of 7’’ used in (a); 
(c) estimated variance components using all versions of 

Henderson’s Method 111. 
For a mixed model, with fixed rows, without interaction, calculate 
(d) estimated variance components using Henderson’s Method 11. 

E 5.12. Repeat E 5.1 1 for the data set 

7,9 6 2 
8 498 12 

E 5.13. The 2-way nested random model has model equation 

Y l j k  = + ai + PlJ + e,jk 

for i = 1,. . , , a ,  j = 1, .  . . , bi and k = 1,. . ., n,,. For convenience use 
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the notation 

a = o f ,  P = o ;  and e = a : ,  8 = a + P + e .  

(a)  For the following data write down V = var(y) in extenso: 

Data 

i =  1 i = 2  

j=1 j = 2  j=1  j = 2  j = 3  

5 8 8 1 3 
9 10 2 7 

10 3 
6 

(b)  Explain why, in general, 

= {d aJn,, + P { d  Jn,,},?1 + e I n , . } i f l  * 

(c)  Derive 

(d)  Verify VV-I = I for V - '  of (c). 
(e) Given SSA = Zini.(jji.. - j...)2, SSB: A = Z,C,n,,(jji,. - jji..)2 

and SSE = CiC,Z,(y,,, - ji,.)2, establish 

E(SSB:A) = 

E(SSE) = (N - b.)6: . 
(f) Note in (e)  that the coefficient of 0: can be written as 

Express the other five coefficients in forms that involve 
differences between reciprocals, e.g., 



230 ANALYSIS OF VARIANCE ESTIMATION FOR UNBALANCED DATA [ 5.121 

Conjecture corresponding results for the 3-way nested classi- 
fication random model. [This is the formulation given by 
Ganguli ( 1941 ).] 

For non-singular V prove that X(X’V- ’X) -X’V- ’  = 
X(X’X)-X’  if and only if VX = VF for some F. 
For the model y - {pl, ,a2[( 1 - p)l, + pJ,]} prove that 
GLSE(p) = OLSE(p). 
For the I-way classification, random model, balanced data, 
show that GLSE(p) = OLSE(p). Why is this not the case for 
unbalanced data? 
Consider the usual 2-way nested classification, mixed model, 
having model equation yijk = p + ai + / I i j  + eijk,  with i = 1,. . .,a, 
j = 1 , .  . . ,band  k = 1 , .  . . , n, where p and the as are fixed. Show 
that F exists such that VX = XF. 

E 5.15. Suppose unbalanced data from a 2-way crossed classification have 
been wrongly analyzed using a computing routine for a 2-way nested 
classification. The user of the routine is so perplexed that the routine 
gets used again. As a result, there are now ANOVA variance 
components estimates on both a /I-within-a basis and a-within$. 
Show how they can be used to get Henderson Method I estimates 
for the 2-way crossed classification. (Use results shown in E 5.13.) 

Equation (31) yields Henderson Method 1 estimators for the 2-way 
crossed classification, with interaction, random model. 
( a )  Describe what amendments have to be made to those equations 

to yield estimators for the no interaction form of the model. 
(b) Carry out those amendments and show that they yield the 

estimators in Appendix F.6b. 

E 5.16. 

E 5.1 7. The following data are to be considered coming from a 2-way crossed 
classification of three rows and three columns. 

8,9 13 - 

9 15 12 
8 6 - 

Estimate variance components using the Henderson methods, 
denoted I, 11 and 111, for the 
( a )  no interaction, mixed model, using 11 and 111; 
(b )  no interaction, random model, using I and 111. 
(c) with interaction, mixed model, using 111; 
(d )  with interaction, random model, using I and I 
Nore: Use rational fractions rather than decimals. 

1. 
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E 5.18. Using Appendix F.4b, demonstrate the validity of method (b )  at 
the end of Section 5.3g. 

For the 2-way classification having model equation E 5.19. 

yi j  = p + a, + Pj + eij  

for i = I , .  . ., a and j = I , .  . . , b, with one observation in every cell, 
show that Method 11 is the same as Method I. Use a = 3 and b = 2 
to illustrate parts of your derivation. 

E 5.20. Show that (145) and (147) reduce to the usual ANOVA estimators 
for balanced data. 



C H A P T E R  6 

M A X I M U M  L I K E L I H O O D  ( M L )  

A N D  

R E S T R I C T E D  M A X I M U M  L I K E L I H O O D  
( R E M L )  

ANOVA methods of estimating variance components described in preceding 
chapters have not required, for the actual derivation of estimators, any 
assumption of an underlying probability distribution for the data. All that 
has been needed is that the random effects and residual errors have finite 
first and second moments, and satisfy some mild correlation assumptions 
(e.g., Section 5.lb-ii). True, for balanced data (Chapter 4 and parts of 
Chapter 3) we have seen that making some normality assumptions (Sections 
3.5d and 4.5) leads to being able to test certain hypotheses and to establish 
certain confidence intervals. And for unbalanced data (Chapter 5 )  those same 
normality assumptions provide (by means of Theorem S4 of Appendix S.5)  the 
ability to provide expressions for, or that can lead to, computable forms of 
sampling variances of, and covariances among, variance components estimators 
(Sections 5.2d, 5.3d, 5.6a-iv and 5.6~-iv). 

Abbreviations. We use ML acronymically for maximum likelihood and 
MLE for “maximum likelihood estimat-,” with a variety of word endings, 
depending on context; e.g., estimate, estimates, estimator, estimation and so on. 

In using the ML method of estimation we are turning to an old 
(e.g., Fisher, 1922), well-established and well-respected method of estimation 
that has a variety of optimality properties. For straightforward situations 
detailed description of these properties can be found in many mathematical 
statistics books (e.g., Casella and Berger, 1990, Chap. 7). Therefore we just use 
the method here, without detailing derivation of those general properties, the 
special applications of which, to variance components estimation, can be found 
in Hartley and Rao ( l967), Anderson ( 1973) and Miller (1973, 1977). 

232 
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In contrast to the ANOVA method of estimation, one of the basic requirements 
of ML estimation is that of having to assume an underlying probability 
distribution for the data. A natural choice is the normal distribution, the 
multivariate normal, of Appendix S.2. Normality is chosen not because it is 
necessarily appropriate for all the different kinds of data for which one might 
want to estimate variance components but, more practically, normality leads 
to mathematically tractable methodology-even for unbalanced data. We 
therefore refer the reader to Appendices S.3 and S.7 for brief accounts of certain 
features of the multivariate normal distribution and of the method of maximum 
likelihood estimation. With that as a base we proceed to show the derivation 
of MLEs of variance components. And in Section 6.6 we describe an amended 
form of ML estimation that we call restricted maximum likelihood (REML). 
It also goes by the names of residual maximum likelihood and marginal 
maximum likelihood. 

6.1. THE MODEL AND LIKELIHOOD FUNCTION 

We return to the linear model that is described in detail in Section 4.6a. 
Only its essential features are repeated here. y, the N x 1 vector of observations, 
is taken to have model equation 

( 1 )  

as in (58) of Chapter 4. The fixed effects occurring in y are represented by 0, 
and the random effects by u, with Zu being partitioned as 

y = Xg + Zu + e 

where ui is the vector, for random factor i, of the effects for all levels of that 
random factor (be it a main effect factor, a nested factor, or an interaction 
factor) occurring in the data. The number of such levels, and hence the order 
of ui, is denoted by 4,. In the customary random model the random effects 
represented by u, have the properties 

E (  ui) = 0 and var( ui) = crf I,, V i ;  

and 
cov(ui, u;) = 0 for i # h . 

Thus 

var(u) = { d  c r : I y , J i ~ ,  

as in (67) of Chapter 4. Also, 

E ( e )  = 0, var(e) = a,21, and cov(ui, e’) = 0 V i . 
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Using these assumptions in ( 1 )  leads to 

and 

A notational convenience is to define 

uo = e, qo = N and Zo = I N .  ( 8 )  

y = X p +  C Ziui and V = ZiZ:a: (9) 

This gives ( 1 )  and (7) as 
r r 

i = O  i = o  

as in (70) and (7  1 ) of Chapter 4. 
In Appendix S.2 the density function of the vector of random variables 

is given as 

f(x 

For our data vector y - A'", Xp, V), and the function corresponding to ( 1  l ) ,  
viewed as a function ofthe parameters p and V, is called the likelihood function 

similar to ( 103) of Chapter 3 and (85) of Chapter 4. 

6.2. THE ML ESTIMATION EQUATIONS 

Maximum likelihood estimation uses as estimators of fl and V those values 
of p and V that maximize the likelihood L of ( 12). More accurately, we maximize 
L with respect to fl and to c* = [oi O: a:], the latter being used in V 
as in (7)  and (10). 

a. A direct derivation 

which shall be denoted by I: 

. . . 

Maximizing L can be achieved by maximizing the logarithm of L of (12), 

I = log L = - j N  log 27t - 4 log 1 V I - + ( Y  - XP) 'V- ' (y  - Xp) . (13)  

To maximize I, we differentiate (13), first with respect to p, using Appendix 
M.7d, which yields 
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Second, differentiating (13) with respect to af using Appendices M.7e and 
f, together with 

gives, for i = 0, l,.. ., r, 
dl 

80; 1,: = - = -4 tr(V-'Z,Z;) + $(y - Xfl)'V-'Z,Z;V-'(y - Xp) . (16) 

A general principle for maximizing 1 with respect to fl and the cr: is to equate 
(14) and (16) to zero and solve the resulting equations for fi and the azs. In 
general, values of p and u2 that maximize 1 of (13) are solutions to equating 
(14) and (16) to zero. But these solutions are not necessarily the maximum 
likelihood estimators of p and the azs, merely candidates. Completing the 
maximization demands checking second derivatives (see Section 6.3c), and also 
demands checking the likelihood function on the boundary of the parameter 
space, since the maximization must be confined to the parameter space. In many 
situations this confinement is not a restrictive requirement. For example, 
equating lp of (14) to 0 gives, denoting a solution to p by Po, 

(17) 

which yields the MLE Xpo of Xp when V is known. Since for a typical element 
of p, say bk, the parameter space is usually - 00 < < 00, there is no concern 
in solving (17) as to whether elements of Do are positive, negative or zero. But 
being unconcerned for solution values vis-A-vis Po does not carry over to 
solutions for elements of u2 obtained from equating( 16) to zero for i = 0, 1,. . . , r .  
This is because the parameter space for the variance components in the linear 
model described in ( 1 )-( 10) is 

X'V - 'xpo = X'V - ' YI  

a;>O and az>O f o r i =  1, ..., r .  (18) 

Therefore, if 3: and 6: are to be maximum likelihood estimators, they must 
satisfy 6: > 0 and 3: 2 0, conditions similar to (18). Denote the solutions for 
u2 to the equations 8 l / ap=  0 and IC dl/a;}i,'o = 0 by u2 = IC c i z } i l o .  Then 
6' is the MLE of u2 only when 

6: > O  and 6; 2 0  for i = I ,  ..., r; (19) 

i.e., provided (19) is satisfied, the ML estimator is 6' = 6'. 
When (19) is not satisfied (usually by one or more cif being negative), the 

ML procedure is the extension of that described in Section 3.7a known as 
pooling the minimum violator, which often results in replacing any negative 
value with a zero, which is tantamount to dropping the corresponding factor 
from the model. That extension is described in Herbach (1959) and Thompson 
(1962). After applying it, one then uses the model so reduced to re-estimate u2, 
obtaining a new 6' and applying (19) again. 

Notation. V and v are V with t?' and 6' used, respectively, in place o f d .  
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The ML solutions are solutions to equating (14) and (16) to zero: 

X'V - 'xp = X'V - 1 y 

and 

tr(V-'Z,Z;) = (y - X~) 'V - 'Z ,Z ;V- ' (y  - xS) for i = 0, 1 ,  ... r 

An algebraically simpler expression for (21 ) is derived by defining 

p = v-1- v- 'x(x'v- 'x)-x'v- '  . 

V - ' ( y  - XS) = Py, 

X'V- 'xp = x'V-'y 

Then from (20) it is clear that for P being P with V replaced by 3 

so that the ML equations (20) and (21) are 

and 
{ c  tr(V-'ZiZ;)},L0 = { c  y W , Z ; P y } , L o  . 

Before deriving alternative expressions for these equations we should notice 
two features of them that are important. First, (24) is similar to but not the 
same as the equation X'V-'Xflo = X'V-'y that yields BLUE(Xfl). I t  is not the 
same because (24) uses V where the equation for the BLUE uses V. Second, 
equations (25) are nonlinear in the variance components. Elements of V are 
linear in the o:s, but V occurs in (21) only in the form V- ' ,  once in each 
element of the left-hand side'of (21) and twice in each right-hand element of 
(21), together with its occurrences in 1. Thus equations (21), or equivalently 
( 2 9 ,  are complicated polynomial functions of the variance components, an 
illustration of which is evident in (134) and (135)  of Chapter 3. Hence (except 
in what turns out to be a very few cases of balanced data) closed form expressions 
for the solutions of (25) cannot be obtained. Therefore on a case-by-case basis, 
for each individual data set, solutions to (25) have to be obtained numerically, 
usually by iteration. All the problems that this entails are in the ken of the 
numerical analyst. They are mentioned briefly in Section 6.5, and considered 
again in Chapter 8. 

b. An alternative form 
The left-hand side of the ML equation (25) is a vector of elements 

tr(V-'Z,Z;) = tr(V-'ZiZ;V-'V) 

I r 
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where, as in Appendix M.6, sesq(A) is the sum of squares of elements of the 
matrix A. Therefore (25) can be written as 

(27a) 

(27b) 

A cautionary note: equations (27) might seem to be linear in elements of u2, 
the variance components estimates, but they are not. Those estimates also occur 
in v-',  which is involved in the left-hand side of (27) and, through P, in the 
right-hand side also. Thus the equations are non-linear in the elements of t2. 

The form of equations (27) is not necessarily optimum for computing 
purposes, but it is useful for illustrating how an iterative procedure for obtaining 
a solution could be set up: use a set of starting values for u2 in v - '  and P, so 
that (27) is then linear in e2 and is easily solved for the next value of b2. 

c. The Hartley-Rao form 

defined by 

{,,, tr(V - lziz$ - 'Z~Z;)} i , , ~  ,b2 = { y 'Pz iz ;  Py } L,, 

{,,, sesq(Z;d-'Zj)Ji,il=,cj2 = { c  sesq(Z;Py)},:, . 
or, equivalently, as 

Hartley and Rao (1967) formulate the likelihood function in terms of H 

V = Huf with V-' = H-'/crZ. (28) 

Thus H has exactly the same form as V except that where crz occurs in V there 
is a 1 in H, and where there is c r f  in V there is yi = a:/af in H, for i = 1 ,..., r. 
This means that in the Hartley-Rao formulation of ML estimation it is p, cr,' 
and y,, ..., y, that are the parameters-in particular, y i  instead of a;, for 
i = 1,.  . . , r. This leads to a separate equation for 6: rather than having it be 
included in (27). 

We derive, for (28), the estimation equations of Hartley and Rao, using (25) 
as the starting point. (The basis of being able to make this derivation, i.e., of 
deriving estimation equations for uf and yi from equations for u2, is the chain 
rule used in Appendix S.7d.) First, (25) for i = 0 is 

tr(V-')  = y'P2y, (29) 

since i = 0 corresponds to ui = 0,' with Z, = 1. But using (23) gives (29) as 

tr(V-1) = (y - XI)'VI-2(y - XI), 

tr(A-1) = (y  - Xfi)'A-2(y - XS)/bf . 

which, with (28), is 

Therefore 

Now consider equations (25) for i = I ,  2,. . . , r (excluding i = 0): 

t r ( v - ' z i z ; )  = y'Pz,Z;Py. (31) 
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Multiply (31) by 6; and sum over i = 1,2, ..., r :  

This becomes, on using (23), (28) and 

But, by (30), the term in the square brackets is zero. Hence, on repeating( 30), 

The equations that Hartley and Rao then have are 

X'V - 'XS = X'V - 1 y, 

6: = (y - XS)'A - l(y - XI)/N, (35a) 

and 

IC tr(h-lZiZ;)},Ll = {,(y - XfI)'fi-'Z,Z$I-'(y - Xb)/ci:>,l, . (35b) 

In (35b) it is not of that is estimated but yi = a: /a: for i = 1,. . . , r ;  and, because 
of (35a) and the fact that the yis are ratios, iterative solution of (35a) and (35b) 
may, in fact, be easier than of (25). 

6.3. ASYMPTOTIC DISPERSION MATRICES FOR ML ESTIMATORS 

As indicated in Appendix S.7, one of the attractive features of ML estimation 
is that the large-sample, asymptotic dispersion matrix of the estimators is 
always available. It is the inverse of what is called the information matrix, 
var(8) 'Y [ I (O)] - ' .  We now develop I(O) for fl, u2, and for [a; y']' where y 
has elements yi = a;/o; for i = 1,. . . , r ,  of Hartley and Rao (1967). 

a. For variance components 
In (14) we used the symbol 1, for al/afl. This is extended to using I, ,  for 

d21/ap afl' and I,, for d21/ap do2'. Then, from Appendix S.lc, 
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Since in (14) 

1, = X'V - ly  - X'V - 'XS, 
(36) I,, = -X'V-'X and lb; = -X'V-lZ,Z;v-l(y - X g ) .  

And with (16) being 

I,; = - 4 tr(v- 'z,Z;) + +(y - x ~ ~ ) ' V - ' Z , Z ; V - ' ( ~  - xg) 
we get, with Appendix M.7e giving 

l+,; = f tr(V-'ZjZ;V-'ZiZ;) - +(y - ~ ~ ) ' ~ ~ ' ~ j ~ ~ ~ ~ ' ~ i ~ ~ ~ ~ l ( y  - xg) 

(37) 
= )tr(V-'Z,Z;V-'Z,Zj) - (y  - X ~ ~ ) ' V - ' Z , Z ; V - ' Z ~ Z J V - ~ ( ~  - XS).  

In taking expected values of (36) and (37) we use E(y) = Xfl and hence 
E(y - Xg) = 0, and 

gives 

- )(y - xg)'v-'z,z;v-'z,z;v-'(y - xg) 

E ( y  - XB)'T(y - Xg) = tr(TV) for non-stochastic T 

- E l a p  = E(  X'V - 'X)  = X'V - 'x, 

- Elp,,;  = X'V-'ZiZ;V-'E(y - xg) = 0 
and 

- Elo;, ,;  = - ) tr(V-'Z,Z;V-'Z,Z;) + tr(V-'Z,Z;V-'Z,ZJV-'V) 

= 4 t r (V- 'Ziz;V-Lzjz;) .  

Therefore the information matrix is 

Therefore, asymptotically, 
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In these expressions 1' denotes the vector of solutions to the maximum 
likelihood equations when those solutions satisfy the non-negativity requirements 
of (19) and so are therefore ML estimators. Similarly, 1 is the solution vector 
from X'O-lXB = X'Q- ly  when using the true ML estimator 1* in deriving v 
and not just any solution vector. Of course, making this distinction in (39) is 
really unnecessary, because although ML estimators are not generally unbiased, 
they are consistent. This means that in the limit (as sample size tends to infinity) 
the estimators converge to the parameter values; and since (39) and its sequels 
are only true in the limit, there is no problem about the solution 1' not being 
the MLE. Nevertheless, we persist with this notation to be emphatic about 
distinguishing between solutions and MLEs. Furthermore, although (40)-(42) 
are exact only in the limit, they are results that provide some information about 
sampling variances even for finite-sized data sets. Even though the ML estimators 
are not unbiased, use of (40)-(42) with uz replaced with 6' may lead, with 
small-sized samples of data, to under-estimation of variances of the ML 
estimators. Nevertheless, calculated values of (40)-( 42) using this replacement 
are to be found in much of today's computer package output for ML estimation, 
and so will undoubtedly gain ever-increasing use. Even in the limit there are, 
of course, difficult questions as to what is meant by "sample size tending to 
infinity" in mixed models. For example, in a 2-way crossed classification what 
does that phrase mean with regard to the numbers of levels of each factor, the 
numbers of empty cells, the number of observations per filled cell and the total 
number of observations. Both Hartley-Rao (1967) and Miller (1977) give 
consideration to this kind of question. Finally, note that (39) is also the 
Cramer-Rao lower bound for the variance-covariance matrix of unbiased 
estimators. [See Casella and Berger (1990, Theorem 7.3.1).] 

b. For ratios of components 
The Hartley-Rao equations (35) lead to direct estimation of 0; and of 

y = { c y i } i ~ l  for y i  = c:/u,' (43) 

rather than of uz = { 0; } for i = 0,. . . , r. On defining yo = Q; = 0,' we have the 
relationship between these two sets of parameters as 

The information matrix for yo and y is then obtained from (44) by using the 
theorem in Appendix S.7d. Through writing 

8 = d  and A = , [:I 
the theorem is 

I(A)=SI(O)S' for S =  - . {::j 

(45) 
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Therefore, from (44), 

1 0  

i . j  = 0 Y Yo1 
(47) 

and so, with (38) yielding 

For i , j  = 1,2 ,..., r this is 

I" O 1, tr(v-2) L tr(V-ZZiZ;)} 
0 .:I "I+[{, tr(V-2Zizi)} {,,, tr(V-'ZiZ;V-'ZjZJ)) y a:I 

(50)  

which ultimately reduces (see E 6.6) to 

(51) 

N tr(Hb?iZ;) { 
{,,, tr(H- 'Z,Z;H- 'ZjZ;)} 

Further reduction seems difficult. 

c. Maximum? 
The matrix of second derivatives, known as the Hessian, is 

and from (35), (36) and (37) this is 

Q =  
X'V - 'X {, X'V - 'z,z;Py}, Lo -[ sym 4 { ,,, - tr( V - 'ZiZ;V - 'Z,Z;) + 2y'PZ,Z;V - Z,Z;Py} ,,{= 

By standard results in advanced calculus (e.g., Buck, 1978, p. 426), Q will be 
negative definite when evaluated at f l=  B and u = a2 or at any local maximum 
of the log likelihood, so long as the maximum is in the interior of the parameter 
space. It is easy to see that Q need not always be negative definite; or even 
negative definite at all points that satisfy the likelihood equations (20) and (21). 
Consider Figure 8.1, which exhibits a log likelihood surface with two local 
maxima and a saddlepoint. At the saddlepoint, equations (20) and (21) will be 
satisfied but the Hessian will be indefinite. 
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6.4. SOME REMARKS ON COMPUTING 

Equations (24) and (25), or either of the alternative forms for (25), namely 
(27) or (35), are clearly nonlinear in the elements of b2, and solutions are usually 
obtained by numerical iteration. This raises all kinds of questions in numerical 
analysis, such as the following. 

( i )  What method of iteration is the best to use for these equations? 
( i i )  Does the choice of iterative method depend on the form of the 

equations used, ( 2 9 ,  (27) or (35)? Or are there other forms that are even more 
suitable? 

( i i i )  Clearly, (27)  is the most succint and easily understood form of the 
estimation equations, but is it the best? 

( i v )  Is convergence of the iteration always assured? 
( v )  I f  convergence is achieved, can we be sure that it is at a value that 

corresponds to a global maximum of the likelihood and not just a local 
maximum? 

( v i )  Does the value of uz chosen as an initial value for starting the iteration 
affect the value at which convergence is achieved? 

( v i i )  If so, is there any particular set of starting values that will always 
yield a value at convergence that corresponds to the global maximum of the 
likelihood? 

(v i i i )  What is the cost, in terms of computer time and/or money to do the 
necessary computing? [We might note in passing that as of March, 1990, the 
time required for inverting matrices on Cornell’s supercomputer was quoted 
for matrices oforder 1000,2000 and 9000(an upper limit) as being approximately 
17 seconds, 2 minutes and 2 hours, respectively.] 

( i x )  The matrix V is, by definition, always non-negative definite; and 
usually positive definite. The latter has been assumed. What, therefore, is to be 
done numerically if, at some step in the iteration, the calculated c2 is such that 
the calculated V is not positive definite? 

( x )  More seriously, what is to be done if the calculated V is singular? 
[ Harville ( 1977) addresses this concern.] 

( x i )  Since ML estimators, as distinct from just solutions to the estimation 
equations, must satisfy the conditions ( 19) that 5: > 0 and 6: 2 0 for i = I , .  . . , r, 
these conditions must be taken into account in computer programs that are 
used for solving the ML equations to obtain ML estimators. Customarily, any 
5; that is computed as a negative value is put equal to zero-an action which 
can sometimes be interpreted as altering the model being used. I t  also raises 
the further difficulty of having a computer program which, for any 6; that has 
been put equal to zero after some iteration, enables that 6; to come back into 
the calculations again at some later iteration if i t  were then to be positive. 
Conditions of this nature are considered in such papers as Hemmerle and 
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Hartley ( 1973) and Jennrich and Sampson ( 1976). Maybe replacing the negative 
solution by a small possible number, e.g., 0.5, would be better-as is done in 
some packages; and the use of algorithms for solving nonlinear equations, 
adapted by constraints such as a,? 2 0 is also a possibility. 

Clearly, these difficulties are not necessarily overcome in any easy manner 
when building a computer package for estimating variance components by 
maximum likelihood. It is a job for the expert, with a sound appreciation of 
numerical analysis. Computer packages designed by those who are amateur in 
this regard are usually to be deemed suspect. A more detailed discussion of 
computing variance components estimates is given in Chapter 8. 

6.5. ML RESULTS FOR 2-WAY CROSSED CLASSIFICATION, BALANCED DATA 

Section 4.7b contains ML solutions and estimators for a variety of balanced 
data cases, and Section 4.7d displays the ML equations for two cases of the 
2-way crossed classification random model, with and without interaction. For 
the with-interaction case we show here the details of deriving certain parts of 
those equations-and leave it to the reader ( E  6.8) to derive the others. 

a. 2-way crossed, random model, with interaction 
The scalar form of the model equation is 

Y i j k  = p + ai + b j  + Y i j  + e i jk  (52) 

for i = I , .  . . , a, j = 1,. . . , b and k = I , .  . . , n. The vector form is 

y = F l a b ,  + Z,a + Z2P+ Z3y + Z,e 
with 

z, = 1, @ 1, @ 1, = 1, ZoZb = 1, @ 1, @ I n ,  

z, = I , @  I , @  I , ,  z,z; = I ,@J,@J,,  
(53) 

Z2 = l a  O I, @ I n ,  ZzZ; = J, @ I b  O J,, 

z3 = I , @  I , @  I , ,  Z3z; = I ,@ 1, @ J, 

and 

v = Z,Z;a,2 + z,z;~; + Z3Z;a: + ZoZbo:. (54) 

-i. Noration. The ML equations turn out to be quite complicated. Relative 
simplicity is achieved by relying on some substitutional notation. First, the 
familiar sums of squares: 

SSA = Z i b n ( j i . .  - j...)', 

SSB = Z j ~ t ~ ( j . j .  - j...)', 

SSAB = Z i Z j n ( j j i j .  - ji.. - j . j .  + j...)', 
2 SSE = Z i Z j Z k ( ~ i j r  - j i j . )  . 

( 5 5 )  
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Next, for notational simplicity, define 

eo = be ,  2 e l l  = 6: + no; + bnoz, 

el = 6: + no;, e12 = 6: + no; + aria; 

e4 = 0: + no; + bnu: + aria; = e l ,  + el,  - el . 

(56) 

(57) 

-ii. Inuerse of V. Using results of Henderson and Searle (1979), start with 

( 5 8 )  

from (80) of Chapter 4. Then with 8 being 8' = [a: o; 0 ot  0 0; 0 01, 
the 5 = TO of equation (81 ) in Section 4.6e-ii is 

and 

v = &J: @ J; 8 J ' )  I + o;(Jj 69 J:@ J f )  + o;(Jf@ J:@ J i )  
+ a:(J: @ J i  @ 59) 

1 
abn 

- -- 

Hence with v having elements that are reciprocals of those of 5, the equation 

. .  -an an 

. .  a - a - a a  * 

. .  -bn  bn 

t = T- v of Section 4.6e-ii is 

b O  
- 1  1 - 1  1 

1-1 1 1 - 1  1 - 1  - 1  1 

. .  
Too0 

7001 

0 

TO11 

0 

5101 

0 

? I l l .  
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Thus 

1 
Too0 = - 

00' 

1 1  
TOO1 = ; (e, - ;). 

T l 1 1 = -  +'). 
abn ' ( I  81 611 I 6 1 2  I 84 

Therefore (86) of Chapter 4 gives 

V- '  = T o o o ( I a @  I b @  I n )  + ToO1(Ia@Ib @ J,) 

+ T O  1 1  (I, 8 Jb @ Jn) + 71 01 (Ja @ I b  @ J ~ I )  + 1 1 1 ( J, @ Jb @ Jn), 

and on replacing rs by Bs, as in (60), this reduces to 
v-1 = 0-1 

o (I ,@ Ib  

+ ~;21(J,@CbBJn) + 8 -  4 ( J, 8 Jb @ Jn), 

cn) + 0 ;  l(Ca @ Cb 8 Jn) + e,'(C, @ Jb 8 Jn) 

(61 1 
where, for example, C, is the centering matrix C, = I - J,. This form for V - '  
makes multiplication with ZiZ; very easy because any time that a J or J 
multiplies a C in a Kronecker product, the resulting Kronecker product is null. 

The estimation equations. The form of the general estimation equations 
that we use is 

(62) 

-iii. 

{ c  tr(V-lZ,Zi)}ilo = { c  y'PZiZ;Py},lo = { c  sesq(Z;Py)},l, . 
For simplifying the left-hand side of (62) it is useful to note that 

tr(A 8 B) = t r (A)  tr(B), tr(J,) = 1 and tr(C,) = a - 1 . (63) 

Simplification of equations (62) is demonstrated for just some terms. Others are 
left for the reader. 

First, the left-hand side of (62) for i = 0, for which Z, = Zo = I, is 

tr(V - 'Z0Zb) = tr(V - l )  

ab(n-  I )  ( a -  l ) ( b -  1 )  a -  1 b -  1 I + +-+- +-- .  (64) - - 
00 61 811 4 2  04 

And for i = 1 i t  is 

tr(V-'z,Z',) = tr[V-'(I, 8 Jb @J,)], 

which, because of the property, C,J, = 0, and using J b J b  = Jb, is 

tr( v -  'Zl Z;) = 6:; tr(C, @ Jb @ J,) + 6; (J, @ Jb 8 J,) 

b n ( a -  1 )  bn 

81 1 04 
+- .  - - 
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Hence on equating (65) and (68), 

1 U -  1 SSA -+--- - 
04 811 G I  ' 

and this is equation (62) for i = I ,  as in the second equation of (90) in 
Chapter .4. 

As another illustration of the right-hand side of (62), consider its value for 
i = 3, for which Z, = Z, = l a @  I , @  I,, as in (53): 

y'PZ,Z;Py = sesq(Z;Py) 

= sesq[ ( l ,@Ib@l~)Pyl  

= sesq[8;'(Ca@Cb@ l;,)y + 8;,'(C,@Jb@ 1b)y 
(69) 

In general, note that when u'v = 0 

sesq(u + v )  = sesq(u) + sesq(v) + 2u'v = sesq(u) + sesq(v) . (70) 
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Similarly, 

Therefore substituting (72)-( 74) into (71 ) gives 

nSSAB nSSA nSSB +-. +8:1 e:, y’Pz,z;Py = - 
0: 

(75) 

Simplifying the remaining terms of (62), namely the left-hand side for i = 2 and 
3, and the right-hand side for i = 0 and 2, is left to the reader (E  6.8). 

-iu. Information matrix. Even though no closed form exists for the variance 
component estimators, their information matrix can be obtained. From (38), a 
typical element of the information matrix is 

tr(V-’ZiZ;V-’z,z;) = sesq(Z;V-’Zj). (76) 

This is evaluated using general results such as 

1 + ( a 2  - a)- = a - 1, 
U 2  

sesq(A + B) = sesq(A) + sesq(B) when AB = 0, 
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and 

sesq(A @ B) = sesq{, a,,B},,, = Z,Z,ai sesq(B) = sesq(A)sesq(B) . 

We derive four cases of (76) for (38) and leave the other six for the reader 
(E 6.9). These terms are derived using (61). 

sesq(ZbV-'Z,) = sesq(V-') 

a b ( n -  1)  ( a -  l ) ( b -  1)  a -  1 b - 1 +- +K e:, + - - 
0: 0: 

1 + = tee, say . 
04 

( a -  1)bn bn tam - - +g=bn, say 
0: 1 

The information matrix then turns out to be 



C6.61 

for 

RESTRICTED MAXIMUM LIKELIHOOD 249 

b - l  
tflfl = a2n2( e:, + i )  and t E  = n2 +- 
And thedispersion matrix var(a2)is the inverseof(77),asin(94 

b. 2-way crossed, random model, no interaction 

t- b -  1 +'I. 
o:, 0: 

of Chapter 4. 

The no-interaction model is easily derived from the with-interaction model 
by putting y = 0 and Z, = 0, and adapting the 8s of (56) and (57) as follows: 

8, = O0 = a:, el, = a: + bna;, 012 = a,' + anaf 

and (79) 

O4 = a: + bna; + ana; = e l ,  + el, - 8 , .  

This reduces the estimation equations (90) of Chapter 4, for the with-interaction 
model, to be (92) of Chapter 4, for the no-interaction model. 

The information matrix will be that for the with-interaction case, with its 
last row and column deleted and with the 8s defined as in (79): with 

a b n - a - b + l  a - I  b - 1  1 
c p =  0; +o:,+o:,+g* 

" 3 a - I  b - l  

b - l  
symmetric 

This leads to (96) of Chapter 4. 

6.6. RESTRICTED MAXIMUM LIKELIHOOD (REML)  

A property of ML estimation is that in estimating variance components it 
takes no account of the degrees of freedom that are involved in estimating fixed 
effects. For example, when data are a simple random sample, xl, ..., x,, 
identically and independently distributed M(p,  a'), the unbiased ANOVA 
estimator of a2  is 8' = &(xi - f )2 / (n - 1 ); but the MLE is d2 = &(xi - X)'/n. 
Likewise in the 1-way classification random model (e.g., Table 4.9), the ML 
solution for 6: is 6; = (SSA/a - MSE)/n, wherein we might expect the 
denominator u in SSA/a to be a - 1 as it is in the ANOVA estimator 
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d,Z = (MSA - MSE)/n. Thus E(6:) = ( 1 - 1 /a)(r: - a;/un and so 6: is biased; 
whereas E (  13:) = 0,’ and so d: is unbiased. Thus, although ANOVA estimators 
have the attractive property under normality of being minimum variance 
unbiased, ML estimators do not. (In particular, they are not even unbiased.) 
Nor do ML solutions, if used as estimators. Even for balanced data, neither 
ML estimators nor ML solutions are the same as ANOVA estimators. Thus 
the minimum variance property is not applicable to ML estimation; we return 
to this property in Chapter 11. 

The feature of ML not taking account of the degrees of freedom used for 
estimating fixed effects when estimating variance components is overcome by 
what has come to be known as restricted (or, more usually in Europe, residual) 
maximum likelihood (REML) estimation. First developed for certain balanced 
data situations by Anderson and Bancroft (1952) and Russell and Bradley 
(1958), i t  was extended by W.A. Thompson (1962) to balanced data in general 
and by Patterson and R. Thompson (1971, 1974) to mixed models generally. 
I t  has received all manner of descriptions in the literature, ranging from 
consideration of negative estimates to “maximizing that part of the likelihood 
which is invariant to the fixed effects” [e.g., Thompson ( 1962); and also Harville 
(1977, p. 325), who additionally suggests it is a method that is marginally 
sufficient for u2 “in the sense described by Sprott ( 1975)”l. Whatever description 
is preferred, a basic idea of restricted maximum likelihood (REML) estimation 
is that of estimating variance components based on residuals calculated after 
fitting by ordinary least squares just the fixed effects part of the model. REML 
estimation can also be viewed as maximizing a marginal likelihood-as 
described in Section 9.3d. 

a. Linear combinations of observations 
Rather than using y (the data vector) directly, REML is based on linear 

combinations of elements of y, chosen in such a way that those combinations 
do not contain any fixed effects, no matter what their value. These linear 
combinations turn out to be equivalent to residuals obtained after fitting the 
fixed effects. This results from starting with a set of values k’y where vectors 
k’ are chosen so that k’y = k’XP + k‘Zu contains no term in P, i.e., so that 

k ’ X p = O  V $ .  (81 1 

k’X = 0 . (82) 

(83) 

Hence 

Therefore, from Appendix M.4e, the form of k must be k‘ = c‘(1 - X X - )  or 

k’ = c’[I - X(X’X)-X’]  = ~ ’ ( 1  - XX’)  = c’M 

for any c‘ and where M is defined as 

M I - X(X’X)-X’  = I - X X +  , (84) 
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Harville ( 1977) refers to k’y for k‘ of this nature as being an “error contrast”: 
its expected value is zero: 

E(  k’g) = k’Xf! = 0 . 
The number of linearly independent error contrasts depends on X: for X of 
order N x p and rank r equation (81) is satisfied by only N - r linearly 
independent values of k’. Thus, in using a set of linearly independent vectors 
k’ as rows of K’ we confine attention to 

K’y for K’ = TM, (85) 
where K’ and T have full row rank N - r. (There is clearly no point in having 
more than N - r vectors k’ because some of them will then be linear 
combinations of others, as will the corresponding values k’y.) 

b. The REML equations 
With y - A‘(Xf!, V )  we have, for K’X = 0, 

K’y - N(0, K‘VK) . 
The REML equations can therefore be derived from the ML equations of ( 2 9 ,  
namely 

by making suitable replacements: 
f C  tr( V - ’ Zi zi) 1 , I 0 = {c Y‘PZi z;Py } i 10 (86) 

Y by K’y and Z by K’Z 

X by K’X = 0 
replace 

V by K’VK , 

Then (86) becomes 

{ tr[( K‘VK) - ’ K’Z,Z;K]} r I o  = { y’K( K’VK) - ‘K’Z,Z;K( K’VK) - ‘K’y } l o  . 
(87) 

(88) 

(89) 

With 

p = v-1 - v - ~ x ( x ’ v - ~ x ) - x ’ v - ~  -. K(K’VK)-’K’ 

from Appendix M.4f, (87) reduces to 

{ c  tr(PZ,Z;)}i50 = ( c  y’Pz,z;Py},:o . 
These are the REML equations. Comparison with the ML equations of (86) 
reveals that they have the same right-hand side as the ML equations: and the 
left-hand sides are the same except that the P in REML replaces V-’  of ML. 

c. An alternative form 

in the left-hand side of (89) we can use the identity 
Through direct multiplication, it is easily established that PVP = P. Hence 



252 MAXIMUM LIKELIHOOD AND RESTRICTED MAXIMUM LIKELIHOOD C6.6) 

Thus, Fimilar to (27), the REML equations can be put in the form 

I,,, tr(Z;PZjZ;PZ,)},,~=,uz = IC ~’Pz,z;P~},L,  . (90) 
Whatever form of the REML equations are used, the comments made in 

Section 6.5 about computing iterative solutions of the ML equations apply 
equally as well to those REML equations, (89) or (90). For a particular class 
of models often apppropriate to dairy breeding data, Smith and Graser (1986) 
describe some computational simplifications for calculating REML estimates. 
This is extended by Graser and Smith (1987) to avoid matrix inversion, using 
instead a one-dimensional search involving just the variance part of the log 
likelihood. A suggestion from Giesbrecht and Bums (1985) is to use only two 
iterations of the REML equations. 

d. Invariance to choice of error contrasts 
It is clear from (88)-(90) that the REML equations (90) do not contain K. 

I t  occurs only through its relationship to P in (88), although P, as defined in 
(22), does not involve K. Therefore the REML equations are invariant to 
whatever set of error contrasts are chosen as K‘y so long as K’ is of full row 
rank N - rx with K’X = 0. We can also observe this directly, from the likelihood 
of K’y (see E 6.1 1). 

e. The information matrix 
With L, being the likelihood function of K’y define 

1, =lOgL,= -f(N-r)IOg2n-flogIK’VK( -fy’K(K’VK)-’K’y, 

Then, using Appendix M.4f in the form 

-=- a’ a K(KVK)-*K‘ 
so; a,; 

av 
an; 

= -K(K’VK)-’K’-  K(K’VK)-’K‘ 

8V 
= - P - P =  -PZ,ZiP, 

ao: 

- _  - -) tr[(K’VK)-’K’Z,Z;K] - )y‘( - l)PZ,Z;Py 
an; 

= -3: tr(PZ,z;) + ty’PZ,Z;Py . (92) 

For the information matrix we need second derivatives of I,: 
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Therefore, on using E(y'Ay) = tr(AV) + B'X'AXfr from Theorem S1 of 
Appendix S.5, 

-.( 3) = - 4  tr(PZ,Z;PZ,Z;) + tr(PZ,z;Pz,z;PV) - ~ ' x ' P z j z ; P z i z ; P x ~  

= - tr( PZ,ZjPZ,Z;) + tr( Z,Z;PZ,Z;PVP) + 0, because PX = 0, 

au: .; 
= 4 tr(PZIZ;PZiZ;), because PVP = P . (94) 

Hence, denoting REML estimations by d:,,,, we have in the limit 

var(G,,,) = 2 C {,,, tr(Pz,z;Pz,z;)}, ,~ 0 ]  - 

(95) 
exactly the same as (42) for ML, except for ML there is V-' where here we- 
have P. 

* 2C { m sesq (ZiPZj)}i,jL 0 I - '9 

f. Balanced data 
Solutions of REML equations, for all cases of balanced data from mixed 

models, are the same as ANOVA estimators-and this result is true whether 
normality is assumed or not. That is, if one ignores normality but nevertheless 
solves equations (90), which are the REML equations under normality, the 
solutions are identical to ANOVA estimators-for balanced data from all mixed 
models. Those solutions are, of course, not REML estimators unless one assumes 
normality and takes into account the non-negativity requirement of the 
maximum likelihood method of estimating variance components. 

Several authors give lip service to this result, either in the form of a simple 
statement of it, or with specific examples: e.g., Patterson and Thompson (1971), 
Corbeil and Searle (1976b) and Harville (1977). Detailed (and necessarily 
lengthy) proof that REML solutions are ANOVA estimators, without relying 
on normality, is given in Anderson (1978, pp. 97-104). 

g. Using cell means models for fixed effects 
Suppose in the mixed model y = Xfr + Zu + e that the fixed effects fl are all 

taken to be cell means of the sub-most cells of the fixed effects factors. Then 
Xfr will have the form 

xp = ( d  1n,}iflp (96) 

where p is of order s, the number of filled sub-most cells of the fixed effects 
factors, with the tth such cell having n, observations and the tth element of p 
being the population mean p, for that cell. Then, since the form of X in (96) 
gives X'X = {d n , } , y l ,  the form of M is 

M = I - X(X'X)-X'  = {d I ,  - J , } , r ,  (97) 

Under these circumstances, one form of K', as described by Corbeil and Searle 
(1976a),isMwithitsnlth,(n,  +n,) th , . . . , (n ,  +n, + ... +n,)throwsdeleted. 
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Thus K’ is M after deleting the last row of each submatrix on the diagonal of 
M; and so, by reference to (97), we gather that 

K’={, ,I , , , -J , , , /nf  - l , , , / n , } f 2 1  f o r u , = n -  1 .  (98) 

It is easily shown that K(K‘K)- ’K’  = M. 

6.7. ESTIMATING FIXED EFFECTS I N  MIXED MODELS 

a. ML 
With ML estimation the equations for the fixed effects are 

xlO-’xg = x’B-‘y 

MLE( Xg) = X( X T -  ’ X)- X‘O- ‘y, (99) 

var[MLE(Xg)] = X(X’V-lX)-X’. (100) 

for being the MLE of V, i.e., = Xi=, Z,Z&. Hence the MLE of Xg is 

and its asymptotic dispersion matrix is 

b. REML 
REML estimation includes no procedure for estimating fixed effects. However, 

it would seem to be reasonable to use (99) and (100) with 3 being Xi=, ZiZ:GfR 
where a:, is the REML estimate of c;. This is similar to empirical Bayes 
estimation discussed in Section 9 .3~ .  

6.8. M L  OR REML? 

It is our considered opinion that for unbalanced data each of ML and REML 
are to be preferred over any ANOVA method. This is because the maximum 
likelihood principle that is behind M L  and REML is known to have useful 
properties: consistency and asymptotic normality of the estimators; and the 
asymptotic sampling dispersion matrix of the estimators is also known. This 
provides some opportunity for establishing confidence intervals and testing 
hypotheses about parameters. In contrast, ANOVA estimators have only 
unbiasedness as an established property; and their sampling dispersion matrices 
are often very difficult to derive. True, the ML and REML estimators are 
based on assuming normality of the data, but in many circumstances that 
assumption is unlikely to be seriously wrong. And of course, the asymptotic 
variance-covariance properties are valid only in the large-sample sense, and 
for small or modest-sized samples this may somewhat nullify their usefulness. 
Nevertheless, these properties seem to us to be suficiently reliable for us to 
have more faith in ML and REML than in the ANOVA methods, for which 
we often have no means for making a rational decision between one ANOVA 
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method and another. Maximum likelihood, however, is firmly established as a 
respected method of estimation. Initially, ML and REML were impractical 
because of their computing requirements, but this impracticality is now fast 
disappearing with the rapid development of bigger and faster computers, 
Adequate software is probably a more limiting factor than adequate hardware. 

As to the question "ML or REML?" there is probably no hard and fast 
answer. Both have the same merits of being based on the maximum likelihood 
principle-and they have the same demerit of computability requirements. ML 
provides estimators of fixed effects, whereas REML, of itself, does not. But with 
balanced data REML solutions are identical to ANOVA estimators which have 
optimal minimum variance properties-and to many users this is a sufficiently 
comforting feature of REML that they prefer it over ML. 

6.9. SUMMARY 

Model: Section 6.1 
r r 

y = xp + 1 ziu,; v = 1 ziz;t7i'. 
i = O  i = O  

Likelihood-under normality: Section 6. I 

(9) 

ML equations: Section 6.2 

Y1 (20) 

(21 1 

(22) 

(25) 

(27b) 

x'q-lxb = xq-1 

t r (v - ' z i z ; )  = ( y  - x ~ ) ' ~ - ' Z , z ; b - ' ( y  - Xb) . 

p = v-1 - v-'x(x'v-'x)- x'v-1 
{c t r (v- lz iz ; ) ) iLo  = { c  y'Pz,Z;Py)*Lo 

{,,, sesq(Z;v- 'Z,))i , j '=o~2 = {c sesq(Z;Py)}iLl, 

and, for i = 0, 1 , .  . . , r, 

Alternatively, for 

or 

where 

sesq( A )  = sesq { a,} = CpCsaf, . 

Asymptotic variances: Section 6.3 

var(b) N (x'v-'x)-', 
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var(i) z 2[{, tr(V- 'ZiZ;V- ' z,Z;)}~,,LJ- ' . (42) 

Comments on computing: Section 6.4 

Deriving some balanced data results: Section 6.5 

V and V- '  for the 2-way classification . 

Restricted maximum likelihood (REML): Section 6.6 
For K'X = 0, with K: of rank r = rx  

P = V- '  - V-'X(X'V-'X)-X'V-' = K(K'VK)-'K' . 
Estimation equations 

{m tr(Z,PZjZ;PZi)},,jSo = { c  y'Pziz;Py}i-'o * 

Estimating fixed effects: Section 6.7 

ML or REML?: Section 6.8 

E6.1. 
E 6.2. 

E 6.3. 

E 6.4. 

E 6.5. 

E 6.6. 
E 6.7. 

E 6.8. 

6.10. EXERCISES 

Derive (20) and (21), showing all details 
Use equation (20) to show that in any random model the MLE of 
p, when the data are balanced, is j ,  the grand mean of the data. 
Use equation (21), or one of its equivalent forms, to derive the ML 
solutions of variance components for balanced data from the 
following models: 

(a) the 1-way classification (see Table 4.8); 
(b) the 2-way nested classification (see Table 4.10); 
(c) the 2-way crossed classification, without interaction (see 

Table 4.12). 
Using 

Q = H-' - H-'X(X'H-'X)-X'H-' = Po: 

for P of (22), recast (35b) in a form akin to (27). 
Use the alternative form of I(0) given at the end of Appendix S.7c 
to derive (38). 
Reduce (50) to (5 1 ). 
Use equation (20) and equation (2 1 ), or one of its equivalent forms, 
to derive ( 133), (134) and (135) of Chapter 3. 
Simplify the left-hand side of (62) for i = 2 and 3 and the right-hand 
side for i = 0 and 2, and along with the other simplifications shown 
in Section 6.6a, derive equations (90) of Chapter 4. 
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E6.9. Derive the six elements of the information matrix not derived in 
Section 6.5a-iv. 

E6.10. For the 1-way classification, random model derive the REML 
equations from (89) or (90) 

(a) for unbalanced data; 
(b) for balanced data. 

Notation: Use e to represent a,?, and a for a:, and A[ for e + n,a. 
E 6.1 1. (a) Write down the likelihood of K'y for K'X = 0. 

(b) Why does the numerator of that likelihood not involve K? 
(c) On defining H ( A )  as the product of the non-zero eigenroots 

of a square matrix A, prove that H(AB) = l l (BA)  when AB 
and BA both exist. 

(d) Use (c) to prove that log (K'VKI = log (K'KI - log ll(P). 
(e) Explain why the matrix K plays no role in maximizing the 

likelihood in (a), and therefore REML estimation is invariant 
to K. 

E 6.12. Derive (95) from (42) using the replacements that follow (86). 



C H A P T E R  7 

P R E D I C T I O N  O F  R A N D O M  
VARIABLES 

7.1. INTRODUCTION 

Consider measuring intelligence in humans. Each of us has some level of 
intelligence, usually quantified as IQ. It can never be measured exactly. As a 
substitute, we have test scores, which are used for putting a value to an 
individual’s IQ. An example of this is introduced in Section 3.4. It leads to the 
problem “Exactly how are the test scores to be used?”, a problem that is 
addressed very directly in the following textbook exercise taken from Mood 
(1950, p. 164, exercise 23). With important changes it is also to be found in 
Mood and Graybill (1963, p. 195, exercise 32), and in Mood, Graybill and Boes 
(1974, p. 370, exercise 52). 

23. Suppose intelligence quotients for students in a particular age group are 
normally distributed about a mean of 100 with standard deviation 15. The IQ, 
say x I ,  of a particular student is to be estimated by a test on which he scores 130. 
It is further given that test scores are normally distributed about the true IQ as 
a mean with standard deviation 5. What is the maximum-likelihood estimate of 
the student’s IQ? (The answer is not 130.) 

This exercise, with its tantalizing last sentence, played a prominent role in 
initially motivating C. R. Henderson in his lifelong contributions (e.g., 1948, 
1963, 1973a,b, 1975) to the problem of estimating genetic merit of dairy cattle. 
That and the estimation of IQ represent the classic prediction problem of 
predicting the unobservable realized value of a random effect that is part of a 
mixed model. 

One way of solving Mood’s problem is achieved by starting with the model 
equation 

yu = p + cli + eij 

258 
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for the jth test score of the ith person, where p + a, is that ith person’s true 
IQ. We first operate conditiona! on the value of a, for the particular person 
who has been given label i. But in thinking about people in general, that 
particular person is really just a random person: and a, is, accordingly, simply 
a realized (but unobservable) value of a random effect-the effect on test score 
of the intelligence level of the ith randomly chosen person. Therefore we treat a, 
as random and have IQ and score, namely p + a, and y,, jointly distributed 
with bivariate normal density: 

From this, using (iv)  of Appendix S.2, the conditional mean of p + ai given 
yij  = 130, namely E ( p  + a, I yi, = 130), is 

( 1 3 0 - 1 0 0 ) = 1 2 7 .  
1 52  

IS2 + 5 2  
E ( p  + a, I yij  = 130) = 100 + 

This is what is used to quantify the student’s IQ. It shows how one can obtain 
a reasonable answer to Mood’s exercise other than 130, as alluded to in the 
last sentence of the exercise. 

Note that although Mood’s (1950) question asks for a maximum likelihood 
estimate of the student’s IQ, we have used just the conditional mean. This is 
because, once we confine ourselves to a particular student having a test score 
of 130, we are then in the conditional situation of being interested only in 
quantifying p + ai conditional on y,, = 130. And under these circumstances the 
conditional mean, E ( p  + ai I yi, = 130), is what we use as a predictor of 
[ ( p  + a,) I y, ,  = 1301, namely of p + a, given that y,, = 130. The connection 
with the maximum likelihood estimation of Mood’s question is that under 
the normality assumptions given in the question, the conditional variable 
( p  + a,) I yij  = 130 is indeed normally distributed with mean 127. Then, whilst 
taking ji + a, = 127 as the predictor of [ ( p  + ai) l  y,, = 1303 it is not, in the 
strictest sense, a maximum likelihood estimator; but it does maximize the density 
function of [ ( p  + a,)  I yij  = 1301. 

An interesting feature of the question in the Mood (1950) book is 
that in its later forms in the 1963 and 1974 editions the “What is the 
maximum likelihood estimate?” question is replaced by a “What is the Bayes 
estimator?” type of question. With the general topic of Bayes estimation being 
dealt with in Chapter 9, we here simply note that the above predictor, 
E [ ( p  + a,) I y,, = 1303 = 127, is indeed the same as is derived using the results 
given in that chapter. In particular, the derivation is 

E C ( p + a i ) I y i , =  1 3 0 ] = p + E ( a , ) y , , =  130) 
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from (541 of Chapter 9. And with p = 100, n = 1, j i .  = 130 = j.., uf = 5’, 
u: = 15, and u: = 0, which are the characteristics of Mood’s question, this 
becomes 

E ( p  + O L ~  I y,, = 130) = 100 + - . ~  (130 - 100) = 127,  
1 5 ’ t  5’ 

There are many situations similar to that of the student’s IQ, of wanting to 
quantify the realization of an unobservable random variable. A biological 
example is that of predicting the genetic merit of a dairy bull from the milk 
yields of his daughters. A non-biological example is that of predicting instrument 
bias in micrometers selected randomly from a manufacturer’s lot, using the 
micrometers to measure ball-bearing diameters. And an example in psychology 
is that just considered: predicting a person’s intelligence from IQ scores. In all 
of these we have a vector of observations on some random variables from which 
we wish to predict the value of some other random variable (or variables) that 
cannot be observed. 

A statement of the general problem is easy. Suppose U and Y are jointly 
distributed vectors of random variables, with those in Y being observable but 
those in U not being observable. The problem is to predict U from some realized, 
observed value of Y, say y. Usually Y contains more elements than U, and 
indeed U is often scalar, In the IQ example U is the scalar, unknowable true 
value of a person’s intelligence, and y is the vector of test scores. 

Three methods of prediction are of interest: best prediction (BP), best linear 
prediction (BLP), and mixed model prediction, which leads to what is now 
called best, linear, unbiased prediction (BLUP). Of these three methods of 
prediction, BP is available when we know all the parameters of the joint 
distribution of U and Y; Le., when we knowf(y, u). BLP and BLUP are methods 
that are best in situations when we know some of the parameters off(y, u) but 
not all of them. For BLP only first and second moments are assumed known, 
and for BLUP second, but not first, moments are assumed known. In each case 
the less that is assumed known, the more restrictive are the resulting predictors. 

The description that follows is strongly influenced by the work of C. R. 
Henderson, who for thirty years sustained the interest of one of us (S.R.S.) in 
the prediction problem in the context of animal breeding. In particular, the 
opening paragraphs of Henderson (1973a) have been of especial assistance in 
preparing this account of prediction. 

Notation: WARNING. In contrast to the notation of (70) in Chapter 4 
and of (19) in Chapter 6, the vector u no longer includes e. Rather than define 
an adorned Z and u, such as 2 and 8, to represent Z without Z, = I and u 
without uo = e, we simply emphasize that in this chapter 

z u  = z,u,  + z,u, + * . *  + z,u,, 

and the model equation is 

y = Xfl+ Zu + e 
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with 

V = var(y) = ZDZ’ + ufI 

for 

D = var(u); and with C = cov(y, u’) = ZD. 

elements of u that are random effects, but not those that are residual errors. 
The reason for excluding uo = e from u is that we are interested in predicting 

7.2. BEST PREDICTION (BPI 

Suppose that U is scalar, U. When f( u, y)  is the joint density function of the 
random variables U and Y at the point u,y then with the predictor being 
denoted by ii the mean square error of prediction is 

E ( 6  - u)’ = (ii - u ) ’ ~ ( u ,  y)  dy du, ( 1 )  ss 
ss 

where E represents expectation. A generalization of this to a vector of random 
variables u is 

E (ii - u)’A(ii - U )  = (ii - u)’A(ii - u)f(u, y )  dy du, (2) 

where A is any positive definite symmetric matrix. Clearly, for A being scalar 
and unity (2) is identical to (1). In passing, note that decomposition of the error 
of prediction, ii - u, is discussed at length by Harville (1985) for four different 
states of knowledge. 

a. The best predictor 
Our criterion for deriving a predictor is minimum mean square, i.e., we 

minimize (2). The result is what we call the best predictor. Note that “best” 
here means minimum mean square error of prediction, which is different from 
the usual meaning of “best” being minimum variance. Because variance is 
variability around a fixed value and because u in (1) is a random variable, 
(1 )  is not the definition of the variance of u. Thus, whereas as an estimation 
criterion we use minimum variance for estimating a parameter, we use minimum 
mean square for predicting the realized value of a random variable. Thus from 
minimizing (2) we get 

(3)  

i.e., the best predictor of u is the conditional mean of u given y. 
Noteworthy features of this result are: (i) it holds for all probability density 

functions f(u, y), and (ii) it does not depend on the positive definite symmetric 
matrix A. 

best predictor: ii = BP(u) = E(u I y); 
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Verification of (3). In the mean square on the left-hand side of (2), to 1 - u 
add and subtract E( u I y), which, for convenience, will be denoted uo; i.e., with 

uo E E(u I Y), 

E (6  - u)‘A(ii - ul  E (6 - UO + UO - u) ’A( l -  UO + UO - U) 

= E (6 - uo)’A(i - uO) + 2E (ii - uo)’A(uo - U) 

+ E (uO - u)‘A(uo - U) . 
To choose a ii thzt minimizes this, note that the last term, E (uo - u)’A(uo - u), 
does not involve il. And in the second term, 

E (U - -  NO)’A(U~ - U) = E y {  E.[(ii - uo)‘A(Uo - U)I y ] }  

= EY( (6 - u,)‘A( UO - u0)) = 0 

since, given y, only niy IS not fixed with E,(u(y) = u,,. Therefore 
E (ii - u)’k(Q - u) = E (ii - u,)’A(ii - uo) + terms without ii . 

Since E (ii - u,)’A(i - uo) must be non-negative it is minimized by choosing 
ii = u,; i.e., the best predictor is ii = E(u I y). 

Three features of this derivation merit comment. First, adding and subtracting 
E(u I y) is simply centering about the conditional mean, and this is often a useful 
methodological step. Second, the cross-product term is merely a covariance and 
the centering often reduces it to zero. Third, the final step illustrates that the 
problem of predicting a random variable is simply that of estimating its 
conditional mean. 

b. Mean and variance properties 
First and second moments of the best predictor are important. They are 

discussed in Cochran (1951) and in Rao (1965, pp. 79 and 220-222) for the 
case of scalar U. 

First, the best predictor is unbiased for sampling over y: for Ey representing 
expectation over y 

(4) 
as in E ( g )  of Appendix S.I. Note that the meaning of unbiasedness here is that 
the expected value of the predictor equals that of the random variable for which 
it is a predictor. This differs from the usual meaning of unbiasedness as defined 
in the statistical literature when estimating a parameter. In that case unbiasedness 
means that the expected value of (estimator minus parameter) is zero; e.g., 
E ( b  - 0) = 0, where 0 is a constant. With prediction, unbiasedness means 
that the expected value of (predictor minus random variable) is zero; e.g., 
E(ii - u) = 0 where u is a random variable. The former gives E ( b )  = p, whereas 
the latter gives E ( t )  = E(u). 

Second, prediction errors ii - u have a variaace-covariance matrix that is 
the mean value, over sampling on y, of that of u I y: 

( 5 )  

E y ( W  = Ey[E,Iy(U I Y ) l  = E(u), 

var(ii - u) = Ey[var(u I y)] . 
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Also, 

cov(ii, u’) = var(ii) and cov(ii, y’) = cov(u, y’) . ( 6 )  

Verification of ( 5 )  comes from using var(g) at the end of Appendix S. 1, namely 

var(g) = EyCWg I Y)I + v a r , c m  I Y)l . 

var(i - u) = EY{ var[(ii - u )  I y]} + vary{ E[(ii - u )  I yl} 

With ii - u used for g this gives 

= EY{  var[(ii - u )  1 y} + var,(O), because E( i i  I y) = ii = E(u 1 y) 
= EyCvar(u I Y)l, 

which is ( 5 ) .  

Appendix S. 1 : 
The two results in (6) are established by using cov(g,h) developed in 

COV(8. h )  = EyCcov(g I Y, h I Y)I + cov,CE(g I Y ) ,  E ( h  I Y)l * 

cov(ii, u’) = E,[cov(ii I y, u’ I y)] + covyCE(~ I Y), E(u’ I Y)1 * 

With g = i and h = u‘ this is 

Note that the first term involves the covariance of u I y with its mean ii = E(u I y). 
It is therefore zero. Hence 

cov( i, u’) = covy( ii, i‘) = var( i), 

which is the first result in (6). Likewise, for the second result we start with 

cov(u, Y’) = EyCcov(u I Y, Y‘ I Y)I + covyCE(u I Y), W’ I Y)I . 
In the first term the covariance is of u I y with the constant y‘ 1 y. Therefore it 
is zero, and so 

cov(u, y’) = covy(i, y’) . 
Thus is (6) established. 

c. Two properties of the best predictor of a scalar 
For scalar u there are two further properties of interest. The first is that the 

correlation between u and any predictor of it that is a function of y is maximum 
for the best predictor, that maximum value being 

p(u’, u )  = bp/b, . (7) 
Second, selecting any upper fraction of the population on the basis of values 
of u’ ensures that 

for that selected proportion, E(u) is maximized . (8) 
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4. Muximizing u correlation. The ccrrela'ion between ti and u is, using( 61, 

cov(ti,u) - bg p ( i ,  u )  = --  

which is (7). Now consider some function of y, say f, as a predictor of IJ different 
from ti. Then 

*9=, 0, 

cov(f,u) = E {  [f - E(f)][u - E ( u ) ] } ,  by definition, 

= E{[f - E(f)][u - ti + ti - E(ti)]}, because E ( t i )  = E ( u ) ,  

= E {  Cf - Uf)I(IJ - t i ) }  + cov(f, 2) 

= cov(f,ti) + EyE,Iy({CS - E(f ) I (u  - 6)) I Y )  

=cov(f , f i )+  E,ICf-E(f)IE[(u- t i ) lyl} ,  

because f being a function of y means that f I y is constant with respect to the 
E-operator. And then, because E ( u  I y )  = ti, this becomes 

cov(f, u )  = cov(f, t i )  + Ey { Cf - E(f)l(u' - u')} 
= cov(s, ti) . 

Hence 

The maximum over all f is when p 2 ( f , i i )  = 1, i.e., f = ti. Hence (7) is the 
maximum p(ti, u). This proof follows Rao ( 1973, p. 265-266). 

4. Maximizing the mean of a sefectedproportion. Begin by contemplating 
the selection of a proportion a of the population of u-values, using y in some 
way as the basis of selection. We want to make the selection such that for given 
a the value of E ( u )  is maximized. Hence we want a region of values of y, R 
say, such that 

uf(u, y) du dy is maximized . s. 5, jR f(Y)dY G a and 

The latter is equivalent to maximizing 

which is equivalent to maximizing E ( u )  for the selected proportion. By a 
generalization of the Neyman-Pearson Lemma [e.g., Cochran ( 1951), Rao 
( 1973, Sec. 7a.2) or Casella and Berger (1990, p. 372)], this maximum is attained 
by the set of values of y for which u' = E ( u  I y) 2 k, where k has the one-to-one 
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relationship to a 

JR/(y) dy = a for R = {y : E(u 1 y) 2 k} . 

Use this to determine k from a. Then selecting all those observational units for 
which E ( u  I y) = 2 2 k yields a sample from the upper a-fraction of the 
population of unobservable U-values in which E ( u )  is maximized. 

Practitioners, in using estimates in place of the population parameters in 
this procedure, may often be found using it not exactly as specified. After 
choosing a value for a they might, for simplification, avoid determining k from 
a and selecting on the basis of 2 > k but, instead, simply select the upper 
a-fraction of &values. For small values of a (say . lo or less) and for a large 
number of elements in u (100 or more, say) this simplified practice might not 
be seriously different from the procedure as specified. 

d. Normality 
It is to be emphasized that ii = E(u I y) is a random variable, being a function 

of y and unknown parameters. Thus the problem of estimating the best 
predictor ii remains, and demands some knowledge of the joint density f( u I y). 
Should this be normal, 

then with C = DZ’ as in Section 7.1, and using Appendix S.3, 

ii = E(uly) = p” + CV-’(y - p y ) .  ( 10) 

Properties ( 5 ) - ( 8 )  of ii still hold. In ( 5 )  we now have from (9) that 
var(u I y) = D - CV-IC’, so that in ( 5 )  

(11) var(ii - u) = D - CV-’C’ . 
And using (10) in (6) gives 

cov(6,u’) = var(ii) = CV-lC’, and hence p(& u, )  = 

where c; is the ith row of C. 
The estimation problem is clearly visible in these results. The predictor is 

given in (10) but it and its succeeding properties cannot be estimated without 
having values for, or estimating, the four parameters po, py, C and V. 

7.3. BEST LINEAR PREDICTION (BLP) 

a. BLP(u) 

confined to predictors of u that are linear in y, of the form 
The best predictor (3) is not necessarily linear in y. Suppose attention is now 

i i = a + B y  (13)  
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for some vector a and matrix B. Minimizing (2) for ii of ( 13), in order to obtain 
the best linear predictor, leads (without any assumption of normality) to 

(14) 

where a", py, C and V are as defined in (9) but without assuming normality 
as there. 

An immediate observation on (14) is that it is identical to (10). This shows 
that the best linear predictor (14), derivation of which demands no knowledge 
of the form of f(u, y), is identical to the best predictor under normality, (10). 
Properties ( 1  1) and (12) therefore apply equally to (14) as to (10). And, of 
course, BLP(u) is unbiased, in the sense described following (4), namely that 
E ( i i )  = E(u). Problems of estimation of the unknown parameters in (14) still 
remain. 

b. Example 

It has model equation yi, = p + ai + e,,, or equivalently 

BLP( U )  = ii = P" + CV- ( y  - ay), 

To illustrate (14) we use the I-way classification random model of Chapter 3. 

where 
y = p1, + Za + e, 

Z = {d I n l } ,  u = a ,  

py = PI , ,  Pu = 0, 

V = var(y) = {d utJ,,, + u~I,,,}, 
as in (8  1 ) of Section 3.6b, and 

C = cov(u, y') = cov(u, u'z') = [var(u)]z' = u,'Ia(d I;,} 

= {d uzl;l} * 

Also 

as immediately precedes (104) of Section 3.7. Using these expressions in (14) 
gives 

Hence 

as in (40) of Section 3.4. 
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It is to be noticed that BLP(ai) of (16) involves not only the unknown mean 
p but also the unknown variance components, as is evident in the general result 
(14) where they occur in C and V-’. Hence, in order to use BLP(a,) in practice, 
one must have estimates of those variance components. Then, on using p in 
place ofp, and on replacing each o2 in BLP(ai) by its estimate, &say, one has 

( l i .  - 
48: 

8: + ni8: 
an estimate of BLP ( a i )  is 

which is no longer a best linear predictor; indeed, it is not even linear in y. 

c. Derivation 
To derive ii = BLP(u) of (14), which, it is to be emphasized, needs no 

assumption of normality, we use ii = a + By and minimize, for positive definite 
symmetric A, the generalized mean squared error of prediction used in (2), 
namely 

= E (ii - u)‘A(ii- U) 

= E (a + By - u)’A(a + By - u) . (17) 

Using ii = a + By ensures that u is linear in y, and since from (3)  we know that 
the best predictor is E(u I y), we now want a + By = E(u 1 y). Under normality, 
this means, from (lo), that 

(18) 

However, although E(u I y) under normality is always linear in y, we do not 
know its form under other distributions. Therefore, to derive ii in a more general 
framework, we begin with q of (17)  and have, after defining 

ii = a + By = pu + CV-’(y - py) , 

t By - U, 

q = E (a  + t)’A(a + t)  

= a‘Aa + 2a’AE(t) + E(t’At) 

= [a + E(t)]’A[a + E(t)]  - E(t’)AE(t) + E(t’At) . 

a = --E(t) = -E(By - U) = CV - my. 

(19) 

(20) 

Clearly, this is minimized with respect to a by choosing 

This makes the first term of (19) zero, and so minimizing the other two terms 
of (19) with respect to B involves minimizing 

q1 = q - [a + E(t)]’A[a + E(t)] 

= - E(  t’)AE( t )  + E( t’At) 

= tr[A var(t)], using Theorem S4 of Appendix S.5, 

= tr[A var(By - u)] 

= tr[A(BVB’ + D - BC’ - CB’)] . 
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Since tr(AD) does not involve B, we minimize 

q2 = tr [ A( BVB' - BC' - CB')] 

= tr[A(B - CV-')V(B - CV-I)' - ACV-'C'] . (21) 

Then, because CV-lC' does not involve B, minimizing q2 with respect to B is 
achieved by taking 

B = CV-' . (22) 

(23) 

This, together with (20), gives 

ii = a + By = pu + CV-'(y - py), 

as in (14). And it is identical to E(u 1 y) under normality. 

(2 )  and used in ( 17). But the mean squared error of prediction does involve A: 
Note that ii of (23) does not depend on the A introduced for generality in 

E C P U  + CV--'(Y - PY) - Ul'ACPU + cv-'(Y - PY) - U I  

= E 

= tr(A{CV-'E[(y - Pr)(y - ~ r ) ' ] v - ' c '  + E 

CCv-'(Y - PY) - (u - Pu)I'AL-CV-'(Y - PY) - (u - Pu)l  

( U  - Pu)(U - Po)' 

- 2CV-'EC(y - PYNU -Po)'])) 

= tr[A(CV-'C' + D - 2CV-'C')] 

= tr[A(D - CV-'C')].  

d. Ranking 
In establishing(8), that selection on the basis of the best predictor I? maximizes 

E (  u )  of the selected proportion of the population, Cochran's ( 195 1 )  development 
implicitly relies on each scalar I? having the same variance and being derived 
from a y that is independent of other ys. Sampling is over repeated samples of u 
(scalar) and y. However, these conditions are not met for the elements of t 
derived in (10). Each such element is derived from the whole vector y, their 
variances are not equal, and the elements of y used in one element of t are not 
necessarily independent of those used for another element of 4. Maximizing the 
probability of correctly ranking individuals on the basis of elements in ii is 
therefore not assured. In place of this there is a property about pairwise ranking. 

Having predicted the (unobservable) realized values of the random variables 
in the data, a salient problem that is often of great importance is this: How 
does the ranking on predicted values compare with the ranking on the true 
(realized but unobservable) values? Henderson ( 1963) and Searle (1974) show, 
under certain conditions (including normality), that the probability that 
predictors of ui and uI have the same pairwise ranking as u, and uj is maximized 
when those predictors are elements of BLUP(u) of (23); i.e., the probability 
P (  Ci - ii,2 0 1 ui - uj 2 0) is maximized. Portnoy (1982) extends this to the 
case of the usual components of variance model, for which he shows that ranking 
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all the uis of u in the same order as the 12,s (the best linear predictors) rank 
themselves does maximize the probability of correctly ranking the uIs. He does, 
however, go on to show that in models more general than variance components 
models, there can be predictors that lead to higher values of this probability 
than do the best linear predictors, which are elements of the vector 
BLP(u) = pu + CV-’(y - c r y ) .  

7.4. MIXED MODEL PREDICTION (BLUP) 

The preceding discussion is concerned with the prediction of random 
variables. Through maximizing the probability of correct ranking, the predictors 
are appropriate values upon which to base selection; e.g., in genetics, selecting 
the animals with highest predictions to be parents of the next generation. Since 
we are concerned here with the prediction (and selection) of random variables, 
the procedure might be called Model I1 prediction corresponding to Model 11, 
the random effects model, in analysis of variance. In this connection Lehman 
(1961) has discussed Model I prediction, corresponding to the fixed effects 
model. Consideration is now given to mixed model prediction, corresponding 
to mixed models in which some factors are fixed and others are random. 

a. Combining fixed and random effects 
The model we use for y is the familiar 

y = X$ + Zu + e 

for $ being the vector of fixed effects and with u excluding e, just as at the end 
of Section 7.1. Then, with 

E(u) = 0, (25) 

(26) 

for some known matrix L’, such that L’$ is estimable; i.e., L’ = T’X for some T’. 
Since w involves both fixed effects and random variables, there might be debate 
as to whether we should “estimate” w or “predict” w. We will “predict” w, and 
will choose $i as a predictor to have three properties: 

(27) 

we consider the problem of predicting 

w = L’$ + u 

“best” in the sense of (2); minimizing E (ii - w)’A(G - w), 

linear in y: $i = a + By, with a and B not involving 1, (28) 

unbiased: E(G) = E(w) . (29) 

The resulting predictor is a best linear unbiased predictor (BLUP). Note that 
unbiasedness is now a criterion of the prediction procedure and not just a 
by-product of it as in Section 7.2. Introducing it as a criterion arises from the 
presence of $ in (26). 
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It is clear from (25) and (26) that E ( w )  = L'p. We then have 

similar to (9), although without yet assuming normality. The unbiasedness 
required of ii in (29) demands that a + BXp= L'fl for all p, and if a is not to 
depend on fl then a = 0 and BX = L'. Consequently, the predictor is ii = By, 
and in w = L'p + u the term L'p is an estimable function of fl in the model 
E(y) = Xp. This limits the form of L' in w, but it is obviously a reasonable 
limitation, and the predictor is called BLUP, the best !inear unbiased - predictor. 
It is, as we show in sub-section c that follows, 

BLUP(w) = ii = L'po + CV-'(y - Xpo) 

BLUE(XP) = Xbo = X(X'V- 'X)-X'V- 'y .  

(31) 

(32) 

with, as in Appendix S.2, 

Recall (10): the best predictor under normality [and in (14) the best linear 
predictor] is 

ii = pu + cv-'(y - p y )  . 
When pu = 0, and pu = E(y) = Xp, then ii = CV-'(y - Xp), which is the same 
as the second term of (31) except that (31) has Xfl" where ii has Xg. Moreover, 
ii has ,'go where w has L'p. Thus in the predictor ii of w = L'p + u, there are 
two parts: L'po, the BLUE of L'p, and CV- ' ( y  - Xp'), the best linear predictor 
of u when E(u) = 0 and with Xp therein replaced by its BLUE, Xpo of (32). 
To emphasize this we write the predictor as 

ii = ,'So + uo on defining uo = BLUP(u) = CV-'(y - XpO). (33) 

i% is thus the sum of the BLUE of L'p and the BLUP of u, using Po. Result (33) 
is given in Henderson (1973a) and that part of it not involving L'fl is also in 
Henderson ( 1963) in a slightly different context. Broad generalizations are 
considered by Harville ( 1976). 

b. Example 
We continue with the example used for illustrating BLP(u) in Section 7.3b, 

namely the 1-way classification random model of Chapter 3. Suppose we 
take w as 

w = & + a .  

Then 

L ' =  la, p = p  and X = 1, 

and (31) is 

BLUP(w) = pol, + CV-'(y - p o l N ) .  (34) 
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C and V-'  in (34) are exactly as in the example of Section 7.3b, and p o  is, 
from (32), given by 

lNpo = 1N(1'V- '1) -1 'v- 'y .  

This reduces, as shown in (34) of Section 3.3, to 

Thus, after substituting into (34) for CV- ' implicit in (15), 

which gives 

(I,. - P o )  ' 
ni.: 

u,' + nia3 
BLUP(w,) = BLUP(p + a i )  = po + 

This is the same as (42) of Section 3.4. Again, we notice that, in order to use 
this in practice, estimates of uf and u: must be available. In contrast to BLP(a,) 
of (16), which involves p, we see that BLUP(p + ai)  also uses p o ;  i.e., BLUP 
includes estimation of the fixed effects whereas BLP does not. 

c. Derivation of BLUP 
We start with w = L'fl + u of (26) and the distributional properties of (30); 

also with fi = By with BX = L' as discussed following (30). Then we choose B 
by minimizing, with respect to elements of B and subject to BX = L', the mean 
squared error of prediction, 

4* = E (fi - w ) ' A ( ~  - W )  

= E (-L'fl + By - u)'A(-L'fl + By - U) . (35) 

This is just q of (19) but with a of (19) replaced by -L'fl in (35). Conveniently, 
this form of a is exactly as prescribed in (20) for minimizing (19), namely 
a = pv - Bpv with po = 0 and py = Xfl, so that a = 0 - BXfl = -L'fl. Hence, 
just as minimizing (19) was reduced to minimizing (21), so here, too, with (35), 
except that it is to be done under the condition BX = L'. 

Thus, from (21), we seek to minimize, with respect to B, 

4: = tr[A(BVB' - BC' - CB')], subject to BX = L' . (36) 

T = X(X'V-'X)-X'V-' = T2 and Q = I - T = Q2, (37)  

TVT' = TV = VT' and QVQ' = QV = VQ' . (38) 

To do this, define 

observing that 
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Further, note that 
B = BT + BQ, (39) 

in which 

B T  = BX(X'V-'X)-X'V-' = L'(X'V-'X)-X'V-' . (40) 

In (40) we see that BT does not involve B. Therefore minimizing q: subject to 
BX = L' is achieved by substituting into q: of (36) the B of (39) after ignoring 
BT; i.e., by replacing B in q: with BQ and then minimizing with respect to 
elements of B: 

q f  = tr[A(BQVQ'B' - BQC' - CQ'B')] . 
But on using (38) it will be found that 

q f  = tr[A(BQ - CV- 'Q)V(BQ - CV-'Q)'  - ACV-'QVQ'V-'C'] .  

Therefore, since q f  is just q2 of (21) with B replaced by Q and CV- '  replaced 
by CV-  'Q, and because just as minimizing q2 yielded B = CV- '  of (22), so 
now the minimization of q f  yields 

BQ = CV-*Q.  (41 1 
Substituting this and (40) into (39) and using (37) gives 

B = L'X(X'V-'X)-X'V-' + CV-'[I  - X(X'V-'X)-X'V-'], 

Hence 

6 = By 

is, using Xgo of (32), 

which is (3 1 ). 

d. Variances and covariances 

6 = BLUP(w) = L'Bo + CV-'(y - XSO), 

A variety of results leading to var(ii) is available: 

var( L'flO) = L'( X'V- ' X)- L, (42a) 

(433) 

cov(L'fl0, UO') = 0, (42c) 

( 42d 1 
cov(uo, u') = var(uO), (42e) 

var( uo)  = C V  - ' C' - CV-  ' X( X'V - X)- X'V - ' C', 

var(ii) = var(L'fiO) + var(uo), 

var( uo - u )  = D - var( uo), 

COV(Lfl0, u') = L'(x'v-'x)-x'v-'c, 
var( ii - w )  = var( L'flO) + var( uo - u) - cov( L'fio, u') - cov( u, p0'L) . (42h) 

Derivation of these results is left to the reader (see E 7.1). 
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e. Normality 

introducing that assumption, as in (9), with po = 0 and pr = Xfl, we have 
All of the preceding results involve no assumption of normality. On 

[" = ";" + "1 - N([ 3, [ ;, 3) (43) 

Then Xpo is the maximum likelihood (as well as the best linear unbiased) 
estimator of Xfl, for V assumed known, and since from (43), using Appendix S.3, 

E ( w  1 y) = L'fl + CV-'(y - Xfl), 

it follows that for V known, fi of (33) is the maximum likelihood estimator of 
E(w I y). Furthermore, with uo = CV-'(y - XflO), u and uo are normally 
distributed with zero means and because of (42b) and (42c) 

E(u 1 uo) = cov(uo, u') [var(uO)]-'uo = uo 

and 

var(u I uo) = V - cov(uo, u') [var(uO)]-' cov(uo, u') 

= D - var(uO) 

= var(uO - u), as in (42f), 

And, of course, as has already been shown, the elements of uo have the property 
of maximizing the probability of correct rankings. But this property does not 
hold for elements of G, unless E(  w )  = L'fl is of the form 81, for some scalar 8. 

7.5. OTHER DERIVATIONS OF BLUP 

The literature contains a number of other derivations of uo = CV- ' (y - Xflo) 
of (33), some of which are now outlined, with details left for the reader in E 7.7, 
E 7.10 and E 7.1 1. 

a. A two-stage derivation 
Bulmer (1980, pp. 208-209) suggests a two-stage approach to the problem 

of predicting u: first, form a vector of the data y corrected for the fixed effects 
(in the genetic context, corrected for the environmental effects): 

yc = y - xflo, (44) 

where Xpo is as in (32). Then, under normality assumptions, u is predicted by 
the intuitively appealing regression estimator E(u 1 yc), 

i = cov(u,y:) [var(yc)l-'yc, (45) 

which is well-known to be optimal among predictors based on yc. 
Gianola and Goffinet ( 1982) show that Bulmer's 5 is identical to Henderson's 

uo of (33), and include a discussion by Bulmer in which the equivalence is gladly 
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acknowledged. A shorter verification than theirs of this identity, along with 
the extension of replacing [var(y,)]-' in (45) by [var(y,)]-, since var(yc) 
is singular, uses the matrix P = V- '  - V-'X(X'V-'X)-X'V-' of (22) in 
Chapter 6, with PVP = P. Then yc = VPy and so var(y,) = VPV and 
cov(u, y:) = DZ'PV. Then, as can be easily shown (E  7-10), ii of (45) reduces 
to uo of (33). 

b. A direct derivation assuming linearity 
We confine attention to a predictor of u that is linear in y, say ii = a + By; 

and that is unbiased, in the sense of E(ii) = E(u). Then with E(u) = 0 we have 
E(a + By) = 0 and so a = 0 and BXS = 0. The latter is true for all fl only 
if BX = 0. But this implies B = K ( I  - XX'), for arbitrary K. More than 
that, though, BX = O  is also BVIV-tX = O  and so we can also take 
BVi = K[I - V-iX(V-~X)'], which reduces (E7.11) to B = SVP, for 
arbitrary S. 

Having ii = a + By and a = 0 gives 6 = By. With B = SVP for arbitrary S, 
unbiasedness of ii is assured, so in order for ii = By to be BLUP(u) we must 
also choose B = SVP such that By is BLP(u). But with 

of (9), we have from ( 14) 

BLP(u) = pu + CV-'(y - py). 

Therefore if By is to be used for deriving BLP(u), it will, with pu = 0 and 
BXP = 0, be 

BLP(u) = CB'(BVB')-By . 
But we want B to be such that this is By. Therefore, with C = cov(u, y') = DZ', 
because y = Xp + Zu + e, we want 

CB'(BVB')-By = By. 

Since B = SVP for arbitrary S, we find that this equality holds if S = DZ'V- '. 
This gives 

ii = By = SVPy = DZ'V-'VPy = DZ'V-'(y - Xs") ,  

Thus ii is obtained in this fashion is BLUP(u) of (33). 

c. Partitioning y into two parts 
It is of interest to observe that y can be partitioned into two uncorrelated 

parts, one of which yields BLUE(Xj3) and the other yields BLUP(u). To do 
this write y as 

y = y - xf lo  + x p  = VPy + (I - VP)y . (46) 



HENDERSON’S MIXED MODEL EQUATIONS 275 

Then, whereas VPy is the basis for ii = DZ‘V-’(VPy),  the remaining portion 
of y, namely 

(47) 

which is uncorrelated with VPy, yields a generalized least squares estimator of 
Xfl that is XPo (see E7.7). Extensions to partitioning prediction error are 
considered by Harville ( 1985). 

y - VPy = (1 - VP)Xp + ( I  - VP)( Zu + e), 

d. A Bayes estimator 
In developing (7) of Appendix S.6 we have 

as the posterior density ofp, the parameter associated with the vector y. Adapted 
to our mixed model 

y = Xfl + Zu + e, (49) 

we have 

A Bayes estimator of u is then E(u I y). But, under normality assumptions 

we know that 

u 1 y * “0 + DZ’V-’(y  - XP), D - DZ’V-’ZD]  . (50)  

Thus a Bayes estimator of u is DZ’V-’(y  - Xs), namely the best linear 
predictor. 

7.6. HENDERSON’S MIXED MODEL EQUATIONS (MME) 

a. Derivation 
Henderson, in Henderson et al. (1959), developed a set of equations that 

simultaneously yield BLUE( Xg) and BLUP(u). They have come to be known 
as the mixed model equations (MME). They were derived by maximizing the 
joint density of y and u, which is, for var(e) = R and D of order q. 

f ( Y t  u) = f(Y I u)f(u) 

* (51)  
- exp{ - i [ (y  - Xp - Zu)’R-’(y - XP - ZU) + u’D-’u]} - 

( 2 n ) t ( N  + 4.) lRltlDI+ 
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Equating to zero the partial derivatives of (51) with respect to elements first 
of and then of u gives, using B and ii to denote the solutions, 

X’R-’XB + X’R-’Zii = X’R-’y 

and (52) 

Z’R-’XB + (Z’R-’Z + D-’)ii  = Z’R-’y. 

These are the mixed model equations, written more compactly as 

X’R-’X X’R- ’ Z c Z’R-’X Z’R-’Z + D-’ 
(53) 

Their form is worthy of note: without the D- ’ in the lower right-hand submatrix 
of the matrix on the left, they would be the ML equations for the model (49) 
treated as if u represented fixed effects, rather than random effects. 

The form of equations (53) is similar to that resulting from various diagonal 
augmentation strategies [ Piegorsch and Casella ( 1989) give a history]. Many 
such strategies arose from numerical, not statistical, considerations (e.g., 
Levenberg, 1944; Marquardt, 1963; Mort, 1977) designed to provide stable 
numerical procedures involving ill-conditioned matrices. 

A statistical strategy leading to equations like (53) is that of incorporating 
prior knowledge into analysis of data, i.e., Bayes estimation. Although 
Henderson’s derivation of (53) was essentially classical in nature, it yields the 
same results as formal Bayes analysis, some details of which are shown in 
Chapter 9. This analysis dates back to at least Durbin (1953), mostly in the 
context of the fixed effects, and not the mixed, linear model. An outgrowth of 
this statistical approach, combined with numerical advantages, led to procedures 
such as ridge regression (e.g., Hoerl and Kennard, 1970; Hoerl, 1985) and 
hierarchical Bayes estimation (Lindley and Smith, 1972) and to a variety of 
other applications. 

b. Solutions 

First, substituting for ii from the second equation of (53) into its first gives 
Equation (53) has solutions that are even more noteworthy than its form. 

x ’ R - ~ x B  + X’R-~Z(Z’R- ’Z + D-’)-’z’R-’(Y - xB) = X ’ R - ’ ~ ,  

which is 

X’BXB = X’By (54) 

for 

B = R - 1  - R-’Z(Z’R-’Z + D-’)-IZ’R-’ = V-1 , ( 5 5 )  

The equality B = V - ’  in (55)  comes from (28) of Appendix M.5. It gives (54) 
as X’V-’XB = X’V-Iy, which is the GLS equation for p, and i t  yields X I  = Xso 
of (32). 
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Second, i of (53) is BLUP(u) of (33). We see this from rewriting the second 
equation of (53) as 

i = (Z'R-'Z + D-')-'Z'R-'(y - X I ) ,  

which, on using the identity ( D - '  + Z'R-'Z)-'Z'R-' = DZ'V-', is 
i = DZ'V-'(y - Xe); and this, since C = cov(u, y') = DZ', is uo as in (33). 

Equations (53) not only represent a procedure for calculating a Po and 0, 
but they also are computationally more economic than the GLS equations that 
lead to Xpo. Those equations require inversion of V of order N. But the MMEs 
of (53) need inversion of a matrix of order only p + q., the total number of 
levels of fixed and random effects in the data. And this number is usually much 
smaller than the N, the number of observations. True, (53) does require inversion 
both of R and D, but these are often diagonal, e.g., R having at for every 
diagonal element and D having q, diagonal elements a: for i = 1,.  . . , r. This 
makes those inversions easy. 

An interesting aspect of the mixed model equations is that elements of them 
can be used for setting up iterative procedures for calculating solutions to the 
maximum likelihood (ML) and the restricted maximum likelihood (REML) 
equations for estimating variance components (see Harville, 1977). Those same 
elements can also be used for calculating the information matrices for ML and 
REML estimation. We now show a derivation of these relationships of the 
MMEs to ML and REML. Unfortunately the algebra is tedious-but is detailed 
here to save readers from becoming embroiled in their own attempts at 
establishing the results. Even more detail is available in Searle (1979). 

In the development of the MMEs of (53) and their solution (54) and ( 5 5 )  
the variance matrices var(u) = D and var(e) = R are perfectly general. But we 
now confine them to their special forms of the traditional components model, 
as in (4) and (5 )  of Section 6.1, namely 

R = atIN and D = {,, a:Iq,},L, . 
We then define two further matrices, to be denoted W and F,,, with q. = C;= q, 
being the order of both. The first is 

W = ( I  + Z'R-lZD)-' = {W,j}i,&l, with W-'  - Iq, = Z'R-'ZD . 
(56 )  

The second is a variant of D: 

Then note that 
F, is D with unity in place of a: and zero in place of a: for j # i . (57) 

DF,, = a:F,, and so F,, = DF,,/.: . ( 5 8 )  

Example. For q1 = 2, q2 = 3 and q3 = 4 
0 2 x 2  0 0 

F22=[ I3;3 0 ] *  

04 x 4 
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c. Calculations for ML estimation 

ponents are written in (25) of Section 6.2a as 
4. The estimation equations. The ML equations for the variance com- 

{E  tr(V-lZ,Zi)}iio = { c  y ' P z ~ ; P y } i : ~  . (59) 

These are the equations we need to solve for the elements of 6' that occur in 
elements of and P. For notational convenience we here drop the dots, and 
then show how each element of the two vectors of (59) can be written in terms 
of the solutions of the MMEs, (53). First, in (59) separate out the elements 
corresponding to i = 0 and use (34) of Chapter 6 with H-' replaced by aZV-': 
thus, for i = 0, 

a: = a f ( y  - XfJO)'V-'(y - XflO)/N 

= a,2y'V-'(y - XDO)/N (60) 

because X'V-'(y - Xgo) = X'V-'y - X'V-'Xflo = 0. It is apparent in (60) 
that a: could be factored out of both sides, but leaving it there simplifies 
subsequent results. With V -  of ( 5 5 )  

V- ' (y  - Xso) = [ R - '  - R -  ' Z ( D - '  + Z'R- 'Z) - 'Z 'R- ' ] (y  - Xso)  

= R - ' ( y  - Xs0)  - R - ' Z ( D - '  + Z ' R - ' Z ) - '  

x (Z 'R- ly  - Z'R-'XBo) 

= R- ' (y  - Xso)  - R-'Zii, from (53), 

= R - ' ( y  - Xso  - Zii) , (61 1 

Therefore, using (61) in (60), together with R = 0:1, gives 

0: = a,Zy'R-'(y - Xso - Zii)/N = y'(y - Xso - Zii)/N . 

Therefore, with superscript (m) denoting computed values after m rounds of 
iteration, we have 

(62) &z(m+') = y'(y - xp0'"' - ZB'"')/N . 

Having, for i = 0 in ( 5 9 )  arrived at (62), we now consider 

t r ( V - ' z i z ; )  = y 'PZiZ;Py for i = 1, ..., r 
First, from ( 5 5 )  
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Hence, using Fii, the left-hand side of (63) is 

tr(V-'ZiZ;) = tr(V-'ZFiiZ'), by the nature of F,, in (57), 

= tr( Z'V- ' ZFi,) 

= tr[Z'(R-' - R-'ZDWZ'R-')ZFii], using (64), 

= tr[(Z'R-'ZD - Z'R-'ZDWZ'R-'ZD)F,,/uf], using ( 5 8 ) ,  

= tr{[W-' - I - (W-' - I)W(W-' - I)]Fii/u;}, using (56), 

= tr[(I - W)Fii/uf] (65) 

" - tr(wii), by the nature of Fri, (66) - - 
U f  

where Wii is the (i, i)th submatrix of W. And the right-hand side of (63) is 

y'PZiZ:Py = y'PZFiiZ'Py = y'PZDFi,DZ'Py/u:, 

from (58 ) .  But 

DZ'Py = DZ'V-lVPy = DZ'V-'(y - Xpo) = 6, 

as in (33) with C = DZ' . Hence 

6Fiiii - ii;iii 
y'Pziz;Py = 4 - - . 

61 u: 

Using (66) and (67) in (63) therefore gives (63) as 

qi - tr(Wii) 6;iii 

This is the result first noted in Patterson and Thompson (1971) and Henderson 
(1973a). From it come two different iterative procedures: 

- -- 
0: u: * 

or 

each along with (62) 

G y m + ' )  = y"(y - XflO'"' - Zij'"')]/N . 

Comments 

( i )  W = (I + Z'R-'ZD)-' does exist because, on using Appendix M.5, 
the determinant of I + Z'R-'ZD is IR-'I IV( # 0. 
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( i i )  tr(W,,) > 0. This is so because 

DiW-' = (I + DiZ'R-'ZD$)Di, 
which implies 

for T = R-tZDj. And I + T'T is positive definite. Its diagonal elements are 
positive, as also are those of its inverse. Therefore, since Dj is diagonal, the 
diagonal elements of W in (69) are positive. Hence tr(W,,) > 0. 

D ~ W  = ( I  + D ~ z ' R - ~ z D ~ ) - ~ D +  = ( I  + T'T)-'D~, (69) 

(iii) qr - tr(W,,) B 0. From (66) 

These results, noted by Harville ( 1977), indicate that as iterative procedures 
both pairs of equations, (62) and (68a), and (62) and (68b), always yield positive 
values of 8;. And these results are for population values of the 0' parameters 
that are to be such that V is positive definite. But if for a computed iterate of 
6' the resulting v is not positive definite then these positive conditions may 
not be upheld. 

4. The information matrix. From ( 3 8 )  of Section 6.3, the information 
matrix is 

j { ,  t r (V-  'Z,ZfV- 'ZfZ>)},,,L0 

1' (70) 
= f[ iE t r ( v - 1 Z i ~ ~ v - 1 ) ~ , : ,  {, tr(V-'ZiZ:V-'ZIZJ)}i,f~ 

tr(V-*) {r tr(v-'Z&V-')},L 

The three different trace terms in (70) are now considered, one at a time. First, 
in the ( 1 , l )  position of (70) 

tr(V-') = tr(R-' - R-'ZDWZ'R-')', using (64), 

= tr(R-' - R-'ZDWZ'R-' - R-lZDWZ'R-' 

- R - ~ Z D W Z ' R - ~ Z D W Z ' R - ~ )  

= [tr(I,) - tr(WZ'R-'ZD + WZ'R-'ZD 

- WZ'R- 'ZDWZ'R- ZD)]/af, 

after using R = go21 and the trace property tr(AB) = tr(BA). Then, with (56) 
yielding WZ'R-'ZD = lq, - W 

tr(v-') = [tr(IN) - tr(I,,, - w + - w - lq,  + 2 w  - w~)-J/O; 

- N - q. + tr(W2) - 
0: 

Second, an element of the row vector in the (1,2) position of (70) is 

tr(V- 'Z,ZfV-') = tr(V-'ZF,,Z'V-'), 
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where, from using (64) and then (56), 

Z'V-' = Z'R-' - Z'R-1ZDWZ'R-l = Z'R-1 - (W-1 - 1)WZ'R-l 

= WZ'R-' . 
Therefore 

tr( V- Z,Z;V- ') = tr( R- ZW'F,,WZ'R - ') 

= tr(F,,WZ'R-'ZW')/a,Z, because R = a;I, 

= tr[F,,W(W-' - I)D-'W']/az, using (56). 

= tr[Fii(D-'W'- WD-'W')]/az. 

But from ( 5 6 )  it is easily shown that D-'W' = WD-'. Therefore 

tr(V-'Z,Z:V-') = tr[F,,(D-'W' - D-1W'2)]/az 

(72) 
k =  1 - - , using (58), 
IT:.: 

where Wlk is the ( i ,  k)th submatrix of W. Finally, an element of the matrix in 
the (2,2) position of (70) is 

tr(V-'Z,Z;V-'Z,Z;) = tr(V-'ZF,,Z'V-'ZF,,Z'), by the nature of Fir,  

= tr(Z'V-'ZF,,Z'V-'ZF,,), 

= tr[(I - W)F,,(I - W)F,,]/a:a;, see (65), 

= tr(F,,F,, - F,WF,, - WF,F,, + WF,,WF,,)/a:a: . 
For i # j  this is 

o - o - o + tr(W,,W,,)/afof = tr(W,,W,,)/a:a: (73) 

and for i = j  it is 

tr(F,r - 2F,,WF,, + F,,WF,,W)/a: = [q i  - 2 tr(W,,) + tr(Wi)]/a:. 

(74) 

Hence on substituting (71 )-( 74) into (70) the information matrix is 

(75) 
where d r j  is the Kronecker delta, with 6,, = 1 and 6,, = 0 for i # j. 
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d. Calculations for REML estimation 

The esrimarion equations. 
estimation equations are given as 
4. In equation (89) of Chapter 6 the REML 

{E tr(PZiZ;)}i:o = { c  y'PZ,Z:Py}ilo . (76) 

This is equivalent to 
tr(P) = y 'P2y for i = 0 (77) 

and 
tr(P2,Z;) = y'PZ,Z;Py for i = 1,2,. . . , r . (78) 

We deal first with (77). Multiplying both sides of (78) by o:, and summing 
over i = 1, .  . . , r gives 

r 

tr P C o:Ziz; =y 'P  C o;Z,Z;Py. 
( r  i =  1 ) i =  1 

Using V = X;= o:Z,Z; + o,2I reduces this to 

tr[P(V - o,ZI)] = y'P(V - o,2I)Py, 

tr(PV) - o,2 tr(P) = y'py - o,2y'P2y, since PVP = P, (79) 

tr(PV) = y'Py, on using (77) . (80) 

Therefore instead of (77) for i = 0 in (76) we use (80), which becomes 

t r [ l -  V- 'X(X'V- lX)-X' ]  = y'PvV-'VPy, 

N - rx  = ( y  - Xfl0)'V-'(y - Xgo) (81) 

(82) 

where the left-hand side of (81) arises from I - V- 'X(X'V- 'X)-X '  being 
idempotent and hence having its trace equal to its rank. And the right-hand 
side of (82) comes from (60) and (6  1 ). Therefore (82) gives 

= y'(y - xgo - Zi)/o,z, 

To deal with (78) we need a lemma, based on observing that since 
V = ZDZ' + R, putting Z = 0 in 

p = v-1 - v-'x(x'v-'x)-x'v-' 

S = R - '  - R - l X ( X ' R - l X ) - X ' R - l  . 

(84) 

( 8 5 )  

yields what shall be denoted as S: 

Then we have the following lemma. 

Lemma 
P = S - SZ(D-' + Z'SZ)-'Z'S . 
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Proof. For K'  of full row rank N - rx  and K'X = O  it is shown in 
Appendix M.4f that 

P = K(K'VK)- 'K'  . 

Therefore, in this equation, as in deriving ( 8 5 ) ,  put Z = 0 and get 

S = K( K'RK)- ' K' . (86) 

But also 

P = K[K'(ZDZ' + R)K]-'K' = K(K'RK + K'ZDZ'K)-'K' 

= K{(K'RK)- '  - (K'RK)-'K'ZDCI + Z'K(K'RK)-'K'ZDI-' 

x Z'K(K'RK)- ' } K', using (28) of Appendix M, 

= S - SZD( I + Z'SZD)- ' Z'S, using (86), 

(87) 
Q.E.D. 

Note that this result has a form similar to 

(88) V-1 = R-1 - R-lZ(D-1 + Z'R-'Z)-1Z'R-' 

P of (87) is V-' of (88) with R - '  replaced by S. 
We return to (78). Its left-hand side is tr(PZ,Z;). In (66) we derived 

tr(V-'Z,Z;) = [ql - tr(W,,)]/e: 

for W,, being the (i,i)th submatrix of W = (I + Z'R-'ZD)-'. Therefore with 
P of (87) being the same as V-'  of (80) only with R-' replaced by S, we 
immediately have 

tr(PZiZ;) = Cqi - tr(Tii)I/e? 

T = (I + Z'SZD)-' . 

(89) 

for Ti, being the ( i ,  i) th submatrix of W with R- '  replaced by S, namely 

(90) 

Thus the left-hand side of (78) is (89). And the right-hand side of (78) is 
identical to that of (63) and therefore equals (67). Thus the REML equation 
(78) is the same as (68) only with T,, in place of W,,, as is evident on comparing 
(66) and (89). Therefore, with this replacement of T for W we can immediately 
rewrite (68a) and (68b) in the form of iteration equations as 

- , ( rn)- (m) 

(91a) 
1) - ui u1 + e:'"') tr(Tjm)) - fJi 

4i 

or 
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along with using (83) as 

-ii. Tire information mafrix. The same replacement of T for W in (75) gives 

e. Iterative procedures summarized 

4. Adapting fire MME. The part that W of (56) plays in the MME of 
(53) is that on defining v by means of 

DV = U, (94) 

equations (53) can be written as 

(95) 
X'R- lX X ' R - I Z D  ][ :] = [ X'R-ly]  [ Z ' R - l X  I + Z ' R - ' Z D  Z'R- 'y  

Even though the matrix on the left-hand side is not symmetric, there is a 
computational advantage to these equations over (53). Suppose at some 
intermediate round of a numerical (iterative) procedure for calculating variance 
components estimates that one of the calculated a'-values is zero (which it can 
be, under ML estimation). Using that zero in D makes D singular, and then 
the D-'  occurring in (53)  does not exist. But W = (I + Z ' R - ' Z D ) - '  always 
exists, as pointed out by Harville (1977). 

9 (98) 

where symbols flO("') and d'") of (92) replaced here by fl'") and u("') emphasizes 
that the latter are simply computed values. 

,,Otl) = ~ ( m ) , , ( " )  
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-iii. Iterating for ML 

Procedure 

1. Decide on starting values G:") and a;"', and set m = 0. 
2. Calculate (96), solve (97) for $'") and dm), and calculate (98). 
3. Calculate (62) and either (68a) or (68b). 

4a. If convergence is reached for the a2s, set ij2 = u . Denote the 
resultingcalculated terms as w = W(a+ B = 'I, - ') (m+ 1) v = v  andi i=u  , 

Use G2 and @ to calculate I(G2) from (75). 
4b. If convergence is not reached, increase m by unity and return to step 2. 

At each repeat of step 3 use whichever of (68a) or (68b) was used on the first 
occasion. 

2(m+ 1) 

40. Iterating for REML. From (85) and (90) 

T(m) = { 1 + Z'[l- X(X'X)-X']ZD""' 
(99) 

Procedure 

1. Decide on starting values a:") and a:") and set m = 0. 
2. As for ML, calculate (96), solve (97) for $'") and d"), and calculate (98). 
3. Calculate (99). 
4. Calculate (92) and either (91a) or (91b). 

5a. If convergence is reached for the a's, set 62 = u2(m+ I), and do steps 2 
and 3 using u ~ ( ' " + ~ ) .  Denote the resulting calculated terms as @ = W(m+l), 

and ?: = T'""'). Use 6' and ?; to calculate B = p + 1 ) ,  7 = v ( m + l ) ,  Q = ,,(m+1) 

from (93). 
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5b. If convergence is not reached, increase m by one, and return to step 2. 
At  each repeat of step 4 use whichever of (91a) or (91b) was used on the first 
occasion. 

f. A summary 
Henderson's mixed model equations (53) are a convenient device for 

simultaneously calculating BLUE( XP) and BLUP(u). Elements of those 
equations [equations (62) and (68)J can also be used to iteratively calculate 
ML estimates of variance components and their information matrix, (75). 
Equations (91), (92) and (93) show companion results for REML estimation. 

7.7. SUMMARY 

Model 

y = XP + Zu + e , 

Best predictor: Sections 7.2a, b,c 

a = E(u I y);  

E,(i) = E(G);  

var(ii - u) = E,[var (u 1 y)]; 

cov(Q, u') = var(ii), cov(ii, y') = cov(u, y'); 

p ( 2 ,  u )  is maximized; p(i i ,  u )  = crB/u, . 

Under normality: Section 7.2d 

Q = E ( u l y )  = p" + c v - y y  - py); 
var(ii - u) = D - CV-'C';  

cov(6, u') = var(ii) = C V - l C  

p ( & ,  U i )  = Jm . 
Best linear predictor: Section 7.3a 

BLP(u) = + CV-'(y  - p y )  . 
Mixed model prediction: Section 7.4 

w = L'P + u; 

ii = BLUP(L'P + U) = L'P0 + CV-'(y  - XP0) 

= ,'go + uo, 

with 

x p o  = X(X'V-'X)-X'V- 'y  
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and 
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uo = cv-yy - xp”; (33)  

var(L’pO) = L’(X’V-’x)-L, (42a) 

COV(L’fl0, UO’) = 0, (42c) 

(42d) 

cov(uo, u’) = var(uo), (42e) 

var(uO - u )  = D - var(uO), (42f) 

cOv(L’p0, u )  = L‘(x’v-’x)-x’v-’c‘,  (42g) 

var(fi - w) = var(L’pO) + var(uO - u )  - COV(L’~’, u )  

- cov(u, PO’L) . (42h) 

var(uO) = CV-’C‘ - CV-’X(X’V-’X)-X’V-’C, (42b) 

var(fi) = var(L’pO) + var(uO), 

Other derivations 

Two-stage derivation: Section 7.5a (45) 

Partitioning y into two parts: Section 7 . 5 ~  (46) 

A Bayes estimator: Section 7.5d (48 1 (50) 

A direct derivation assuming linearity: Section 7.5b. 

Henderson’s mixed model equations: Section 7.6 

Used in ML: Section 7 . 6 ~  

Equations 

Information matrix 

Used in REML: Section 7.6d 

Equations 

Information matrix 

7.8. EXERCISES 

E 7.1. 
E 7.2. 

Verify (42a) through (42h). 
For the conditions of Section 7.6 derive inverses of 

[II] and C =  [X‘R- lX V, var 
X’R-’Z ] 

Z’R-lX Z ’ R - ’ Z + D  ’ 

(53)  

[Use (27) and (28b) of Appendix M.5.1 
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E 7.3. Based on E 7.2 with W = [X Z] and P of (84), show that 

E7.4. Prove that (D- '  + Z'R-'Z)- '  = D - DZ'V-'ZD,  in three 
different ways. 

E 7.5. [Henderson ( 1977).] Suppose in addition to u of the model equation 
y = XP + Zu + e that we have v, another vector of random effects, 
of the same nature as u but with no observations on them. Suppose 
E(v) = 0, var(v) = T and cov(u, v') = H. 
(a)  What is the best linear predictor of v? 
(b)  What is BLUP(v)? 
(c) Show how to calculate BLUP(v) from BLUP(u). 
(d)  On defining 

WC-'W' = R - RPR. 

show that 

X'R-'X X'R-'Z 0 X'R-'y 

Z'R-'X Z ' R - l Z  + Q l l  QIZ][ = [ Z ' Y ' Y ]  

i o  Q; 2 Qzz  

yields BLUP( v)  and Po and uo of (32) and (33). 
E 7.6. Using the usual normality assumptions for the terms of the model 

equation y = XP -+ Zu + e, derive and simplify t ( y )  - S(y ,  u), 
where L(y) is the likelihood of y andf(y, u) is given in (51). 
(a)  Show that (I - VP)y and VPy are uncorrelated. 
(b)  Show that var(y - VPy) is V - VPV with generalized inverse 

v-'  - P. 
(c) Derive the GLSE of XP from (47). 
The model equation for the 2-way crossed classification can be taken 
as y,]  = p + a, + /I, + e,, for i = 1, .  . . , a  and j = 1, ..., b. If the ais 
are taken as random with dispersion matrix aiIa, and if the /I,s are 
taken as fixed, establish the following results. 

E 7.7. 

E 7.8. 
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E 7.9. For the mixed model y = Xfl + Zu + e of this chapter derive 
the variances of BLP(u) - u, of BLUP(u) - u and of 
BLUP(u) - BLP(u), and show a linear relationship between those 
variances. 

E 7.10. Show thedetailsofreducing(45) to(34),asoutlinedin Section 7.5a. 
E 7.1 1. Prove 

(a) (D-’ + Z’R-’Z)-’Z’R-’ = DZ’V-’; 
(b) 11 + Z’R-’ZD( = IVl/lRI. 

E 7.12. Define E = RV-’(y - Xfl”) for V = ZDZ’ + R and Xfl” of (32). 
Prove that 6 = y - Xfl” - Zii. 

E 7.13. (a) Show that q* of (35) can be expressed as 

q*=tr([  -B’A A B’AB -^”I[” C’ “3). V 

(b) Minimize q* with respect to B, subject to BX = L’, using a 
Lagrange multiplier matrix T to take account of the condition 
BX = L‘. 

(c) For B obtained in (b) show that By is ii of (3 1 ). 



C H A P T E R  8 

C O M P U T I N G  M L  A N D  R E M L  
E S T I M A T E S  

8.1. INTRODUCTION 

Maximum likelihood and restricted maximum likelihood estimation of 
variance components in Chapter 6 produce, in general, no analytical expressions 
for the estimators. Indeed, in only some cases of balanced data (see Section 
4.8e) are there analytical expressions for variance component estimators. 
Furthermore, equating to zero the first derivatives of the log likelihood leads 
to nonlinear equations, e.g., equations (29, (27a), (89) and (90) of Chapter 6. 
Even solving these complicated systems of nonlinear equations is an over- 
simplification of the situation, since the log likelihood must be maximized within 
the parameter space. If the maximum occurs on the boundary of the parameter 
space then the derivative of the log likelihood is unlikely to equal zero at the 
maximum and the systems of equations no longer apply. In this chapter we 
review considerations in computing ML and REML estimates and outline some 
of the numerical techniques used for calculating the estimates. 

The starting point for the numerical methods is the log likelihood rather 
than its first derivative or the equations of Chapter 6 just referred to. We use 
the log likelihood rather than the likelihood because it takes a simpler form 
and is numerically more tractable. We operate on the log likelihood itself rather 
than use derivative equations for two reasons. First, when techniques are based 
just on setting the first derivatives equal to zero, it is not possible to distinguish 
saddlepoints and minima from maxima. All three have first derivatives equal 
to zero. Second, progression towards a maximum can be checked by making 
sure that whatever iterative procedure is being used does increase the value of 
the log likelihood at each iteration. Checking that the first derivative is decreasing 
in absolute value towards zero is only peripherally related to increases in the 
log likelihood. 

Trying to maximize the log likelihood or restricted log likelihood is, in 
general, a very difficult numerical problem. It, like the first derivatives of 

290 
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the log likelihood, is a complicated, nonlinear function of the parameters. 
The likelihood contains the inverse of an N x N matrix for ML and an 
( N  - p )  x ( N  - p )  matrix for REML, a difficult computational problem in its 
own right, especially for large data sets. In addition, the maximization problem 
is a constrained maximization problem: even in the simplest situation of 
estimating variance components, the variances must be constrained to be not 
less than zero; and maxima can occur on the boundary of the parameter space. 
For models with covariances between the random effects, the constraints become 
even more complicated. Finally, the log likelihood surface can have local 
maxima. So, for a particular data set, even if an algorithm has converged to a 
local maximum, there is no guarantee that it is a global maximum. 

Figure 8.1 illustrates some of the difficulties that can occur. It shows the log 
likelihood surface for a two-way crossed classification, random model, with no 
interaction. The error variance has been set equal to unity, so that the surface 
is only a function of ut and u:. The surface exhibits two local maxima at 
(0.1,5.5) and (6.2,O. 1 ). And each maximum is near one of the boundaries. These 
are some of the features of likelihoods that make it very difficult for numerical 
algorithms to reliably find ML or REML estimates. 

How then do numerical algorithms attempt to maximize the log likelihood 
or restricted likelihood? We can first note that the problem is primarily one of 
estimating the variance components and not the fixed effects. For example, in 
Chapter 6 equation (25)  does not involve the fixed effects and, given a solution 

- 16 1 Local 
maximum 

I 

- -"I 22 

Figure 8.1. Log likelihood for a 2-way crossed classification, random model, with no interaction 
and 17: = 1.0. 
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to (25), it is a simple matter (weighted least squares) to solve equation (24) for 
the ML estimator of fl. Furthermore, equation (34), part of the Hartley-Rao 
form of the equations, shows that it is also a simple matter to solve for the 
error component given the others. Thus the difficult portion of maximizing the 
log likelihood involves r parameters, the variances of the r random effects factors, 
not including e. 

A simple approach would be to numerically evaluate the log likelihood or 
restricted likelihood for a fine grid of values of the variance components. The 
values giving rise to the largest value of the log likelihood would then be a 
close approximation to the ML or REML estimate. This is feasible for r = 1 or 2 
but becomes unwieldy and time-consuming when the number of variance 
components is much larger than that. This is how Figure 8.1 was generated. 
To generate a grid with, say, 40 values per axis requires 40' total evaluations 
of the log likelihood. 

Numerical analysts have extensively studied the general problem of 
maximization of nonlinear functions and a number of methods have been 
proposed. The consensus is that iterative methods which use information about 
the first and/or second derivatives of the function to be maximized tend to 
perform best (Bard, 1974, p. 118; Gill, Murray and Wright, 1981, p. 93). Such 
an approach is acceptable as long as the derivatives are relatively easy to 
calculate. Statisticians have also developed other routines that exploit the special 
features that are characteristic of likelihood functions. 

Iterative methods all have a common structure. They must be provided with 
starting values. Beginning with the starting values, they have a rule for getting 
the next value in the iteration and a rule for deciding when to stop iterating 
and declare the current value to be (in our case) the ML or REML estimate. 
For doing this there are at least three characteristics that a good iterative 
method should have. It should converge to a global maximum from a wide 
range of starting values, at each iteration it should be relatively quick to compute, 
and it should converge in relatively few iterations. Unfortunately, no known 
techniques guarantee convergence to a global maximum from arbitrary starting 
values. 

8.2. ITERATIVE METHODS BASED ON DERIVATIVES 

We first consider iterative methods that are explicitly based on the derivatives 
of the log likelihood. These are called gradient methods in the numerical analysis 
literature. 

a. The basis of the methods 
The heart of any iterative method is the rule it uses to find the next estimate 

given the current one. Essentially two decisions need to be made. In which 
direction will the next estimate be in relation to the current one, and how far 
will the next estimate be from the current one? These are termed the step 
direction and step size of the method. 
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A logical choice of direction would seem to be the direction in which the 
log likelihood increases the fastest near the current estimate, and a logical step 
size would be to choose the step size as large as possible while still having the 
likelihood increase. It can easily be shown (E8.1) that the direction of fastest 
increase is the vector of first derivatives of the log likelihood evaluated at the 
current estimate. This is called the gradient of the log likelihood function. The 
method defined by this choice of step size and direction is called the method of 
steepest ascent. Unfortunately it performs very poorly in practice (Bard, 1974, 
p. 88), tending to require many iterations before it converges. 

Nevertheless, the gradient information is what is generally used to define the 
step direction, but the direction chosen is usually something other than that of 
steepest ascent. Before describing better methods, we will consider a general 
class of methods that use the gradient to define the step direction. The step 
direction is usually modified by a multiplier matrix M so that the direction 
actually chosen is MVI, where V l  is the gradient of the log likelihood function. 
If Wrn) represents the value of the estimate of the parameter vector 8 at the mth 
iteration then we can represent the step by the equation 

In this equation s("'), a scalar, is the step size for the mth step, M("') is the modifier 
matrix for the mth step and dl/d8(Br.l is the gradient calculated at 8 = P). Bard 
(1974, p. 86) shows that as long as the matrix M("') is positive definite and the 
iterations have not yielded a maximum log likelihood, there is some step size 
s(") for which the likelihood will increase. The method of steepest ascent is (1) 
with Mcrnn, = I, i.e., 8("'+ = 8("') + s('") dl/de(v-,, where s(") is chosen as the largest 
value such that the likelihood continues to increase in the direction dl/d8l~-,. 

More specifically s(") is chosen by searching along the line that goes through 
the point 8'"') in the direction al/del,-, until a maximum or approximate 
maximum is found. This can be achieved in a variety of ways. One simple 
method is to first find an interval in which the maximum lies and then bisect 
it to find a subinterval. This process is repeated to achieve the desired accuracy. 
Other line search methods are detailed in Kennedy and Gentle( 1980, Sec. 10.1.4). 

b. The Newton-Raphson and Marquardt methods 
A method commonly used for maximizing nonlinear functions is the 

Newton-Raphson method. Suppose the function f that we are trying to 
maximize is quadratic in 8: 

j ( e )  = a + b'8 - ie'ce, 
where C is positive definite. f(8) has gradient equal to b - C8, the matrix of 
second derivatives off(8) with respect to 8 is -C, and the global (and only) 
maximum of f(8) is at 8 = C-lb. If we try to maximize f(8) iteratively and 
want to arrive at the maximum in a single step, no matter from where we start, 
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then, on setting (1 )  equal to C-'b and substituting for dl/d8 we would need 
~ - 1 b  = p + l )  = (jW + s(m)M(m)(b - CpO) 

to hold for all possible That can be achieved using s('") = 1 and M('") = C- '. 
Since the matrix of second derivatives of a function f is called the Hessian of 
that function, we denote it by H and so have in the above, quadratic, case 
-C = H. Therefore the iteration step, which would always get us to the 
maximum in a single step, would be 

( j ( m + l )  = @(m) + C-l (b  - ce(m1) 
= @(m) - H - 1 vfh) . 

Of course, if the function were quadratic in 8, the iterative technique would 
not be needed. Nevertheless, this idea is applied by assuming a more complicated 
function can be approximated by a quadratic function and using the preceding 
iteration idea in the form 

(2)  (j(m + 1 )  = O(m) - - 1 V f ( m ) ,  

where Htm) and Vf('") indicate the Hessian and gradient vector, respectively, 
with 8 replaced by 8('"). This is the Newton-Raphson method. One drawback 
of it  is that it requires computation of the first and second derivatives of the 
log likelihood function. 

A compromise between the Newton-Raphson and steepest ascent methods 
has been suggested by Marquardt (1963). He suggests the iteration 

( H ( m )  + +m) l ) -  1v (m), f$w+ 1)  = - f 
where P" is a scalar that partially determines the step size and I is the identity 
matrix. If T("') is small, the procedure approximates Newton-Raphson. If z'"') is 
large, a small step is taken in approximately the direction of steepest ascent. 
The usual recommendations for choosing P) are to choose progressively smaller 
P') as long as the 8("') increases the value of the function to be maximized (use 
steps more and more like Newton-Raphson). If 8"") fails to increase the function 
to be maximized then progressively larger values of T(") are used until it does 
increase (take a short step in a direction near steepest ascent). 

In the variance components estimation problem, letting 8 denote all the 
parameters to be estimated, i.e., 8' = [f!' u"] for ML and 8' = u2' for REML, 
the Newton-Raphson iterations would be (2)  with f('") replaced by I('"): 

with the entries in the Hessian H given by (36) and (37) of Chapter 6 for ML 
and by (93) of Chapter 6 for REML. In both cases H("') is found by replacing 
V and f! in H by EiZiZI~:("') and fVm). And al/d8lWml is found by similar 
replacements in Chapter 6: in (14) and (16) for ML and (92) for REML. 
Alternatively, the Hartley-Rao form of the likelihood (Section 6 . 2 ~ )  could be 
used with corresponding changes in the derivatives. 
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c. Method of scoring 
To avoid the heavy computational burden of the second-derivative matrix, 

another method that has been used is the method of scoring, in which -H-I  
is replaced by the inverse of the information matrix. That is, the Hessian is 
replaced by its expected value (see Appendix S.8c). An advantage of this is that 
the information matrix is often easier to compute than the Hessian. Comparing 
(36) and (37) with (38)-in Chapter 6-shows, for example, that large sections 
of the information matrix are zero, whereas the corresponding second derivatives 
are not. Jennrich and Sampson (1986) report that the method of scoring is also 
more robust to poor starting values than is the Newton-Raphson method. 
They recommend an iterative algorithm which starts by using scoring for the 
first few steps and then switches to Newton-Raphson. 

The method of scoring thus uses an iteration scheme defined by 

where I(W")) is the information matrix calculated using 8 = W"). In Chapter 6 
[I(O)]-' is given in (38) for ML and (94) for REML. Some details for the 
method of scoring for the 1-way random model are given in Section 8.5 that 
follows. 

d. Quasi-Newton methods 
A collection of popular methods for the maximization of nonlinear functions 

is known as quasi-Newton methods. These are similar to Newton-Raphson 
but they have the advantage of not requiring the calculation of second 
derivatives. In quasi-Newton algorithms the Hessian in (2) is replaced by an 
approximation which only requires the first derivatives. From a specified 
beginning matrix (often the identity matrix), updates are made to this 
approximate Hessian with simple-to-calculate matrices that have rank 2. For 
more details on quasi-Newton methods see Kennedy and Gentle (1980, 
Sec. 10.2.3). 

e. Obtaining starting values 
Any iterative technique needs a starting value and, in view of the difficult 

functions encountered as likelihoods, having starting values close to the values 
corresponding to the global maximum of the likelihood improves the chances 
of converging to a global maximum. For the fixed effects, a logical starting 
value would be any solution XfI'') = X(X'X)-X'y to the ordinary least squares 
equations, since it is unbiased even when the elements of y are correlated and 
does not require knowledge of the values of the variance components. For the 
variance components any of the easy-to-calculate estimates, e.g., from ANOVA 
estimators, could be used as starting values for the ML or REML iterations. 
If any of the estimates are negative or zero, they need to be modified. Laird, 
Lange and Stram (1987) and Jennrich and Schluchter (1986) give suggestions 
for starting values for some special cases. 
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f. Termination rules 
There is no general consensus as to when iterative methods should be stopped 

and the current values declared to be ML or REML estimates. Various 
suggestions include the following: 

( i )  stop when changes in the log likelihood are small; 
( i i )  stop when changes in the current parameter values are small; 

( i i i )  stop when the values of the gradient are small; 
( iv)  combinations of the above. 

Kennedy and Gentle (1980, p. 438) and Bard (1974, p. 114) recommend 
Marquardt’s (1963) idea of using suggestion ( i i )  above, to stop when 

max 10jm+l) - 0j”)I G cl(lOjm)l + cZ), (3) 
1 

where E ,  = However, they make the point that some 
algorithms tend to stall temporarily before reaching the maximum, and a safer 
alternative would be to require (3) to hold over several iterations rather than 
just a single one. They also note that methods based on the gradients are often 
subject to rounding error. Combinations are typically implemented by requiring 
a sequence of iterations to satisfy more than one stopping criterion. Lindstrom 
and Bates (1988), quoting the method of Bates and Watts (1981), note that 
none of the above methods are actually checks on whether the estimates have 
converged to a maximum and they suggest an alternate method based on 
comparing the size of the numerical variability to the radius of an asymptotic 
confidence ellipse. 

g. Incorporation of non-negativity constraints 
As noted earlier, maximization with respect to the variance components is 

a constrained maximization problem, since the variances must at least be 
non-negative. It is possible that an iteration will give a negative value, which 
is unfortunate for a positive parameter. Jennrich and Schluchter (1986) use 
“step-halving” methods: if the step length in the iteration will yield a negative 
value then a new step is attempted using half the length. If that step gives all 
positive values then it is used to calculate the iteration, otherwise the step size 
is halved again, and so on. Callanan and Harville (1989) recommend “active- 
constraint” methodologies (see Gill, Murray and Wright, 1981, Sec. 5.2). 
Techniques such as the EM algorithm (see Section 8.3) automatically keep 
iterations in the parameter space. 

h. Easing the computational burden 
There are many techniques that can be applied to reduce the amount of 

computation necessary for ML or REML iterative methods. Harville (1977), 
Jennrich and Sampson (1986) and Hemmerle and Hartley (1973) give matrix 
identities that greatly reduce the size of the matrices that must be manipulated. 

and E~ = 
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Lindstrom and Bates ( 1988) give a number of details on matrix decompositions 
that can be exploited to speed iterations. And in Section 7.6, where we describe 
what is widely known as Henderson’s mixed model equations, we give details 
of how parts of these equations can be used to develop iterative procedures for 
calculating ML and REML estimators. A method of computing REML 
estimators (through using MINQUE, see Section 11.3) that avoids matrix 
inversion is given by Giesbrecht and Burrows (1978) for nested models with 
extensive details for unbalanced data from the 3-way nested model. 

8.3. THE EM ALGORITHM 

a. A general formulation 
An iterative algorithm for calculating ML or REML estimates that differs 

from those like the Newton-Raphson or scoring methods is the EM algorithm. 
Its name stands for gxpectation-gaximization, and it is so named because it 
alternates between calculating conditional expected values and maximizing 
simplified likelihoods. The EM algorithm only generates estimates and does 
not give variance estimates as a byproduct, as do the Newton-Raphson and 
methods of scoring. To obtain variance estimates extra computations must be 
performed (e.g. Louis, 1982). 

The EM algorithm was designed to be used for maximum likelihood 
estimation for situations in which augmenting the data set leads to a simpler 
problem. The key to applying the EM algorithm is therefore the decision as to 
what to treat as the complete (augmented) data. The actual data set is typically 
called the incomplete data in application of the EM algorithm. Thus it is that 
for variance components estimation we think of the incomplete data as being 
the observed data y and the complete data as being y and the unobservable 
random effects u, ( i  = 1,2, .. ., r )  of the usual mixed model described in 
Section 6.1, where the random effects are all uncorrelated. 

The reason this is convenient is that if we knew the realized values of the 
unobservable random effects then we would estimate their variance with the 
average of their squared values (they are known to have zero mean). More 
explicitly, for a vector ui of qi random effects we would form 

8: = u;u,/qi (4) 

to calculate the maximum likelihood estimates (under normality) based on the 
complete data. Being maximum likelihood estimators they are functions of the 
sufficient statistics of the complete (augmented) data. 

However, in real life we do not know the realized values of the random 
effects. But the EM algorithm gives us a way to calculate values to use in place 
of those realized random effects in order to effect this estimation scheme. Starting 
with initial guesses for the parameters, we calculate the conditional expected 
values of the sufficient statistics of the complete data, u;ui, given the incomplete 
data, y. These conditional expected values are then used in place of the sufficient 
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statistics in (4) to form improved estimates of the parameters. This is the 
maximization step, since (4) represents maximum likelihood estimation for the 
complete data. We can then use the new &'-estimates to re-calculate the 
conditional expected value. and so on. This gives an iterative scheme that is 
used until i t  converges. Convergence is guaranteed under relatively unrestricted 
conditions (Dempster. Laird and Rubin. 1977: Wu. 1983). 

An important feature of the EM algorithm is that. since it is performing 
maximum likelihood estimation for the complete data. the iterations will always 
remain in the parameter space. This is evident in ( 4 1. 

b. 
As outlined. the EM algorithm is based on being able to calculate expected 

values conditional on the incomplete (observed) data y. For this we need the 
joint distribution of y and u = [ u; uh . . , ui]'. In taking the model equation 
for y as in ( 9 )  of Chapter 6. 

Distributional derivations needed for the EM algorithm 

r 

y = Xp + C Ziui + e 
i =  1 

r 

= xp+ x ziu, 
i = 0  

with uo = e, qo = N and Z, = I,, as in ( 8 )  of that same chapter, we have 
r 

xp + C ziui, u; = zj C 0 V ( U j .  u;, = OjZj * 

i =  1 

Then. with 

v = v a r ( y )  = Z,Z,O? = x Z,Z;O: + 0:1.~. 
i=O i =  1 

the joint distribution of y and u l .  u 2 . ,  . , , ur is . I '(p. X). where 
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To simplify (7) in terms of the variance components we first use the standard 
result from Appendix M.5 

to derive (with i = 1,2,. . . , r), from (6) 

i= 1 

the nonsingular analog of (22) in Appendix M.4c gives the inverse of (6) as 

Hence the log likelihood based on the complete data, y, ul, ut , .  , . , u,, is, from 
substituting (8), (9) and (10) into (7), and taking logs 

r r 

- t ( Y  - X$ - 2 Z,Ui)'(Y - X$ - 2 ziui)/a; 
1 I 

because y - X$ - X;= Ziui = e = uo. 

complete data, namely y and the uis, as 
From this it  is a simple matter to derive the ML estimators based on the 

62 - - u:ui/qi, i = 0, 1,2 ,..., r, 
and 

xg = x(x'x)-x' y - 1 ziu, . (12) ( i : l  ) 
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The estimator for a: in ( 1  1 )  is, of course, the same as in (4); and the estimator 
for Xg in (12) is equivalent to subtracting the random effects other than e from 
y and then applying ordinary least squares. 

To finalize the iteration steps for the EM algorithm we need the conditional 
expected values of uiu, and y - Z:= Z,ui (the sufficient statistics) given y. These 
are straightforward using standard multivariate normal results and (6). The 
conditional distributions of the u, given y are, from (iv)  in Appendix S.3, 

u, 1 y - "fl[o:z;v-'(y - xg), 0pq, - o:Z;V-'ZJ, 

E(Ui I y )  = a:Z;V-'(y - xg) . 

E(u;ui 1 y )  = of(y - x B ) ' ~ - ' Z ~ z ; v - ' ( y  - Xg) + tr(ufIq, - a:Z:V-'Zi). 

so that 

Therefore, on using Theorem S1 in Appendix S.5, 

(13)  

(14) 

c. EM algorithm for ML estimation (Version 1 )  
We can now make a formal statement of the EM algorithm for maximum 

likelihood estimation. In the statement of the algorithm superscripts in 
parentheses indicate either current values of parameters or functions of current 
values of parameters. For example, a:'"' is the computed value of a: after the 
mth round of iteration and V(") is V with a!'") in place of a; for i = 0,. . . , r. 

Step 0. Decide on starting values B'O' and a'"'. Set m = 0. 

Step 1 (E-step). Calculate from (14) the conditional expected value of the 
sufficient statistics. Label them 

ijm' = E (  u;ui 1 y)lpl. I,", and 01 = elln' 

= a;4'"'(y - Xg("')'(V("')- 'Z,Z;(V'"')- ' (y  - XS'"') 

+ tr[a:'")Iq, - ~ ~ ' " ' Z ; ( V ' ~ ) ) - ' Z , I  . (15)  

And, for ( f2), using ( 13), 
r 

i =  1 
8'm) = E (  y - c Ziui I y)lp = plml and eZ eZ(") 

r 

= y - c Z,Z;a:'"'(V'"')-'(y - x g ' m ) )  

- - Xg'"' + a$")(v("))- - xp'"') , (16) 

I =  1 

= - (v'm) - a;(m)i)(vh))-l(y - xgw) 

Step 2 (M-step). Maximize the likelihood of the complete data, based 
on (12) 

fjm)/q,, i = 0, 1,2, ... , r, (17) 1 )  = 
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and 

x p + 1 )  = x(x'x)- X ' P  ._ 18) 

Step 3. If convergence is reached, set 8' = u""+ and 1 = fl("+ l ) ;  otherwise 
increase m by unity and return to step 1. 

d. EM algorithm for ML estimation (Version 2) 
Previously, in equation (99) of Chapter 6, we set out the result that, given 

MLEs of the variance components used in V to yield v, then MLE(Xfl) is 
X(X'v- 'X)-X'v- 'y.  Laird (1982) suggests not calculating P) and @('"I in the 
iterations of the EM algorithm but only calculating 1 at the end of iterating to 
streamline the calculations. The rationale for this is as follows. If Xfl'") were to 
be the same form as X@, say 

XflL") = x[x'(V~"))-1X]-X'(V~"))- 'y, 

then in (15) and (16) we would have (V('"))-'(y - Xflr)), which is P(")y, where, 
based on (22) and (23) of Chapter 6, 

p(W = (VW) - 1 - (p)) - 1 x [x'(  VM) - 1 x] - x'( v'")) - 1 

Then fl(") would no longer be explicitly needed in the iterations. Since Xfl'") is 
not, in general, of the form Xfl;"), replacing (V'")) - (y - Xfl("')) by Pcm)y in the 
algorithm is, strictly speaking, not EM. The differences are slight and probably 
do not affect convergence properties of the algorithm. Nevertheless, this 
replacement of (V'"))- I ( y - Xfl'")) by Pc'")y gives what we call a second version 
of the EM algorithm. This modified version of the EM algorithm avoids a poor 
property of Version 1 (see E 8.10). 

Step 0. Obtain a starting value u"~). Set m = 0. 

Step 1 (E-step). Calculate from (14) the conditional expected value of the 
sufficient statistics. Label them i!") for i = 0, 1,. . . , r :  

i!"' = E(u;u, I y)l,2 _ p s  

= ci 4(m) y'P(")ZiZ;P(")y + tr[cZ'""I,,, - a;""'Z;(V'"))-'Zi] . (19) 

Step 2 (M-step). Maximize the likelihood of the complete data, based 
on ( 12). 

c:('"+') = i jm)/q,  for i = 0, I , .  . . , r . (20) 

Step 3. If convergence is reached, set 6' = u' '"+~) and Xa = 
X(X'v- 'X)-X'V- 'y; otherwise increase m by unity and return to Step 1. 

As pointed out by Laird (1982), this is the same as an algorithm that had 
previously been proposed on an ad hoc basis by Henderson ( 1973a) [see Harville 
(1977), equations (61) and (62)]. 
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e. Equivalence of the EM algorithm to the ML equations 
We now show how the steps of the EM algorithm are related to the ML 

equations of (24) and (25) in Chapter 6. To do  so, consider the situation 
when iteration has ended. At that point, to some designated degree of 
approximation, B = p("+ ') = p'"') and 5' = a'("'+ I )  = u'"'. Using theseequalities, 
and substituting (16) into (18), then gives 

xb = x ( x t x ) - x , [ x b  + a p ( y  - Xb)], 

x(xtx)-x's-'xb = x(x 'X) -x 'V- 'y .  

xT-'x$ = x'V-'y, 

which reduces to 

Pre-multiplication of this by X' gives 

which is (24) of Chapter 6. Likewise, substituting (19) into (20) gives 

qidf = i$yy'PZiZ;Py + qiBf - 6; tr(Z,V-'Z;), 

which, so long as 6: # 0, reduces to 

t r ( t - ' ~ : Z , )  = y W i z ; P y ,  

which is a typical term in the ML equation (25) of Chapter 6. 

f. EM algorithm for REML estimation 
Section 6.6b shows, for K' of maximum full row rank N - p such that 

K'X = 0, how 

replacing y by K'y, 

replacing X by K'X = 0, 

replacing Z by K'Z 
(21) 

and replacing V by K'VK 

leads to being able to derive the REML equations (89) from the M L  equations 
(86). Part of the derivation involves the identity developed in Appendix M.4f 
that 

P = K(K'vK) - 'K '  (22) 

(23) 

We can use the same replacements (21) and identity (22) to derive the EM 
algorithm for REML from that (Version 2)  for ML. In doing so, note that (21) 
applied to Z;Py causes it to become Z;K( K'VK)- 'K'y which, by (22), is ZiPy; 
i.e., the replacements(21)cause no change in Z;Py. In this way the EM algorithm 

for P defined as 

p = v-1 - v-'x(x'v-'x)-x'v-'  . 
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for REML is as follows. 

Step 0. Obtain a starting value u ~ ' ~ ) ,  Set rn = 0. 

Step 1 (E-step). From (19) for i = 0, 1,. , , , r calculate 

+ tr[a:'")Iq, - O:'")Z;K(K'V'")K)- 'K'Z,] 

i jm) = u:'")(K'y)'(K'V'")K)- 'K'Z,Z;K(K'V'")K)-'K'y 

= a:'""y'P'")Z,Z;P'")y + tr[a:'"'I,, - ~:'"'Z;P'")Z, J , (24) 

Step 2 (M-step). Maximize the likelihood of the complete data, using (20) 
for i =0, 1, ..., r :  

($A+') - - ijm)/4, . 

Step 3. I f  convergence is reached, set G2 = uZ'"'+') ; otherwise increase M 
by one and return to Step 1. 

Thus, if for ML we use Version 2 of the EM algorithm, as in (19) and (20), 
then the only difference between that and EM for REML is the appearance of 
P in the trace term in (24) rather than V-'  in (19). Since, by the nature of P 
in (23), tr(Z,P(")Z;) < tr[Z,(Vcm))-'Z;], use of (24) leads to a larger value of 
uf'") than does ( 18), for i = 0,1,. . . , r. 

g. A Bayesian justification for REML 
The EM algorithm for REML estimation can also be derived using the 

connection identified in (24) and (25) of Chapter 9. If we regard the fixed effects 
as random effects with distribution given by fl - Jv(fl0, B) then the conditional 
distribution of u, given y is 

u, I y - "o:z;w-'(y - Xflo), u&* - a:Z;W-'Z,], 

where W = XBX' + V. To obtain the EM iterations for REML we need the 
limiting distribution as B- ' + 0. For that we need the following. 

Proposition. If W = XBX' + V then 

Proof. First note that 

(V + XBX')-'XB = V-'X(B-' + X'V-'X)-', 

which follows easily from the identity 

XB(B-' + X'V- 'X) = (V + XBX')V-'X . 
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Then 

W-' = ( V  + XBX')- '  

= ( V  + XBX')-'[(V + XBX')V- '  - XBX'V-'1 

(matrix in square brackets is identity) 

= V - '  - ( V  + XBX')-*XBX'V-'  

= V-1 - V - I X ( B - 1  + X ' V - ' X ) - ' x ' V - 1  

- + V - '  - V - ' X ( X ' V - ' X ) - ' X ' V - '  = P as B - '  - 0 .  Q.E.D. 

Using the Proposition and PX = 0, the limiting distribution of ui I y as B- ' + 0 
is 

ui I y - Jlr(a;Z;Py, a;Iql - a:Z;PZi) . 
As with the ML iterations, for REML the ML estimates based on the complete 
data are given by 8; = u;ui/qi for i = 0,1,2,. . . , r. We therefore have 

E(U;U, I y)le2 _ellnl = af("'yi~(m)ziz;~(m)y + tr(a;""'lql - O~("')Z;P(~)Z,), 

i = O , l ,  ..., r,  

which gives the EM algorithm (24) for REML estimation. 

h. Non-zero correlations among the u,s 
We have seen that the calculations for the EM algorithm revolve around 

the sufficient statistics for the complete data likelihood. If the model for y is 
different from the model having equation y = Xfl+ Z;=o Z,ui (Lee, having 
non-zero correlations among the uis) then the sufficient statistics will also be 
different and the EM algorithm will take a different form. Dempster, Rubin 
and Tsutakawa ( 1981 ) give some details for covariance components estimation. 
For some patterned variance-covariance matrices Andrade and Helms ( 1984) 
give results, and for longitudinal data models Laird and Ware (1982), Laird, 
Lange and Stram (1987) and Jennrich and Schluchter (1986) give specifics. 

8.4. GENERAL METHODS THAT CONVERGE RAPIDLY FOR BALANCED DATA 

The iterative algorithms identified so far (Newton-Raphson, Marquardt, 
scoring, quasi-Newton and EM) are all general purpose algorithms that can 
be applied whether the data are balanced or not. This generality comes at a 
price, since the algorithms do not take advantage of the simplicity that arises 
with balanced data. A consequence is that with balanced data, the aforementioned 
algorithms will still require a number of iterations to converge, perhaps even 
more than with unbalanced data. To address this concern Anderson (1973), 
Thompson and Meyer (1986) and more recently Callanan and Harville (1989) 
have devised generally applicable algorithms, which, when applied to some 
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balanced data situations for which exact, analytic solutions exist, yield those 
exact solutions in a single iteration. 

Callanan and Harville (1989) studied a number of the traditional algorithms, 
which they ''linearized'' to improve their convergence properties with balanced 
data. Their goal was to improve the convergence properties of the algorithms 
in general for use with balanced or unbalanced data. Under limited evaluation, 
they preferred a linearized version of the Newton-Raphson algorithm. 

8.5. POOLING ESTIMATORS FROM SUBSETS OF A LARGE DATA SET 

The advent of supercomputers is rapidly reducing the computational effort 
required for what have heretofore been tasks of unimaginable magnitude, e.g., 
inverting a matrix Df  order lo00 in 17 seconds; or of 2000 in 2 minutes. 
Nevertheless, there will be occasions when, depending on local computing 
facilities and the size of one's data set, iterative solution of the maximum 
likelihood equations for the whole data set will be effectively impractical. In  
such cases, a method from Babb (1986) provides opportunity for dividing the 
large data set into disjoint data sets (to be small enough to do maximum 
likelihood on each one) and pooling the ML estimators from the subsets. Since 
estimators from one data subset are not necessarily independent of those from 
another, simple averaging of the subset estimators can be improved upon in 
an approximate generalized least squares fashion. Details are as follows. 

First, for each set of data that the complete data have been divided into, 
calculate it2 from the ML equations (27) of Chapter 6. For the pth data set the 
model equation will be 

with subscript p denoting the pth data set. Also, uiP is not necessarily the same 
as ui, because uip will have as elements only those of ui that actually occur in 
the pth data set. Then, on writing 

(26) A,, = {,,, tr(Z,,Z:,t; 'Z,pZ;pO; *)},,,Lo 
and 

fp  = {c ybPpZipZ:pPpyp}i,jlo, (27) 

it: = A;'fp.  (28) 

the ML equations (27) of Chapter 6 yield, on convergence and ignoring 
negativity constraints, 

Second, suppose there are s data sets. An initial value for the estimator of 
cr2 from the whole data set is 
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With this, calculate the following three matrices for each data set; i.e., for 

Vpp(o)  = var(y,), calculated at 3; 

p = 1,2, ..., s: 

, 

i = o  

Ap(0) = {In ~ ~ ~ ~ , , , ~ ; , , ~ , ~ 0 , ~ j , , ~ ; , , ~ , t , , ~ ~ 1 , j ~ 0  (31)  

P,,(O, = V,to, - V,to,X,(XbV,to,X,)- x ; v p p ( o ,  - (32) 

Third, we rewrite the model equation (25) for y,, not just in terms of uip, the 
random effects that are in the pth data set, but in terms of uir the random effects 
that are in the whole data set: 

As a result, Zip has a column of zeros corresponding to each element of ui that 
is not in uiP. But it is this formulation that permits having an expression for 
the covariance of y,, with yq: 

V,,q,o, = cov( y,,. yb), calculated at  h i ,  

= 1 Zipk;q8:(o) for p z q = 1,. . . , s . 
i =  1 

(34) 

Note that the summation here excludes a; = a:, because no two data sets have 
any error terms in common. Moreover, in any particular case, many of the 
terms in (34) will be zero; indeed for many pairs of data sets (34) itself will be 
zero. For example, when the random effects in a model constitute a two-way 
classification, (34) will seldom involve the interaction variance component, for 
the same kind of reason that it never contains a:; and only for data sets that 
have levels of the A-factor in common can it have a:, and so on. 

Fourth, we are going to combine the estimators &; from (28) for the individual 
data sets by weighted least squares, making use of an approximation to the 
sampling variance-covariance matrix of the vector 

[a:' 6:' ... a;']' . 

This is done as follows. In each equation (28) for p = l , . , . , ~ ,  we treat A,, as 
non-random and f,, as random. Then, since 

cov(fp9 f b )  = {m C O V ( Y ~ P ~ Z ~ ~ Z ; ~ P ~ Y ~ ,  ybP,ZIqZ;qPqyq)}i,j'=o, 

we calculate this at 3;, calling it GPqo, :  

G p q ( 0 )  = 2 {m t ~ C P p ~ ~ ~ Z ~ p Z I p P p ~ ~ ~ V p q ~ o , P , , , , Z , , Z ; , P , , , , V , p ~ ~ ~ I  )i,jl=o 

= 21m t r C E p q , i j ( O ) ( E p q , i j ( o , ) ) l  Ji.,Lo (35) 
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for Epq,ij(o) = Z~pPp~o~Vpq~o,Pq~o,Z,, .  Then assemble these matrices into a single 
matrix as 

and define 

[G(O)I-' = {m cf$}p,,"=l * (37) 

Thus, on treating A, and A, as non-random, the covariance of 6; and 6: is, 
when calculated at 6:, 

cpq,o, = Ai;)Gpq(o)&;); 

and 

c(0) = {m cpqO)}p.,"=l = {d A i i ) } p i l  {m Gpq(0)}p.,"= 1 {d A i d ) } p 2  I ' 

Now the vector being estimated by every 6; is u2. Therefore the vector 
estimated by {c6;}pf l  is {cu2}pS1 = 1,C3ua2 = ( l s @ I r + l ) ~ 2 .  We therefore 
estimate u2 by pooling the 6; vectors in a weighted least squares fashion, using 
Cf& as the ( p ,  q)'th submatrix of [C,,,] -'. 

= "1s 8 I,+ l)'C~)'(ls C3 I r +  1 1 1 -  ' (1 ;  8 I r +  1 )C~) l  { c  6 : ) p S  1 

One now iterates this process, using 6tl, in place of 6to) in equations (30)-(32) 
and then in (34)-(38). More study is needed to evaluate this procedure. 

8.6. EXAMPLE: THE 1-WAY RANDOM MODEL 

For the I-way classification, random model we show details for ML 
estimation for two iterative algorithms: EM (Version 1 )  and the method of 
scoring. In doing so we use the model equation 

Yi j  = P + ai + eij 

y = xp + Z,Ul + ZOU,, 

X = l,, p = p, Z ,  = Id l,,}, u1 =a, q1 = a ,  Z, = I ,  and u, = e .  

for i = 1 , .  . . , a  and j = 1,.  . . , ni with vector equivalence 

where 

(39) 
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Also 

1 

Q, d of + .,a: var(y) = V = {d u,21,,, + a,2JnI} and V-' = >{ Inl - 

(40) 

Other useful notations taken from Chapter 3 are 

a. The EM algorithm (Version 1 ) 
Using (39), (40) and (41 ) in (l4), it can be shown ( E  8.8) that 

and 

(43) 
And likewise, using ( 13), 

The iteration procedure then comes from using first (42) and then (43) as the 
right-hand side of (15), which is then put into (17) to give 

and 

Then, using (44) for 
first X on each side of (18)] 

in (16) and putting that in (18) gives [dropping the 
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which (see E 8.9) reduces to 

and this in turn can also be written as 

This shows that ,dm+ "is the weighted average of weighted averages ofji.  and p("). 
One carries out the iterations by first setting m = 0, choosing starting values 

a:(1). The latter are then used again in (45), (46) and (47) with m = 1;. . . , and 
so on, until satisfactory convergence is attained. 

We note in passing that when the iteration ceases, (48) will be fi and 
(see E 8.9) it reduces to 

/&O) ,a, 2(0) and cry2(o), and using them in (45), (46) and (47) to get p( ' ) ,  a:"' and 

(49) 

where vilr(ji.) = 6: + 6f /n i  is the MLE of var(ji.). Moreover, (49) is GLSE(p) 
with 6,' and 6: in place of a,' and a:; and, of course, for balanced data f i  = j... 

1 1 

Note that for balanced data (48) reduces (see E8.10) to 

which is not j..; although it does, of course, reduce to f i  = 1.. when iteration 
has ended. This is for Version 1 of the EM algorithm. In contrast, though, we 
can show that Version 2 gives every p(m) as j... 

In Version 2 of the EM algorithm step 3 has 

xb = x(x'P-'X)-x'V-'y. (51 1 
Using X and V-' of (39) and (40), this reduces to 

just as in (49). So, for the ( m  + 1)th step it is 

1 
P+ l )  = ci var(m) j i i j i . ) / 'Xi  var(m)(ji.) * 

Then for balanced data var(j,.) = a: + af/n, the same for all i ,  and so both fi 
and p("+ reduce to 

f i  = p + 1 )  = - . Y.., 

i.e., for every iteration Version 2 yields pfm) = 1.. for balanced data. 
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b. The method of scoring algorithm 

Section 8 . 2 ~ :  
The general iteration equation for the method of scoring is the equation in 

@ m +  1)  = 8 (ml  - p ( ~ ~ m q - 1  !!I 
d0 8 =pi 

For the I-way classification this is 

where the information matrix l (0)  and the first derivatives are available from 
Chapter 3, in equations ( 138) and ( 132), respectively. Hence, for Ai = 0,' + np,', 
using ( 138) of Chapter 3, 

r 1 

0 

L 
where, from (132)  of Chapter 3, 

0 

[ 

I \ . - -  
I I I 

L 

It is clear that the iterations for 0,' and 0,' are somewhat complicated so we 
will not detail them here. However, the iteration for p is given by 

Again, when iteration has ceased, this reduces to (49), and thence to p = j . .  for 
balanced data. When the data are balanced, (53)  will always yield p("') = j.. for 
m > 0. Version I of the EM algorithm does not have this property, but Version 2, 
which uses P("')y in place of V'" ' ) (  y - Xfl'"'), does. Figure 8.2 shows, as squares 



c8.71 DISCUSSION 

0.12 I I I I 8 1 

Start 
0.10 

a3 

0.08 

0.06 

0.04 

0.02 

0.00 

Finish 

31 1 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 

0: 

Figure 8.2. Convergence of two methods of solving the likelihood equations for the turnip data 
of Snedecor and Cochran (1989, p. 238), a 1-way classification with balanced data, a = n = 4: 
EM algorithm and method of scoring. 

and plusses joined by lines, the iterations of the method of scoring and of 
Version 2 of the EM algorithm for the turnip data of Snedecor and Cochran 
(1989, p. 238). The data set is balanced with a = 4 = n. 

While this is a very simple, balanced data example, it nevertheless illustrates 
several of the points made in this chapter. It shows that the EM algorithm 
requires a large number of steps to converge even though it is very close to the 
maximum after only two steps. I t  shows that even though the data are balanced, 
the iterative methods do not converge in a single step, and it  illustrates the 
ideas of step direction and step size. 

8.7. DISCUSSION 

a. Computing packages 
We have outlined in this chapter some of the methods available for computing 

ML and REML estimates. There are myriad difficulties involved in actually 
implementing these methods including, but not limited to, stability of numerical 
methods applied to the matrices involved, methods of avoiding the inversion 
of large matrices and the details of diagnosing convergence or non-convergence 
of the algorithms. All of these matters have to be attended to satisfactorily when 
designing and writing computing packages-and this is not necessarily an easy 
task. It is a job for an expert, who must have a sound appreciation of numerical 
analysis. Computer packages designed by those who are amateur in this regard 
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can therefore usually be deemed suspect. That said, we now make but a comment 
or two on some of the widely-available commercial packages, and on some of 
the recommendations given in the recent literature. 

The computing packages SAS, GENSTAT 5 and BMDP all have (as of 
1988) procedures for calculating variance components estimates in mixed 
models, In SAS the procedure is VARCOMP. It calculates ANOVA estimators 
(based on Henderson's Method 111) from the SAS Type I sums of squares. It 
also calculates MIVQUE(0) estimates-as described in Section 11.3g. For ML 
and REML estimation it uses the W-transform (Hemmerle and Hartley, 1973) 
to reduce the computational burden and a modified Newton-Raphson method 
that protects against the value of the objective function going in the wrong 
direction. Iteration commences with the MIVQUE(0) estimates, and convergence 
is assumed to have been achieved when the objective function (log, IVI for ML 
and log,IK'VKI for REML) changzs by no more than lo-*. GENSTAT 5 
contains a REML routine developed by H.D. Patterson of Edinburgh, Scotland. 

The EMDP package has several programs that compute variance components 
estimates. From BMDP (1988) we find that program 3V is the primary one 
for ML and REML estimation from unbalanced data of any mixed model. Its 
iterative procedure (p. 1182) starts with the Fisher scoring method, and when 
the change in the log likelihood becomes less than unity the algorithm changes 
to Newton-Raphson. Starting values (p. 1182) are r?z'o' = (y'y - N j 2 ) / ( N  - 1) 
and dizC0) = 0 for i = 1, ..., r, and convergence is assumed (p. 1042) when the 
relative change in log likelihood is less than for a user-supplied p ,  the 
default being p = 8. Program 8V also calculates variance components estimates, 
but is confined to balanced data, although for almost any kind of mixed model 
(p. 1 1 15). For a mixed model with repeated measures program 5V is preferred 
(p. 1026). 

b. Evaluation of algorithms 
Several recent research papers evaluate algorithms for variance components 

estimation (Dempster, Selwyn, Patel and Roth, 1984; Jennrich and Schluchter, 
1986; Laird, Lange and Stram, 1988; Lindstrom and Bates, 1988). While there 
is no consensus on the best method, some general conclusions seem to be as 
follows. 

1. The Newton-Raphson method often converges in the fewest iterations, 
followed by the scoring method and then the EM algorithm. In some cases the 
EM algorithm requires a very large number of iterations. The individual 
iterations tend to be slightly shorter for the EM algorithm, but this depends 
greatly on the details of the programming. 

2. The robustness of the methods to their starting values (ability to converge 
given poor starting values) is the reverse of the rate of convergence. The EM 
algorithm is better than Newton-Raphson. 

3. The EM algorithm automatically takes care of inequality constraints 
imposed by the parameter space. Other algorithms need specialized programming 
to incorporate constraints. 
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4. Newton- Raphson and scoring generate an estimated, asymptotic 
variance-covariance matrix for the estimates as a part of their calculations. At 
the end of the EM iterations, special programming [perhaps a single step of 
Newton-Raphson or use of the results of Louis (1982)l needs to be employed 
to calculate asymptotic standard errors. 

8.8. SUMMARY 

Iterative methods of maximizing the likelihood begin with an initial estimate 
fYo)' of 8' = (p', a2') and then proceed by calculating new estimates, 8("'+'), 
m = 0, I ,  2 , .  . . . Iteration continues until the estimates converge (Section 8.2f). 
The iterations for the various methods are as follows. 

Newton-Raphson 

p+ 1)  = O(m) - (H(m))- 1 -1 ar 
ae #-I 

where H(") is the Hessian of 1 evaluated at W )  [equations (36) and (38) for 
ML and equations (108) for REML of Chapter 61 and al/ae is given in (14) 
and (16) for ML and (106) for REML of Chapter 6. 

Scoring 

where I(8'")) is the information matrix evaluated at 8'") [equation (38) for ML 
and equation (108) for REML of Chapter 61. 

EM algorithm version 1 (ML) 

x p + ' )  = xp'"' + u~'"'X(X'X)-X'(V'm))-'(y - XfJ("))* 

qiu;(m+ ' 1  = (p'(y - X p ( m ) ) ' ( y c m l ) -  'ziz;(v'"')- ' (y  - X p )  

+ tr[u;("')Iq, - U~'"''Z;(V~~))-'Z,], for i = 0, I ,  2,. .., r, 
where Vmn) is var(y) evaluated at W"). 
EM algorithm version 2 (ML) 

q.u2(m+ 1) = ut(m)yfp(m)Z z'pm) + tr[u:(m)l - &m) Z,( ' Vcm)) - z, 1, 
t i  i f  41 

fori=0,1,2 ,..., r .  

At convergence set Xg = X(X'v- 'X ' ) - 'X 'v- 'y .  

EM algorithm version 2 (REML) 

qiu:("'+ ') = u:cm)yfp'm)ZiZ;p(m)y + tr[u:("')IqI - U~"")Z~P~)Z~],  
for i = 0,1,2 ,..., r . 
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8.9. EXERCISES 

E 8.1. 

E 8.2. 

E 8.3. 

E 8.4. 

E 8.5. 

E 8.6. 
E 8.7. 

E 8.8. 
E 8.9. 

E 8.10. 

Show that the direction that a function f(0) increases most rapidly 
at 8 = 0* is given by Vf(0*). 
Show that XfV' = X(X'X)-X'y is an unbiased estimator of Xfl under 
the model y = Xs + Zu + e where E(u) = 0 and E ( e )  = 0. 
If c2 in ( 3 )  is set equal to zero instead of If)- '  then the stopping 
rule is to stop when the relative change in all the parameter values 
is less than 
Derive the log likelihood and MLEs for the complete data likelihood 

= .01%. Why is this unsatisfactory? 

r 
Derive (12) as the GLSE obtained from y - 

Derive (13)  and (14). 
Show that for P = V- '  - V- 'X (X 'V - 'X ) -X 'V - '  

Z,u,. 
I =  1 

tr(Z>PZ,) g tr(Z;V-'Zi). 

Derive (42), (43) and (44) from ( 13) and ( 14). 
(a) Derive (47) from (16)' (18) and (44). 
(b)  Show that (47) simplifies to (48). 
(c) Show that after iteration has ended 

where vGr(jJ.) is the MLE of var(jj,.). 
For Version 1 of the EM algorithm for ML in the balanced 1-way 
classification, random model, show that the iterations for p are of 
the form 

p+ 1) = ( 1  - 4'rn))j.. + ?p)p(rn), 

where 

What happens to the iterations if a;("') z O? 



C H A P T E R  9 

H I E R A R C H I C A L  M O D E L S  A N D  
B A Y E S I A N  E S T I M A T I O N  

In this chapter a slightly different approach to analysis of the mixed model is 
explored, an approach that is arrived at through an amalgamation of many 
views. Although the idea d modeling in a hierarchy has a distinct Bayesian 
flavor, the purpose of hierarchical modeling goes beyond Bayesian analysis. 
For example, hierarchical techniques can help both our understanding of models 
and our estimation and interpretation of them. In particular, we will see that 
only a few simple ideas are necessary to arrive at some broad estimation 
principles. 

9.1. BASIC PRINCIPLES 

8. Introduction 
A hierarchical model is one that is specified in stages, with each stage building 

upon another. The advantage of building a model in stages is that each stage 
can be relatively simple and easy to understand, while the entire model may 
be rather complicated. Thus, sophisticated models may be built by layering 
together relatively straightforward pieces. 

Bayesian methods are strongly tied to hierarchical models. Recall from 
Section 3.9 that Bayes estimation is based on calculating a posterior distribution, 
which arises from combining a prior distribution with the sampling distribution. 
(These ideas are covered in Appendix S.6.) The specification of the sampling 
distribution and the prior distribution is an example of a hierarchical model. 
For example, if we observe a random variable X with distribution f(x I e), and 
suppose that 8 has a (prior) distribution n(O), then 

315 
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is a hierarchical specification. Here we have two levels in the hierarchy: the 
first level deals with the distribution of the variable X (here the data) conditional 
on 0, and the second level deals with the distribution of the variable 0 (here 
the parameter), on which the distribution of X depends. The hierarchical 
specification can continue. For example, if the distribution of 0 depended on 
another variable j., that is 0 - n(O I %), we could then specify a distribution for 
the variable i. in the third level of the hierarchy. In most cases three (or fewer) 
levels in a hierarchy will suffice, but the theory knows no limit. 

Once a hierarchical model, such as ( 1 ), is specified, we can use the hierarchy 
to derive estimators using Bayesian methodology, Note that this estimation 
method can be used no matter how the hierarchy is arrived at. For example, to 
estimate 0 from the model in ( I ) ,  we could use its posterior distribution n(O I x), 
given by 

where j ( x  I 0 ) n ( 8 )  is thejoint distribution of X and 0, and sf(. I B)x(B)d0 = m ( x )  
is the marginal distribution of X. Of course, other estimation methods (e.g., 
maximum likelihood) can be used in a hierarchy such as ( 1). For now, however, 
we will concentrate on the Bayesian estimation techniques that are natural for 
the specified hierarchy. 

From the posterior distribution we could obtain a posterior mean, posterior 
variance, or any other parameter associated with a distribution. A common 
choice for a point estimate of 8 is the posterior mean E(O I x), given by 

Estimating the parameter 8 by the mean of its posterior distributions seems 
quite reasonable, and is also justifiable on more formal grounds. If we assume 
that our penalty for misjudging 8 is measured by squared error loss then the 
posterior mean is an optimal estimator of 0. 

b. Simple examples 

model for a normal variance. For [x, 
under the following hierarchical model: 

Section 3.9 contains an example of Bayesian estimation using a hierarchical 
. . . 4’ - N(p1,a21) we estimate a2 

(4) 

Applying formula (2), we can derive the posterior distribution of a’, or we 
could use formula (3 )  to obtain a point estimate of a’, E(a’ I s’), given by 

s 2 1 d  - j ( s 2 1 , 2 ) = a y - , / ( n -  1 )  
6 2  - n(a2) = (g2)-3e-’/u2. 

s2 + 2 / ( n  - 1 )  n - 1 2 
E(a2 1 s2) = - -~ s2 + - ( I ) .  

1 + 2 / ( n -  1 )  n +  1 n +  1 
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The second expression in ( 5 )  shows that the posterior mean is a weighted 
average, an occurrence that will often happen. Note that E (  o2 I s2) is a weighted 
average of s2, the sample estimator, and of 1, the prior mean from n ( 0 2 ) ,  with 
weights that are dependent on the sample size. As the sample size increases, 
more weight is given to the sample estimator. (More generally, the weights 
reflect the relative variance of the sample and prior information.) 

Whether a hierarchical model is considered a Bayesian model depends on 
the interpretation of the prior distribution. There is a subtle difference here 
between Bayesian estimation and Bayesian modeling. Bayesian estimation leads 
to equations like (2) and (3), and can be used with any hierarchy. Bayesian 
modeling, a branch of hierarchical modeling, arises when the second (or third) 
level of a hierarchy reflects some prior (subjective) belief. If the distribution 
n ( 0 2 )  of (4) reflects a prior belief then (4) specifies a Bayesian hierarchical 
model. If n ( 0 2 )  is derived through some other means (as in the following 
example), model (4) remains a hierarchical model, but is not a Bayesian 
hierarchical model. 

As an example of a hierarchical model that is not Bayesian, consider the 
following classical model for insect populations. An insect lays a number of 
eggs, A, according to a Poisson distribution with parameter A. Each egg can 
either hatch or not, and if it hatches it survives with probability p. The interest 
is in estimating the number of surviving insects. 

To specify this as a hierarchy, let X denote the number of survivors from a 
batch of A eggs. We can then write 

X 1 A - binomial(A, p), 

A - Poisson(A) . 
Neither of the distributions specified in (6) came from a subjective belief, but 
rather can be attributed to the structure of the problem. Therefore this hierarchy 
does not specify a Bayesian model. To derive an expression for the number of 
survivors, however, we could use Bayesian methods, or more generally the 
calculus of probabilities. The conditional expectation of X given A is 
E(X 1 A )  = PA, which can be estimated using the marginal distribution of X, 
a Poisson(p2). See E 9.1. 

c. The mixed model hierarchy 
The general mixed model equation, for a data vector y, has been written as 

y = Xfl+ Zu + e (7 )  

[as in (58) of Chapter 41, where fi is an unknown, fixed parameter and u is an 
unknown, random variable. The matrices X and 2 are considered fixed and 
known, and e is an unknown random vector. In the classical approach to 
analysis of data using a mixed model the distinctions of fixed versus random, 
known versus unknown, parameter versus statistic are all important. These 
classifications dictate the type of estimation and inference that is possible. When 
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analyzing the mixed model (or any model) using a hierarchical approach, 
however, it only matters whether a specified quantity is Observable or unobseroable. 

In equation (7) y, X and Z are observable (because we see their values), while 
fl, u and e are unobservable (because we do not see their values). No further 
classifications are necessary. In particular, both fixed effects and random effects 
are handled within the same general framework. In hierarchical modeling we 
treat fl, u and all variance components in the same way: they are unobservable. 

For modeling the hierarchy the distribution of e gives the sampling distribution 
which, in classical statistics, is the distribution of the data conditional on all 
parameters. The distribution of fl and u gives the prior distribution. In a 
hierarchical model the first stage is always the sampling distribution, with prior 
distributions relegated to other stages. The mixed model of equation (7)  is 
interpreted as a conditional ordinary (fixed) linear model in the following way. 
For fixed (but unknown) values of fl and u we would have a usual linear model 
in equation (7). But these pieces can vary, so we model them in a hierarchy, 
that is, we put distributions on them. Formally we can write the first level of 
the hierarchy as 

1. Given u = uo and fl = Po,  we have 

y = Xflo + Zu, + e, (8)  

where e is the sampling error, e - fe(*). Thus, the first level of the hierarchy is 
an ordinary fixed linear model. The second level of the hierarchy specifies the 
distribution of the unobservables u and fl. We write 

2. (9)  

wherefu,p(*, -)is  a joint probability distribution on the unobservables u and fl. 
Expressions (8) and (9) completely specify the model, with (8) giving a fixed 

effects model for fl and u, and (9) giving the hierarchical component. The 
variance components are parameters (unobservable) of the distributions of e, 
fl and u. As such, they are modeled at a lower level of the hierarchy than fl and 
u. As we will see in Section 9.2, this leads to some rather straightforward 
estimation schemes for these variance components. 

Building on our Bayesian' estimation principles, we can state a broad 
estimation principle for unobservables (an estimation principle for observables 
is not needed!). An unobservable is estimated using the distribution obtained 
by conditioning on all observables and integrating over all other unobservables. 
This principle is a logical generalization of calculating conditional expectations, 
and is applicable in models of any complexity. The practice of integrating out 
the unobservables that are not of interest will always yield estimates that are 
functions only of the data (observables). 

d. The normal hierarchy 
In this subsection we illustrate a most popular and useful hierarchical model, 

the normal hierarchy, which we will use extensively throughout this chapter. 
Here we will only establish some notation, and discuss some general principles. 
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Details of estimation are left to Sections 9.2 and 9.3. For a comprehensive 
treatment of hierarchical linear models the reader is referred to Lindley and 
Smith (1972). 

We now specify that fa, f, and f,, described in (8) and (9), be normal 
distributions. Thus 

B - Jr/.(Bo, B), u - Jr/.(O, D), e - N(0, R), (10) 

with B, u and e being independent, where the zero means for u and e are taken 
without loss of generality. [This is illustrated following (15) of Chapter 1.3 
Also, although we are using the same symbol D = var(u) as in (67) of Chapter 4, 
the matrix D is not restricted to be diagonal here. 

To illustrate some conditional and unconditional moments of y, we get 

conditional on B: 
E(y 1 B) = Xg and var(y I B) = ZDZ' + R = V; (11) 

unconditional on B: 
E(y) = XS0 and var(y) = XBX' + ZDZ' + R = XBX' + V; (12) 

where the results in ( 1  1 )  are reminiscent of (59) and (69) of Chapter 4. These 
equations show t;.at we can place the usual treatment of the mixed model within 
the framework of a hierarchical model. 

The variance components in B, D and R can formally be modeled by adding 
another layer to the hierarchy. This can be done by expanding the hierarchy 
of (8) and (9) to 

I .  Given u, fl, R, 

y - N(X0 + ZU, R); 

2. Given P o ,  B, D, (13) 

3. (B,D,R) - ~ B . D . R ( * , * , * ) .  

B - Jr/.(Bo, B), - Jr/.(O, D); 

However, this level of modeling is usually not done, and the hierarchy of (8) 
and (9) is used instead. 

e. Point estimator of variance or variance of point estimator? 
For the most part, we are concerned with point estimation of variances, a 

strategy that is different from (and perhaps easier than) estimating the variance 
of a point estimator. To illustrate these differences, consider estimation, in the 
mixed model, of B, V and the variance of our estimate of B. 

If the matrix V were known, we could estimate 0 by Bv, the BLUE, and 
also calculate its variance var(bv) by 

BV = (X'V-'X)-'X'V-'y and var(Bv) = (X'V-'X)-', respectively. (14) 
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With V unknown, a common practice is to replace V by an estimate in both 
expressions in (14). Even though v may be a good point estimator of V (a 
good point estimator of a variance), and the estimate 10 can sometimes be 
reasonable for the estimate of b, it turns out that (X 'V-  ' X)- ' is not a reasonable 
estimate of var(@v). 

The variance estimate ( X ' v - ' X ) - '  implicitly treates v as known, and does 
not take into account the variation in v as an estimate of V. For this reason 
( X ' V - ' X ) - l  will be an underestimate of the true variance of the estimate 
89 = ( X ' V - ' X ) - ' X ' v - ' y .  This problem, of treating v as fixed, is also a 
shortcoming of the estimate of B. However, Kackar and Harville (1981) show 
that, under mild conditions on 9 ,  

E(1v) = W B V )  = B * (15) 

that is 
consistent but has larger variance than Bv. Although ( X ' v -  ' X)- ' is a consistent 
estimator of var(Bv) = var[(X'V-'X)-'X'V-'y], it is an underestimate of 
var(Bv) = var[(X'V-'X)-'X'v-'y]. This also can be seen by applying the 
variance identity in Appendix M. We have 

Thus, replacing V by v in Pv of (14) leads to an estimator of 

var(B9) = var [(x' V - ' x)- ' x'V - ' y] 

= E[var(Bv I v = V)] + var[E(BV I v = V)] . (16) 
If (15 )  holds then the second term above is var[E(BV I V = v)] = var(p) = 0, 
and so 

var@v) = E[var(jSv I v = V] 
= E[(x 'V- 'X)- 'X 'V- '  var(y 1 v = V)V- 'X(X 'V- 'X) - ' I  . 

If var(yIV = v )  x v then var(Bv) x E(X'V-'X)-', and thus ( X ' V - ' X ) - l  
would be a reasonable estimate of var( 89). However, assuming var(y I V = 9) x v 
is not always justified. 

Thus, we see that the point estimator v is a reasonable estimator of V, that 
we can replace V by and obtain what we have called Bq, which is a reasonable 
estimator of B, but it is more difficult to obtain a good estimator of var(8v). 
Since we are mainly concerned with point estimation of variance components 
like V, these problems do not affect us greatly here. However, they do appear 
when we deal with estimation of fixed and random effects, and must always be 
accounted for. 

Later in this chapter we deal with this "variance underestimation" problem 
using a Bayesian approach in the hierarchical model. There are also a number 
of classical methods available to correct this variance underestimation problem, 
but unfortunately they can be difficult to implement. One that immediately 
comes to mind is to expand the estimate v in a Taylor series around V, and 
use the expansion to correct the underestimation problem. Another technique 
is to calculate a bootsfrap estimate of variance [see, e.g., Efron ( 1982), and Laird 
and Louis (1987)l. Both of these methods may lead to implementation 
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difficulties: the Taylor series may be an extremely involved calculation, while 
the bootstrap may require enormous computing power. 

9.2. VARIANCE ESTIMATION IN THE NORMAL HIERARCHY 

a. Formal hierarchical estimation 
To estimate a variance component, we can proceed formally as outlined in 

(1)-(3), and derive a posterior distribution and calculate a posterior mean. For 
a specific example consider estimation of D in the hierarchy (13). 

To proceed, we first obtain the posterior distribution of D given y. Formally, 
using ( 13) and keeping track of parameters, we use the laws of probability to write 

(17)  

where n(flo) is a prior distribution for Po, and n(B, D, R) represents the prior 
distribution of the variance components. 

Although ( 17) reflects a straightforward derivation of a density, this calculation 
can be extremely difficult to carry out. In particular, a numerical evaluation 
would involve high-dimension integrations, which can be quite tricky and 
demanding of computer time. Moreover, the choice of the prior density for the 
variances is non-trivial, as naive choices (e.g., independent conjugate priors) 
can lead to difficult calculations. Such difficulties arise even in the 1-way model, 
as noted first by Hill (1965) and Tiao and Tan ( 1965, 1966). [A  particularly 
readable account of estimation methods can be found in Gianola and Fernando 
( 1986).] However, recent advances in hierarchical computing methods, particularly 
the use of Gibbs sampling techniques (Gelfand and Smith, 1990; Gelfand 
et al., 1990) show great promise for alleviating the computational burden. 

Here we will concentrate on variance component estimation strategies that 
are both conceptually easier to understand and computationally simpler. These 
techniques can be thought of as approximations to the results of the calculations 
in (17), where simplified forms of prior densities are employed. As we will see, 
these resulting strategies are closely related to likelihood-based methods. 

b. Likelihood methods 
Both maximum likelihood (ML) and restricted maximum likelihood (REML) 

estimates, as discussed in Chapter 6, can be obtained through a hierarchical 
model. In this section we describe the relationship between ML, REML and 
Bayes estimation in hierarchical models. In particular, REML is a special case 
of marginal likelihood, and is equivalent to Bayes estimation with a non- 
informative prior. 

Before we describe the connection to likelihood methods, the relationship 
between the likelihood function and the densities specified in a hierarchy must 
be clarified. Thus far, a likelihood function has been defined only for a given 
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normal distribution, as in (103) of Chapter 3, (85) of Chapter 4 and (12) of 
Chapter 6. Moreover, although it will turn out to be straightforward, it is not 
immediately clear how a likelihood function is to be defined with a specification 
like 

Y I By u, R - N ( X B  + zu, R), 
B * J W o ,  B), u - JWh D), (18) 

B, u independent . 
In a hierarchy like (18) the sampling density of y (the density that describes 
the variation in repeated sampling) is the marginal density of y. Thus, the 
likelihood function associated with (18) is the one that is derived from the 
marginal distribution of y. To be specific, we state the following definition. 

Definition. For the hierarchical model 

(19) 

where f ( y  I B, u, R) is the sample density and &(B 1 Po, B) and f,(u 1 D) are the 
densities of the parameters (unobservable quantities), the likelihood function for 
the hierarchical model (sometimes called the full likelihood) is given by 

Y -S(YlBIu,R) ,  
B - fa@ I Po, B), u - f " (U  I D), 

Variations in either the hierarchical specification or in the densities in the 
hierarchy lead to different likelihoods. For example, for the normal mixed model 
(7), the likelihood function [as in (12) of Chapter 61, is 

where V = ZDZ' + R. To obtain this likelihood from (20), we use a hierarchical 
specification with a point-mass prior density for B. ( A  point-mass prior is a 
density that concentrates all mass on one point.) This is equivalent to leaving 
the specification of f e ( B )  out of the hierarchy, and writing 
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which is the likelihood function in (21). Thus, ordinary maximum likelihood 
estimation is estimation that is conditional on the value of fl, and has the value 
of u integrated out, according to the hierarchy in (22). 

Therefore ordinary maximum likelihood estimation (ML) can be derived 
from a hierarchy where the value of fl is taken to be a fixed, unknown constant. 
In contrast, restricted maximum likelihood estimation (REML) can be derived 
from a hierarchy where fl is integrated out using a non-informative, or flat, 
prior. Start from a hierarchical specification 

(24) 
Y I fl, u - N ( X f l  + ZU, R), 

where uniform( - co, co) is interpreted as the “density” fs(fl) = 1, and fl and u 
are independent. Then integrate out fl and u to obtain 

W, R I Y 1 = JJW, u, D, R I Y )  du dfl 

fl - uniform( - co, co), u 1 D - N(0, D), 

1 
(21t)f(~-‘)IK’VKli 

exp[ -)y’K(K’VK)-’K’y], (25) - - 

where r is the rank of X and K is any N x ( N  - r )  matrix of rank N - r that 
satisfies K’X = 0. 

As we will see, the integration in (25) is an equivalent way of deriving the 
REML likelihood given in Section 6.7. The appearance of the matrix K results 
from the fact that the REML likelihood is based on data of smaller dimension 
than the full likelihood, and is related to a projection matrix for this new space 
through the identity K(K‘VK)-’K’ = V - ’  - V-’X(X‘V- ’X) -X’V- ’  (see 
Appendix M.4f). The likelihood in (25) is the REML likelihood, and thus 
restricted maximum likelihood estimation is estimation that has the values of 
both fl and u integrated out. A non-informative prior is used for fl, and the 
usual normal prior for u. 

The ordinary maximum likelihood function is equal to (20) if either fl is a 
fixed, unknown constant, or if the density of fl is a point-mass density. This 
type of likelihood is also sometimes called a conditional likelihood. The 
restricted maximum likelihood function is equal to (20) if the density of fl is 
uniform( - a, a), or if the density of fl is omitted from the hierarchy. This type 
of likelihood is also sometimes called a marginal likelihood. 

Since REML plays such an important role in variance component estimation, 
derivation of the likelihood (25) will now be given. Although the derivation is 
somewhat involved, and the appearance of K may seem mysterious, it is really 
quite straightforward. Starting from the hierarchy (24), the likelihood function is 

exp( - )u ’D- ’u  ) I  

1 
( 27r)iq1 D I f  

X 
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where q = 4.. the order of D. By expanding the exponent we get 

x exp{ - i ( y  - Xg)'R-l(y - Xg) - iu '[D-'  + Z ' R - * Z ] u  

+ u 'Z 'R- ' (y  - Xs)} . 

Let A = D - ' + Z'R - Z, and complete the square in the exponent (in u) to get 

x exp{ - i ( y  - Xg)'R-l(y - Xg) 

- i [ u  - A- 'Z 'R- ' (y  - Xfl)]'A[u - A- 'Z 'R- ' (y  - Xg)] 

- i ( y  - XB)'R- 'ZA-'Z'R- '(y - Xg)} . 
Combining terms, we see that in the quadratic form in y - Xg the matrix is 
R - 1  - R - ~ Z A - ~ Z I R - ~  = ( Z D Z '  + R)- '  = V- '  (see E 9.12). Thus 

I 1 

x exp{ - f (y  - Xfl)'V-l(y - Xs) 

- +[u - A- 'Z 'R- ' (y  - Xfl)]'A[u - A- 'Z 'R- ' (y  - Xg)]} . 
We are now ready to carry out the first integration in (25). Using the properties 
of the multivariate normal, we have 

[exp{ - f [u  - A - I Z ' R - I ( ~  - xfi)-yA[U - A - l z ' R - l ( y  - xfi)]) du = (2n)+qlAl-+, 
J 

and thus 

= W , V l ~ ) , a s i n ( 2 1 ) ,  

where we used the identity IRI ID1 IAI = (V( (see E 9.12). Next, we factor the 
exponent in t(g, V I y ) as 

( y  - xg) 'v- '(y - xg) = y'[V-' - V- 'x (X 'V- 'X) - 'X 'v - ' ]y  

+ ( f l -  fl) 'X'v- 'X(g- fl), 
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where 
to obtain 

= (X’V - ’ X)- ’ X’V - ’ y. Using this factorization, we integrate over fl 

x exp{ -+y’[v-’ - v - ’ X ( X ’ V - ’ X ) - ’ X ’ V - ’ ] ~ } ,  

which is equal to ( 2 9 ,  as ( V (  = IK’VKI IX’V - ’ XI ( E  9.12) and K(K’VK)-’ K’ = 
V - ’  - V-’X(X’V- ’X) - ’X’V- ’ ,  as in Appendix M.4f. 

c. Empirical B a y s  estimation 
The term “empirical Bayes” is non-precise, and thus has many different 

interpretations. Here, we will be quite specific about our definition. Empirical 
Bayes estimation will refer to using a marginal distribution to estimate 
parameters in a hierarchical model, and substituting these estimates for their 
corresponding parameters in a formal Bayes estimator. 

4. General strategies. We outline an empirical Bayes estimation principle 
which, when used in conjunction with a hierarchical model, will lead to empirical 
Bayes estimates of any desired parameter. To obtain the empirical Bayes estimate 
of a particular parameter t: 

( i )  Specify, for t, a distribution ~ ( t  I q), where q represents the parameters 
of the distribution of t, sometimes known as hyperparameters. 
(i i)  Calculate the formal Bayes posterior of t ,  

and use it to estimate t, for example by using Q = E( t 1 y, q). 
( i i i )  Calculate estimates 4 of any unknown (hyper)parameters 
marginal distribution 

for example, by using ML on (27). Finally, produce the empirical Bayes estimate 
of t by substituting 4 for q in E(t  1 y, q) to give Q = E ( t  I y, 4). 

4. Estimation. We outline an empirical Bayes estimation strategy, using 
(26), for obtaining estimates of the variances D and R in the hierarchy of (22). 
Then the connection to both ML and REML estimates of D and R will be 
made clear. 

Empirical Bayes estimation of D and R in the hierarchy (22) 

Step 1 [equivalent to (i) and (ii) above]. Calculate the posterior distribution 
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where f ( y  I D, R )  is the distribution of y and n(D, R I q) is a prior distribution 
on D and R, with q being a hyperparameter (possibly vector-valued). 

Step 2 [equivalent to (iii) above]. Estimate q with 4, obtained from the 
marginal distribution of y, the denominator of (281, using maximum likelihood 
on 

(29) 

the marginal distribution of y. 

Step 3. Obtain empirical Bayes estimates of D and R by substituting 6 for 
q in the Bayes estimators obtained from the posterior (28) in Step 1.  

Summary. Empirical Bayes estimation of D and R is accomplished by 
performing maximum likelihood on n( D, R I y, q), considering q fixed and 
known, then estimating q using maximum likelihood on m(y I q). 

-iii. Connecrions wirh likelihood. To see the connection between ML, 
REML and empirical Bayes, first notice that from the hierarchy(22) the marginal 
distribution of y is exactly equal to the full likelihood function as given after 
the Definition, in equation (21). Now assume that the distribution of B does 
not depend on any unknown hyperparameters Po and B. Upon performing the 
integration of u in (20), we have 

= likelihood for ML, using the hierarchy in (22) 

= likelihood for REML, using the hierarchy in ( 2 4 ) .  

Now, to complete the likelihood-empirical Bayes connection, we must identify 
n(D, R I y, fl) of (28) with f ( y  I D, R )  of (30). However, this is easy, for we see 
that (28) is the same as (30) only if n( D, R I q) = 1, that is, both ML and REML 
exactly correspond to empirical Bayes estimation using a flat (non-informative) 
prior distribution for D and R. Thus, from (28), 

L( fl ,  D, R I y) [likelihood for M L, using a hierarchy such as (22)] 

L( D, R I y )  [likelihood for REML, using a hierarchy such as (24)] 

where we have implicitly assumed that JJJ(y I D, R)dD dR = 1, which is needed 
for the equalities in (3  I ). In fact, we only need assume that j ff(  y I D, R)  dD dR < a, 
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and replace the " = " in (31) with " a " (proportional to), and all likelihood 
estimates will remain the same. If j[f(y I D, R) dD dR = a, which is a distinct 
possibility once we leave the normal case, then this argument will not establish 
a likelihood-empirical Bayes connection. 

This implementation of the empirical Bayes strategy yields point estimators 
for D and R, that is, point estimators of the variance components, not estimates 
of the variance of other estimators. Thus, the l3 and resulting from (28) and 
(29), or its likelihood variations, are point estimates of D and R, and should 
not be used in estimates of var(y) or var(Q). 

When n(D, R 19) = 1, or in general when n(D, R) does not depend on any 
unknown hyperparameters, then part (iii) of the empirical Bayes estimation 
strategy is unnecessary as there are no more parameters to estimate. There are 
few easy-to-use alternative prior densities that would keep computations from 
getting out of hand. One alternative that is feasible is the Wishart distribution, 
the multivariate analog of a chi-squared distribution. [Anderson (1984) has a 
full treatment of the Wishart distribution.] The density is given by 

i =  1 

where T is a p x p matrix, n and Z are parameters, and both T and Z are 
positive definite. Use of the Wishart distribution to implement empirical Bayes 
estimation in a hierarchy such as (22) or (24) will not yield closed form solutions, 
but is computationally feasible. If we take separate independent priors on D 
and R, such that D - '  - Wishart and R-' - Wishart, this is as close as we can 
come to a joint conjugate prior (in the sense that a Wishart is conjugate for 
estimating a single variance matrix). Note that such a set-up is a direct multivariate 
analog of the univariate variance estimation described in Sections 3.9 and 9.lb. 

9.3. ESTIMATION OF EFFECTS 

a. Hierarchical estimation 
In the mixed model 

Y = Xfl + Zu + e, (33) 

we have, thus far in this chapter, concentrated on estimating the variance 
components B, D and R. However, there are many situations in which estimation 
of the effects fl and u is also of interest. (Notice that, since a hierarchical model 
does not distinguish between fixed and random effects, neither do we. It will 
be seen that hierarchical strategies for estimation of fl are the same as those for 
estimation of u.) 

In hierarchical modeling the effects fl and u are treated similarly, in that both 
parameters have their prior distributions, and no distinction is made between 
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fixed and random effects. It is in the estimation of the effects B and u where the 
power of the hierarchical model is really seen. For example, the hierarchical 
model (22), which is equivalent to the classical mixed models, leads to a 
likelihood function that does not contain u. Hence, straightforward likelihood 
estimation of u cannot be done. Using hierarchical models, however, we will 
see that such estimation is straightforward. 

The estimation is straightforward in that we will only employ the principle 
outlined in Section 9.la. That is, any parameter (unobservable) will be estimated 
using its posterior distribution. In particular, we will calculate its posterior 
expectation, as in (3). Thus, in the next two subsections we are concerned with 
calculating the posterior distributions of B and u. 

It is interesting to note that using the hierarchy to obtain estimates of B and 
u can be viewed as a generalization of the BLUP methodology. Indeed, our 
estimates of fl and u will reduce to the BLUE and BLUP in special cases. The 
original derivations done by C.R. Henderson to obtain BLUP estimates were, 
in effect, derivations based on a hierarchical model. 

Although the derivations we will be doing are straightforward in that the 
steps to be taken are clearly laid out, these steps may often require a large 
computational or analytical effort. To simplify matters somewhat, when 
calculating posterior distributions of fi and u, we make the (very common) 
assumption that the variance components are known. In the final steps, when 
estimators are derived, we indicate how to use estimates of the variance 
components to substitute for the assumed known quantities. As discussed in 
Section 9.le, this strategy is acceptable for point estimation, but not for 
estimation of the variance of point estimators. This point is further dealt with 
in Section 9.3dii. 

4. Estimation of B. For estimation of fl we use the distribution 
f(p1 y, B, D, R). Formally, suppressing the dependence on the dispersion matrices, 
and using results ( 1 ) and (2)  of Appendix S.6 (see E 9.7), 

where 

(35) 
Y I B, U, R ,., JVGB + ZU, R), 

P- JV(B0, B), and u - N(0, D) . 
Although simplification of fp(B I y )  of (34) is involved, it is straightforward. The 
integrand of (34)  is given by 
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where N, p and q are the dimensions of y, and u, respectively. This joint 
density is a product of normal densities, and is now factored to yield the desired 
conditional density. That is, we now factor the joint density in the order 

(37) 
because f e ( B  I y) is the density of interest. To obtain this decomposition 
requires some algebraic work, in particular repeated use of the operation of 
"completing the square." [A useful identity is x' Gx - 2x'Hy + y'H'G - ' Hy = 
(x  - G-'Hy)'G(x - G-lHy).] After these manipulations, we obtain 

f(Y, B, u)  = f ( Y  I B, u)fe(B)fu(u) = fu(u  I B, Y ) f e ( B  I Y)f(Y), 

f ( Y s  B, u) = f ( Y  I B, U ) f e ( B ) f " ( U )  = f u ( u  I B, Y ) f e ( B  I Y ) f ( Y )  
- - exp{ - i c u  - E(u I B, y)l'A-"u - E(u I B, Y)l) 

(2n)'qIAlf 

exP{ - 3 C Y  - E(Y)l'(L - LXC-'X'L)Cy - E(Y)l) 
(2n)'NIL - LxC-'x 'Lp 

X 9 

where 
A = D-' + Z'R-'Z, 

L = R-' - R-'ZA-'Z'R-' = (ZDZ' + R)- '  = V-1, 

C = X'V-'X + B-', 

E(BI y) = c-'(x'v-' Y + B-'Bob 

(39) 

E ( u ( ~ , Y )  = A-'Z'R- '(Y - xp), 

~ ( y )  = (L - LXC-~X'L)-~L'XC-~B-~~~~. 
A number of matrix identities can be applied to the expressions in (39) to 

derive alternate, perhaps more familiar forms for these estimators. In particular, 
using the identities of E 9.12, we have from (39) 

E(u 1 B,y) = DZ'V-'(y - XB), 

E(Bly) = (X 'V- 'X + B-')-'(X'V-' Y + B-'Bo), (40) 

E(Y) = XBO 

The factorization in (37) gives the conditional distribution that we are 
interested in. Formally, we can complete the required integrations of (34) or, 
informally, read the answers from (38) knowing that, in this case, all distributions 
are normal (Appendix S). We have 

B l Y  -Jv-cE(BIY),c-ll, (41) 

where E(B1 y) and C are given in (39) and (40). 
Using (41), we can obtain estimates of B. For example, a possible point 

estimate of fl is E(B I y), given in (39), and an estimate of dispersion might be 
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taken as var( B I y)  = C - '. Note, however, that C -  ' is not the variance of E ( B  I y). 
This variance is the same when using either a Bayesian or frequentist approach, 
and is commonly given as 

(42) 
C-'(X'V- 'X)C- '  (Bayesian), 
C - '  - C- 'B- 'C- '  (frequentist). 

We note that expression (43) could form a basis for variance estimation with 
unknown variance components, Exercise E 9.9 explores the relationship between 
E(B1 y )  and the best linear unbiased estimator of 0. 

These hierarchical estimates, based on the posterior distribution, require 
specification of Po and B, quantities that an experimenter may be reluctant to 
specify [although Angers ( 1987) details some robust versions of these estimates]. 
Sometimes an experimenter will choose values for Po and B that (seemingly) 
impart no prior information, using a so-called non-informative prior. In this 
situation a non-informative prior would specify B -  ' = 0. Substituting this value 
into (39) and (41), noting that Po vanishes, we obtain 

fi = E ( B ~ ~ ) = ( x ' v - ' x ) - ' x ' v - ' ~ ,  var(Bly) =(x 'V- 'X)- ' ,  (43) 

the generalized least squares estimate of fl and its variance, Note also that Xfi 
is the BLUE (best linear unbiased estimator) of XB (Appendix S.2). 

The assumption that the prior variance matrix B satisfies B - '  = 0 is often 
equated with B satisfying B = 00, although this equivalence can be slippery (see 
E 9.8). If we assume that this equivalence holds then the generalized least squares 
estimate of (43) can be viewed as a posterior estimate obtained from prior 
information with infinite variance, and in that sense the prior is non-informative. 
This can also be interpreted in the reverse way. If there is any reasonable prior 
knowledge (where "reasonable" means that our prior variance is smaller than 
infinity) then we should be using an estimate other than a generalized least 
squares estimate. 

4. Esrimarion of u. For estimation and inference about u we similarly 
use fu(u I y). We cannot use the decomposition in (37) for inference about u 
because this would give us fu( u I ft, y). This is unsatisfactory since it requires 
knowing B. Hence, we decompose the density in an alternate way, writing 

(44) f ( Y  I B, U ) f p ( B ) f u ( U )  = fp (B  I Y1 u ) fu (u  I Y ) f ( Y )  * 

To derive fu(u I y), operate as in (36)-(39), with the end result being 

f(Y I B, u)fp(b)fu(u)  = f p ( B  I Y, u)fu(u I Y)S(Y) 
- - exp{-tCB- E(BIu,Y)l 'd-"B- E(BIU,Y)l) 

(2n)jPI d It 
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where we define, analogous to (39), 

.d = B - '  + X'R-'X,  

2 = R - '  - R - ' X . d - ' X ' R - '  = (XBX' + R)-1, 

Q =  Z ' S Z  + D-',  (46) 

E ( f l ( u , y ) = . d - ' C X ' R - '  (Y - ZU) + B-'floI, 

E(u 1 y )  = Y - ' z ' s ( y  - Xg,). 

Of course, the marginal distribution of y remains the same as in (38). An 
exact correspondence between E( fl 1 u, y ) and E (  u 1 y )  of (46), and E (  u 1 p, y)  and 
E(fl  I y)  of (40) exists, but is not immediately apparent. This is because we have 
assumed the prior mean of u to be 0, while the prior mean of 6, flo is not 
necessarily 0. The case with u having a non-zero prior mean is treated in the 
next subsection. The distribution of interest, fu(u I y), is given by 

(47) 

and we again could use the posterior expectation E(u I y), as a point estimate 
of u, with var(u 1 y)  = Q-'. Again considering the special case of B - '  = 0 
(interpreted as B = a), which led to the generalized least squares estimate of 
(43), we obtain, 

(48) 

where S = ( X ' V - ' X ) - ' X ' V - ' y  and V = ZDZ' + R. This is the BLUP (best 
linear unbiased predictor) of u, discussed in Section 3.4 and in Chapter 7. The 
details of this derivation are in the next subsection. 

u I Y - "E(u I Y),  Q- 'I, 

E ( u ~  y )  = D Z ' V - ' ( y  - XS), 

b. An alternative derivation 
The derivation of fe(p I y )  of (34) and (41) and fu(u I y )  of (47) was done in 

a general fashion, without exploiting some of the particular properties of the 
normal distribution. If we take advantage of those properties, especially facts 
about conditional distributions derived from multivariate normal distributions 
(Appendix S.2), we can simplify some derivations in the normal hierarchical 
mixed model. Of course, by taking advantage of the normal distribution, our 
results will not generalize to other distributions as easily. 

4. Exploiting the multivariate normal structure. With y = Xfl + Zu + e of 
(33), it follows from the normal distributions of (10) that cov(y, p') = X B  and 
cov(y, u') = ZD. Hence, using (33) and (lo), the joint distribution of fl, u and 
y is given by 

BX' 

DZ' I). (49) 
X B X ' + Z D Z ' + R  
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Previously we specified u, = 0, as in (lo), but here retaining it as (potentially 
non-zero) u, is subsequently helpful. Note also that (49) is a direct consequence 
of a hierarchical model such as (18). 

From (49) we can read off the joint distribution of [B' y']', and obtain the 
conditional distribution of B I y. Using the conditional distribution from (iv) of 
Appendix S.3, which is 

xi 1x1 w J t r C ~ l 1  + V1,V,;'(x2 - h), V11 - V12Vi2V211, (50) 

applied to the joint distribution of [B' y']', we obtain 

B I Y - Jtrcw I Y), var(Sl Y ) l  
with (as established in E 9.1 1 )  

E (  B I y)  = Po + BX'( XBX' + V)-  ' ( y  - XBo - ZU,) 

and ( 5 2 )  

var(B I y )  = B - BX'(XBX' + V)-I  XB . 
The apparent difference between the expressions in (52) and those in (39) 

and (40) can be explained using the identities of E 9.12. The resulting alternative 
expressions are 

E(Bly) = C-'[X'L(y - Zu,) + B-'Bo] and var(Bly) = C-'  , (53) 

Now, if we substitute u, = 0, we obtain, analogous to (41), 

B I  y - N[C-'(X'Ly + B-'no), C-'1 . (54) 
Using similar methods, including (27) of Appendix M.5, we can also derive 

E(uIB,y)=u,+ A-'Z'R-'(y-XB-Zuo) and var(uIB,y)=A-' 

(see E 9.10) 

( 5 5 )  

(56) 

and, substituting uo = 0, 

uIB,Y N N[A- 'Z 'R- ' (y  - XB), A- '1  . 
To derive the analogous expressions for u, that is, E(u I y )  and var(u I y), we 

can use a simple set of notation interchanges, exploiting the symmetry of the 
model specification. Then, with these interchanges, we can immediately write 
down the parameters of the normal distributions of u 1 y and u, y. This is 
done by interchanging fl and u, Po and u,, B and D, and X and 2. (This is the 
reason for carrying out these calculations with u, # 0.) To do this, recall from 
(46) that 

d = B-' + X'R-'X, 9-' = R + XBX', Y = D-'  + Z ' 9 Z .  (57) 

and hence, analogous to (54), 

U ~ Y  * .N(%'-'[Z'Sf'(y - XBo) + D-'u,], %'-'), 
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which, with uo = 0, is 

u 1 y - x [ Y - ' z ' s ( y  - XPO,, c0-1-J . ( 5 8 )  

(59) 

Likewise making the interchanges in ( 5 5 )  gives 

E(PI U , Y )  = Po + d - ' X ' R - ' ( y  - ZU - XPO) 

= &-'[X'R-'  (Y - ZU) + B-'Bol 

P [ u , Y  - N [ d - ' [ X ' R - '  ( y  - ZU) + B-'po], & - ' I .  (60) 

and 

-ii. Relationship to BLUP. As noted before, if B = 00 then E(  u 1 y )  becomes 
the BLUP of u, as given in (48). That expression can also be derived by starting 
with (52) for E( y)  and by making the notation interchanges noted just prior 
to (57), to get 

E ( u  1 y )  = UO + DZ'(XBX' + ZDZ' + R)- ' (y  - XPo - ZU,). (61) 

Thus, for uo = 0 and recalling that V = ZDZ' + R, it follows from E 9.13 that 
as B + 00 we obtain 

E ( u  1 y )  = DZ'(V + XBX')-'(y - XPO) 

= DZ'V-' [y  - X ( X ' V - ' X ) - ' X ' V - ' y ] .  

Therefore, on defining X I  = X ( X ' V -  ' X ) -  X'V - ' y, we again have 

E ( u  I y )  = D Z ' V - ' ( y  - XC), (62) 

the BLUP of u. [See (33) in Section 7.4a.l This connection of Bayes estimation 
to BLUP has also been demonstrated by Dempfle (1977). 

c. The 1-way classification, random model 
To illustrate both the formal method and the difficulties that might be 

encountered in implementation, we give some details for the 1-way classification 
model, having the familiar model equation 

yi j  = p + cli + e,, for i = 1,. . . , u  and j = l , . .  . , n ,  

or, in matrix form, 

Y = (1, @ 1n)p + (1, @ 1,)a + e, (63) 

as in equation (23) of Chapter 3. Although we assume balanced data here, 
similar (but more involved) derivations can be carried out for unbalanced data. 

To identify the general matrices of this chapter with the more specific forms 
here, write 

X = l a @  l,,, B = varjp) = oi, 

Z = I, @ l,,, D = var(a) = o ~ I , ,  (64) 

R = var( e) = 6: I,,, = of (I, @ I,,), 
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and 

V = v a r ( y ) = Z D Z ' + R = I , @ ( o , ' J , , + a , ' l , , ) = I , @ V o ,  

where V, = o,'J,, + .,'I,. Then 

v-1 = ( 1 , @ V o ) - l  = I , @ V , ' ,  

with 

v,' =- a,' J, , ) .  
.,' * (In- a: + no: 

The prior distributions taken for the parameters are 

p - N(cl0, a:), a - N(0, d I ) ,  (66) 

which for a is the same distribution assumed in the classical treatment of the 
random model (e.g., in Chapter 3). 

If these assuniptions are written in the hierarchical form of (35), we have 

y I P, a, 4 - N [ ~ # P  + (1, @ I&, ae21anl, 

P ""Po. a37 (67) 

a - "0, o,'I,I, 

and p and a are independent. 

4. Esrimarion of p. Applying the argumen s leading to (41), we find that 
the distribution of the fixed effects conditional on the data, that is, f ( p  I y), is 
given by 

P I y - N [ c - ' ( 1 ' L y  +Polo: ) ,  c-q, (68 1 

where 

c = l 'L1 + 1/o;, from (39) and (64), 

using L = V - of (39), = l 'v - l l  + 1/o;, 

= l'(I,,@V;l)l + l /u i ,  from(65), 

= al'V;'1 + l /o f  

=-(n- a n2 a,' 

6,' 

an 1 
- - +>.  

a,'+ na,' a, 
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Hence from (68) 

- - (q 1 + a: + an nod )-l[I;@-$(l;- of nu,” + no,” 1:)y +?I (71) 

= ( o i  - +  1 of + an no: )-l[;(1- of + no,” )1inY + ;] 
- - (?+ 1 a; + an nu,” )-’( crf +nod an ,..+%). o,, 

Notice that the expression for E ( p  1 y) is a weighted mean of 9.. (the average 
of all observations) and po, the prior mean of p. From (68) we also get a 
posterior variance of ji, 

(72) 
ut(  of + no,”) 

ano: + (0: + no,”) 
var(ji I y) = C-’ = 

Setting a: = co, which is a special case of setting B = co as in (43), is often 
interpreted as complete uncertainty about p. Then (71 ) and (72) reduce to 

cr,‘ 0 2  W I Y)  = j.. and var(p I y) = - + 2 = var(j..), 
an a 

(73) 

which has been derived previously in Section 3.3 where f i  = j... This also 
illustrates that the Bayesian quantity var(p I y) can agree with the classical 
quantity var(j..) when an improper prior is used. 

4. Estimation of a. Turning now to the prediction of a, the random effects, 
analogous to (47), the posterior distribution of a 1 y is also normal: 

a l y  - ~ C E ( a I y ) , q - ’ I .  (74) 

Substituting into (58), we have 
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where, from (46) and (64), 

a,' + na,2 n2at v =  1,- Ja 
sea, .,'(.,' + anat) 

and so (76) 

J a l  

n'afat 

o,2(a: + nab + anat) 
[ I a  + 

a,' a: 

a,' + na,2 
y-1 = 

Substituting these values into (75), after some algebra we have 

anat 1.. 
a t  + anat 

E(a  I y) = %'-l(Ia @ I a n  - 
u,' + anat 

where j . .  = C,,,y,,/an. Note also that (I, @ 1Jy = nj, where j = [jl. . . . ja.1' 
and j i .  = C,y,,/n. From (74) we also see that var(a I y) = v-', and hence for 
the individual effects 

and 

If we again take a: = 00 then from (77) and (78) 

and 

aa,' + na,2 

a 

(79) 

If, instead of a 1-way random model, a 1-way fixed model were hypothesized, 
this can also be handled within the hierarchical framework. Recall that classical 
fixed effects are modelled as having infinite variances. We can handle the fixed 
effects case by first deriving all necessary quantities using a,' -= 00, and then 
letting it tend to infinity. Letting a,' + 00 in (79) gives 

E(a, I y) = ji. - 1.. . (80) 

Thus, the usual fixed effects ANOVA can also be fitted into the hierarchical 
model. [Note that the assumption E ( a )  = 0, implicit in (67), alleviates any 
overparameterization problem.] 
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Finally, it is interesting to note what happens if we use the distribution of 
a I p, y to make inferences about a, in particular calculating E(a 1 p, y) for a 
point estimate of a. [Admittedly, this would be mostly of theoretical concern 
since E(a I p, y) would depend on p, thus making it useless for inference unless 
p is known.] Using (39) and (64), we derive 

which has already been derived in a classical manner [Chapter 3, equation 
(40)]. See E 9.14. 

d. Empirical Bayes estimation 
The empirical Bayes strategy outlined in Section 9 . 2 ~  can be applied directly 

to the estimation of the effects fl and u. In fact, the application here is quite 
straightforward. 

As illustration of the empirical Bayes principle, consider the estimation of 
u in the mixed model. The posterior distribution is given in (47), and keeping 
track of all parameters we would write, using (46), 

E(u I y, B, D, R, Po) = Y - Z ' S (  y - XP,) (81) 

where Y and 49 are given in (46). To estimate the unknown parameters implicit 
in (81), namely the variance matrices B, D, R and the prior mean Po, we obtain 
the marginal distribution for part (iii) of the empirical Bayes strategy of Section 
9.2~-i  (keeping track of the unknown parameters). Starting from the hierarchy 
in (35), the marginal distribution is given by 

m(Y I B, D, R, Po) = I[ [ f ( Y  I P, u. R)fil(P I Po, B)f"(U I D) dP3 du * (82) 

Notice that the integration over fl is necessary to carry out part (iii); that is, 
the resulting marginal distribution must only depend on the unknown parameters 
of interest, and thus any other unknown parameter must be integrated out (a  
process known as marginalization). Although the parameter fl is often of interest, 
in the estimation of u we treat it as a nuisance parameter and integrate it out. 

Because of the factorization already performed in (49 ,  the integration in 
(82) is easy to perform. In fact, m(y I B, D, R, Po) is itself a likelihood function, 
a marginal likelihood, and we write 

m(y I B, D, R, Po) = W, D, R, Po I Y )  . (83) 

Maximum likelihood can now be done on (83), and estimates for B, D, R and 
Fo can be found. These marginal maximum likelihood estimates 8, 0, fi and 
Po can be substituted into (81) to obtain an empirical Bayes estimate of u. 
Furthermore, the estimates 8, 0 and fi can be used as point estimates of B, D 
and R. (Exercise E 9.3 shows how to obtain an empirical Bayes estimate of P.) 

The I-way classification. A special case of the above estimation is the 
1-way random model, as detailed in Section 9 .3~ .  From (77) and (78) formal 

4. 
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Bayes estimators of ai and var(a,) are 

and 

To estimate the unknown parameters a:, a:, a: and po using the empirical 
Bayes strategy, we must obtain the marginal distribution of part (iii) of Section 
9.3~-i, as parts ( i )  and (i i )  are already implicit in (85). From (67) the likelihood is 

U P ,  P o *  d, +J,2 I Y )  

= f ( y  1 P ,  a,uf)f(p I PO,  a : ) f ( a  14) 

and the appropriate marginal likelihood for part (iii) of Section 9.2~-i 
[equation (27)] is 

U p o ,  a:, a:, 0: I Y )  = m ( y  I pol a,‘, a:, 0:) = UP, p0, a,’, 0:. d I y )  dp da . 
(87) 

From this marginal likelihood we can obtain estimates bo, a:, a;, 6: 
and produce empirical Bayes point estimates E(a, I y, go, 6:, a:, 6:) and 
var(a, I y, fro, St,  a:, 6:). Realize, once again, that var(ai I y, go, a,‘, a:, 6: )  is a 
point estimate of var(ai I y, po, a:, a:, a:) and not an estimate of the variance 
of E(ai I y, go, a:, d,2,6:), nor of a:. 

The likelihood in (87) is actually a straightforward calculation, and follows 
directly from applying the general decomposition (45) to the 1-way classification. 
See E 9.20. 

ss 

-ii. Cautions. As in the classical approach, unknown variances pose no 
problem for point estimation in the hierarchical model using conditional 
expectations. For example, analogous to the above classical situation, from (39), 
if matrices V, C and B all contain unknown variance components then the 
point estimator of fl, 

(88) E(Ply) = c - l ( X ’ v - 1  Y + B-lflo), 
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can be modified by replacing the variance components with estimates to obtain 

(89) 
as an estimate of E(fl1 y). 

The variance of the estimate in (89), var [ E(  fl I y)], is not straightforward to 
derive, since it involves estimates ofC, V and B. Instead, we use the easy-to-obtain 
posterior variance of fl to approximate it. The exact conditions under which 
this is justified are not known; however, the approximation tends to work well 
in practice. See Steffey and Kass ( 1991) for a discussion. From (39) and (41) 
we have an expression for var(fl I y), and a convenient approximation to 
varrwfl I Y)l is 

(90) 

(91 1 
This straightforward substitution for V and B, however, is reasonable only as 
an estimate of var[E(fl I y)], and not as an estimate of var[B(fl I y)]. 
Unfortunately, this latter quantity is usually the one of interest, and using (91) 
as its estimate may result in underestimation, which would lead to overly short 
confidence intervals. This is the same problem as before, that (91) does 
not take into account the variance of the estimates v and that we substituted 
into (90) in place of V and B, and rather treats them as constants. 

In the hierarchical model we can see this more clearly, as long as we are 
careful to keep track of conditioning variables. The variance in (90) is, formally, 

(92) 

B(flI y) = e-’(x?’ Y + %-‘Po) 

var[E(fll y)] x (X’V-’X + B-I) -I ,  

and a natural analog to (89) would be (also see E 9.21) 

var(fl 1 y) = (x’V-’x + 

var(fl1 y, R, B,D)  = (X’V-’X + B-’)-’, 
since it is derived conditional on the knowledge of R, B and D. The matrices 
R and D are used to obtain L. Continuing in this way, we write (91) as 

(93) var(flIy,R = f i ,B = 8 , D  = 0 )  = ( X ’ v - ’ X  + B-’)-’, 

which only can be used as a point estimate of the variance in (92). However, 
since the variances R, B and D are unknown, the variance estimate of (91), to 
be useful, must be unconditional on R, B and D. A standard derivation (see 
Appendix S. 1 ) gives the identity 

var(fl I y)  = ECvar(fl I Y, R, B, D)l + varCE(fl I Y, R, B, D)I, (94) 

which involves integrating over the joint distribution of R, B and D. Now we 
see that (93) gives an estimate only of the first piece in (94), and the second 
piece is not dealt with. This is why using (93) as a variance estimate results in 
underestimation. Note also that this discussion applies equally to estimation of 
var(u I y), or the variance of any estimator. 

The shortcoming of the “substitution principle” for estimating the variance 
of an estimator can also be seen by investigating the equivalence of (94) to the 
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substitution in (92) and (93). More formally, we ask "When does var(P I y)  = 
var[P I y, R, B, D)?"-a question that can be answered by derivations similar 
to those in Section 9.le. Formally, we have 

var(P I Y )  = ECvar(P I Y, R, B, D) l  + varCE(B I Y, R, B, D)l  (95) 

= ECvar(P I Y, R, B, D) l  

= var(P I Y, R, B, D) 

only if var [ E (  P 1 y, R, B, D)] x 0. 
When this type of substitution is used, as in (92) and (93), we are using it 

with the values R = fi, B = fi, D = 6. Thus, we are implicitly assuming that 
the variances of 8, fi and f) are negligible, which is, of course, false. It is this 
assumption that makes estimates such as (93) an underestimate of variance. 
Notice that the actual size of var[E(P I y, R, B, D)] gives an indication of how 
much we are underestimating the variance using a direct substitution. If this 
term really is close to zero, then we will not be doing too badly. 

Kackar and Harville (1981) address this problem. Working in the classical 
mixed model [equivalent to the hierarchy (22)], they show that if the variance 
component estimates are even, translation-invariant functions of y then the 
expected value of point estimators remain unchanged when variance estimates 
are substituted for known variances. In the model addressed here this implies 
that the estimators (88) and (89) have the same expected value, that is 

ECE(P I YII = ECQP I Y)l, (96) 

where the outer expectation is over the sampling distribution of y. Such a 
property gives us some hope that var[E(P I y, R, B, D)] z 0, but of course, this 
is not a proven fact. Kackar and Harville (1984) go on to investigate various 
approximations to the variance. In general, it is probably wise not to assume 
var[ E(  B 1 y, R, B, D)] sz 0, and use a more sophisticated variance approximation. 

In the progression from (88) to (89), where we are dealing with an expected 
value, not a variance, this problem does not occur. Again, if we keep track of 
the conditioning variables, we have 

(97) 

(98) 

(99) 

E(P 1 y, R, B, D) = C- ' (X 'V-  ' Y + B-'8o) 

8( fl I y, R = fi, B = fi, D = 6) = e-'( X'V- ' Y + f i - l P o ) .  

U P  I Y )  = ECE(P I Y, R, B, D)11 

and 

Applying E 9.15, 

so we can use (98) as an estimate of the entire quantity in (99), and the problems 
of (92)-( 94) do not arise. 

The substitution illustrated in (90), (91) and (97), (98) will work for deriving 
a point estimator ojthe oariance offl, that is, a point estimator of the quantity 
in (92). Thus, the moral of the story is that substitution of estimates for 
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parameters can be reasonable if we are estimating means (even means of 
quantities that are variances), but is unreasonable if we are dealing with 
variances. This is because the calculation of the variance must take two pieces 
into account, and substitution will usually neglect one of these pieces. 

-iii. Variance approximations. There has been much research aimed at 
obtaining approximations of the variance pieces in (94). Some examples, of 
different approaches, are Morris (1983), who gave one of the first approximations, 
and Kackar and Harville (1984). Here, we will outline a more recent strategy 
given by Kass and Steffey (1989). Recall from Section 9.3d-ii that when 
calculating a variance it should be obtained unconditional on all parameters 
other than the one of interest. 

Although the Kass-Steffey strategy is in its infancy, and its worth can only 
be judged against time, it provides an easy-to-calculate approximation based 
on reasonable statistical assumptions. We illustrate the Kass-Steffey approximation 
first for a general hierarchy (as in E 9.15), and then give some details for the 
normal mixed model. For the hierarchical specification 

x I 0, 5 - m I e, 11, 
8 I A - I A), (100) 

A nA(5) 

the variance of any function g(8) is given by 

varCg(8) I XI = E{varCde) I x, 511 + var{ ECgW I x, 51 1, (101 1 
where the right-hand side calculations of expectation and variance are done 
using the density 

In an empirical Bayes analysis, however, we would not specify nA( 5) but instead 
estimate 3. from the marginal likelihood 

~ ( 5  I X I  = s / ( x  I e , l ) n e ( e  I 3.1 d e  . (103) 

Substitution of fi, the MLE of 1 from (103), into (101) may cause underestimation, 
but Kass and Steffey have first-order approximations 

(104) 
ECY(ei) I XI 2 ECg(di) I X, XI, 

var[g(ei) 1 var[g(ei) 1 x, x] + ~ , . h d , h ~ j ~ h ~  

where d,h is the ( j ,  h )  element of the inverse negative Hessian of /(A I x) = 
log L@ I x)  
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and 

The results of Kass and Steffey are actually more general than reported here. 
It is possible to use the more general n(l I x)  in (105) instead of L(1 I x). Notice 
that L(11 x) is equal to n(1 I x) when a uniform prior is put on 1 [assuming 
the integral in (102) remains finite]. Thus, in (105) we have calculations made 
from the marginal likelihood, where we could otherwise have done them from a 
general marginal distribution. 

For a mixed model-type hierarchy (but with general distributions), 

(106) 
Y I B, u, R S(Y I B1 u, R)9 

B I P o ,  B f d B  I Bo, B), u I D Su(u I D)9 
the variance of u (for example) could be derived as 

var(u I Y) = Cu - -E(u I y)l%(u I y )  du, where E(u I y)  = uS,(u I y) du, 

(107) 

f u ( u I Y ) =  CS(~IY~BO~R,B,D)]~(B~,R,B,D)~~~ dRdBdD - (108) 

s s 
and, keeping track of all parameters, 

s 
The density in square brackets is the posterior distribution of u from the 
hierarchy ( 106), and n(Bo, R, B, D) is a prior distribution on the other parameters. 
It is this distribution that gives the second piece in an expression such as ( l O l ) ,  
and is an aim of these approximations. As in ( 101 ),the variance of u can be written 

var(u I Y) = -E[var(u I y, Po, R, B, D)l  + var[E(u I y, Po, R, B, D)] . 
For notational convenience write q for the vector of elements of Po, R, B and 
D. Then we can write for element ui of u 

var(ui I Y) = ECvar(ui I Y, t1)I + varCE(ui I Y, tl)l, (109) 

with approximations 

ECvar(ui I Y, q) I  var(ui I y, f i )  

and 

U I  I Y) = f ( Y ,  B, u I tl) dB du = fsS(Y I B, u, R)SdB 180, B)fu(u I D) dB du . s 
Specializing even further, consider the normal hierarchy 

Y I B, u, R - N ( X B  + Zu, R), 
I B * N(0, B), u I D - N(0,  D) . 
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An empirical Bayes estimate of u, along with an approximate estimate of 
variance, can be obtained in the following way. Using the notation q for the 
vector of elements of R, B and D, from (38) and (39), 

E(uIB,y ,q )=A- 'Z 'R- ' (y -Xf l ) ,  var(uIB,y,q)=A-', (112) 

where A = D - ' + Z'R - ' Z. An empirical Bayes point estimate of u is 

E(u(B,y,fi) = A-'Z,B- ' (y  - XB), (113) 
where the estimates are MLEs from the likelihood 

U P ,  B, D, R I Y )  = S(Y I B, 4 R)SdB I B)f,(u I D) du, (1 14) f 
which is equal to the joint distribution of B and y, and is given by the last two 
terms in (38). The variance is then estimated [detailed calculations are in Kass 
and Steffey ( 1986), and are similar to calculations given in Harville ( 1977)] with 

where 
2 2  

Note that here we started with the distribution of u I B, y, which gave us the 
expressions in ( 112) for the posterior expectation and variance. We could also 
have started with the distribution of u I y, with B integrated out. This would 
have led to different estimates. At  present, there are no definite criteria for 
preferring one strategy over another. The different strategies, perhaps, lie at the 
heart of a Bayes/empirical Bayes choice. Exercises E 9.16-E 9.19 contain some 
complementary situations, and E 9.20 specializes to the 1-way classification. 

9.4. OTHER TYPES OF HIERARCHIES 

In this section we apply some of our hierarchical modeling and estimation 
strategy to hierarchies that fall outside of the linear model/normal case, 
illustrated with two hierarchies that are also treated in Chapter 10. The general 
techniques illustrated here are applicable to other nonlinear hierarchies, and 
are all examples of a generalized linear model; see McCullagh and Nelder ( 1983). 

We will examine some empirical Bayes estimation strategies which have 
been used, for example, by Leonard (1975) and Laird (1978). These are only 
some of the strategies that are being used in the generalized linear model. 
Moreover, empirical Bayes estimation strategies can be adapted to even more 
complicated models than here, as is done in DuCrocq et al., (1988a,b). There, 
mixed model ideas are applied to proportional hazards models, and empirical 
Bayes techniques are used to estimate parameters. 
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The generalized linear model, with a general link function (see Section 10,4), 
can also be analyzed in some detail using hierarchical models. Albert (1988) 
does this using a formal hierarchical Bayes analysis, and Piegorsch and Casella 
(1990) do  it with empirical Bayes methodology. 

a. A beta-binomial hierarchy 
As an example, consider the “beta-binomial” hierarchy, which is described 

in some detail in Chapter 10. Although this model has some shortcomings, it 
represents a reasonable place to start, as it allows some explicit calculations 
(which does not often occur outside of the normal case). A version of the 
beta-binomial hierarchy can be described by writing 

(116) 
yijk I pi ,  - Bernoulli(pij), independent, 

p i ,  beta(ai, pi) ,  independent, 

f o r i = l ,  ..., a , j = l ,  ..., b i , k = l ,  ..., n,,. 
Here there are a groups, and subject j in group i has success probability 

p,,. Estimation centers on p,, and var(pi,). Such a model might arise in an animal 
breeding experiment in the following way. Suppose that in herd i there are b, 
cows to be artificially inseminated. For cowj in herd i the artificial insemination 
process might be thought of as a Bernoulli trial, with success probability pi,. 
If n,, trials are to be carried out on cow j then pi,  represents the success rate 
of calving of that cow (and may be confounded with other factors, e.g., the 
technicians). The second stage of the hierarchy models variation over animals 
within herds. Estimation of both pi ,  and var(p,,) is of interest. (See E 9.24 for 
a similar model.) 

One shortcoming of the beta-binomial model is the problem that, unlike the 
linear/normal hierarchy, there is no unambiguously defined variance component. 
This problem is discussed in some detail in Section 10.3. As it turns out, 
estimation of var(pi,) is a good compromise. 

To estimate pi ,  and var(pi,), we first their obtain posterior expectations. 
Based on ( 1 16), we can derive E(p, ,  I y, ai, Pi) and var(pl, 1 y, air Pi), where 
y = { yijk}. From first principles 

(117) 
Completing the integration in ( 1 17), we obtain the posterior distribution 
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which is a beta distribution with parameters t + a and n - t + p. Using the 
formulae for the mean and variance of a beta distribution [Appendix S, (9) 
and ( l o ) ] ,  or calculating directly from ( 1  18), we obtain 

t + a  

n + a + p  

( t  + a) (n  - t + p)  
( n  + a  + p +  l ) ( n  + a  + 8l2’ E(P I I, a, P )  = and var(p 1 t ,  a, p )  = 

( 1  19) 

the posterior mean and variance of p .  Note that the posterior mean is a weighted 
average of the prior mean, ./(a + p), and the sample mean, t/n, (as in the 
normal case), namely, 

The weights are functions of the prior parameters and n, the sample size, with 
estimates from larger samples getting more weight. 

To estimate E ( p  I I, a, p), we can use E ( p  I t, 8, b), which we know to be a 
reasonable estimator. To estimate a and p, the prior parameters, we use the 
marginal distribution given by 

m ( t  I a, B )  = f ( t  I P ) 4 P  I a, P )  dP s 

a beta-binomial distribution. The density m(t I a, p )  forms a basis for estimating 
ct and /I; however, the constructive use of (121) requires multiple values 
(observations) on t .  Otherwise, estimation of a and p will not gain anything-the 
estimates will be confounded with those of p. For example, using (121), the 
marginal mean o f t  is 

while the fact that t - binomial(n, p )  yields 

E ( t  I P )  = nP . (123) 

With only one observation t it would be impossible to estimate p separately 
from a / ( a  + p). This is because our estimate of p is a “within” group estimate, 
while that of a / ( a  + p )  is a “between” group estimate. We can only estimate 
both quantities distinctly if we have multiple groups, which we have in a model 
such as ( 1 16). 
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Recall that t = y i j .  and, from ( 1 16) and ( 121 ), the marginal distribution ofyiI. is 

the beta-binomial distribution. Marginally, for each i, the yij.s are identically 
distributed with parameters al and PI, and these parameters can then be 
estimated. Thus, even though the sampling distributions of the yiI.s depend on 
the pus, so that the yr,.s do not have identical sampling distributions, when the 
pl,s are integrated out to obtain the marginal distribution for fixed i, the yij.s 
become identically distributed. 

From (124) we can obtain the marginal likelihood of the data. However, 
this likelihood factors so that we can look at the ith piece separately. Thus, the 
likelihood for al and Pi is 

(125) 
for i =  1, ..., a. 

Estimation of each ai and Pi can now proceed using (125). Two simple 
estimation methods come to mind: maximum likelihood and method of 
moments. Although maximum likelihood is preferred, there are (as usual) no 
closed-form expressions for the estimators. However, if we define 

then the method of moments estimators of af  and Pi are given by 

for the case nij = ni.  Details are left to E 9.22. 

of a, and Pi, hi and pi .  Substituting in (1  19) gives an estimate of pii, 
Maximizing the likelihood for each i yields the marginal likelihood estimates 

and for the variance, 

an underestimate of the true variance of our estimate of pii .  Equation (128) 
estimates only the part of the variance given by the first piece in (101), and 
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ignores the second term. One way to estimate the second term is by specifying 
a distribution for a, and b,, n(a,, 0,). Given such adistribution, we could write 

varCE(Pij I Yij.9 Qi, Pi)] 

= I{E(pijlYij-,ai,fii) - ~ ~ ~ ( p i j 1 y i , . y a , , ~ , ) 1 } 2 n ( a i , ~ , ) d a i d ~ , ,  (129) 

which would depend only on yij. and nij, and could be used in the variance 
estimate. This represents the type of formal hierarchical estimation discussed 
in Section 9.2a, where the hyperparameters are integrated out, leaving us with 
the marginal (unconditional) variance. 

Another way to estimate the second variance piece in (101), in fact to estimate 
the entire variance, is to again apply the approximations of Kass and Steffey 
( 1989). Using the approximation, calculate 

vlr(p,j I yij.9 nij) = VWpij I Yij., giy Pi) + vPrCE(pij) I ~ i j . 3  nij19 ( 130) 

where the first part of the right-hand side is given in (128), and the second part 
is an approximation of (129) given by 

where I is the logarithm a 

1- WJ 
the likelihood in (125), and 

Defining 6 = [8, 8,]’, using (131)-( 133) we can write 

vir[E(p,,) I yij., nil] = t% 
and combining (128)-( 134) our empirical Bayes variance estimate is 

b. A generalized linear model 
Analogous to, but more flexible than, the beta-binomial hierarchy is a special 

case of the generalized linear model, the logit-normal hierarchy. Although this 
hierarchy uses normal distributions, it is decidedly nonlinear, having a logit 
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linkfunction (see Section 10.4). The hierarchy is given by 

yi I p i  - Bernoulli(p,), i = 1,. . . , n, 

pi = E(Yi  I B, u), 

logit(p,) = log - = x #  + zju, 
( 1  ",I 

B - J1/(Bo, B), x(0, D), 

B, u independent 

where xi and z; are the ith rows of X and Z, respectively. 

using the logit relationship between p , ,  
To illustrate estimation in this hierarchy, first obtain the sample density 

and u given in (136). We have 

n n 

i =  1 i =  1 
f ( Y  18, u) = n f(Y, I B1 u) = n Py'( 1 - Pi) '  -yr  

exp(x# + z;u) ' -yr 1 1 -  
1 + exp(x$ + zju) 

Now we can write the full likelihood for the hierarchy of (136) as 

P P  

(138) 

where the densities of fl and u are the normal densities given in (136). 
To obtain estimates of Po, Band D, the likelihood in (138) is now maximized. 

This cannot be accomplished in closed form, but a numerical solution may be 
obtainable. Maximization of the likelihood in (138) will yield a solution using 
normal prior densities on both fi and u, which, as we saw previously, does not 
correspond to the usual notion of REML or ML (but may be desirable in its 
own right). Connections with REML and ML are straightforward, as discussed 
in Section 9.2c-iii, and are obtained by specifying different forms of prior 
distribution of 0. 

If fl is given a flat (non-informative) prior, a uniform( - 00, a), then we 
obtain the analog of a REML likelihood, 
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which, when maximized, gives a REML estimate of D. The ordinary ML 
estimates would come from using a point-mass prior density on p, producing 
a likelihood 

which can be maximized to produce estimates of fl and D. [See Stiratelli, Laird, 
and Ware (1984) for more details.] 

When point estimates of the variances are obtained, from any of ( 138)-( 140), 
u and fl can also be estimated. For example, using (139) to estimate D, we 
would (if we could) calculate 

where fu(u 1 D) is the N(0, D) density of (136). As can be seen, this is a difficult 
calculation, and could be quite time-consuming. What is often done, however, 
is to estimate E(u 1 D, y)  with the posterior mode of the distribution of u I D, y, 
with D estimated by 0. To do this, we only need to work with the numerator 
of ( 141 ), and maximize 

as a function of u. A similar strategy, based on (140), can be used to estimate 
p (see E 9.27). Similar models are treated by Foulley et al. in Gianola and 
Hammond (1990). 

9.5. PRACTICAL CONSIDERATIONS IN HIERARCHICAL MODELING 

a. Computational problems 
Much of the estimation methodology outlined in this chapter requires either 

the evaluation or approximation of integrals. Furthermore, in many practical 
problems these integrals can be of very high dimension. This evaluation can be 
a problem, since high-dimensional integration can be a computational problem. 
[For example, in Section 9.4b a posterior mode is suggested as an alternative 
to a posterior mean. This substitutes a maximization for an integration. Smith 
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(1983) discusses when these might be equivalent, an equivalence that will occur 
when empirical and formal hierarchical Bayes estimation yield the same 
answers. J 

If integration is to be avoided, there are numerous alternative methods 
available for doing computations, many of which have seen great improvements 
in recent years. Approximations to integrals, in particular those arising from 
Bayesian hierarchical modeling, are treated in detail by Tierney and Kadane 
( 1986) and Tierney, Kass and Kadane ( 1989). Methods for obtaining quantities 
derived from marginal distributions abound, starting with the EM algorithm 
(Dempster, Laird and Rubin, 1977) and an accelerated strategy (Laird and 
Louis, 1987). Recent techniques include interesting work on applications of 
Gibbs sampling (e.g., Gelfand and Smith, 1990; Gelfand et al., 1990), which can 
sometimes provide methods of obtaining estimates without doing the integrations 
that the formal derivations dictate. 

The problem of efficient computation is being addressed by many researchers, 
and the solution to any particular problem is probably contained in some 
available strategy. Knowing where to look, however, may be a problem. The 
references in the previous paragraph should provide some guidelines. A good 
general introduction to statistical computing is Thisted ( 1988). 

b. Hierarchical EM 
The EM algorithm, in a particular form, can be readily applied to a hierarchy 

to yield a computational scheme that is conceptually straightforward. Recall a 
general hierarchy like (loo), 

x i u  - j ( x i e , a ) ,  

8 I k - ne(8 I 11, 
1 - q(1). 

With the goal being estimation of 8 and 1, we can apply the EM algorithm 
with the following definitions: 

(143) 

incompletedata: x; 

completedata: x, 1 , 

The actual data are always the incomplete data, and the actual data and the 
parameter in the lowest level of the hierarchy is the complete data. The two 
steps of the EM algorithm are then given by 

E-step: calculate f l  = E(l I x, 6); 
M-step: maximize L(B I x, i) to obtain 6 . (144) 

To implement ( 144), two distributions are required. The first is 
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which is used in the calculation of the conditional expected value. That is, in ( 144) 

E ( l l x , h )  = 5 f ( 5 1 x X , h ) d 5 .  (146) s 
The second distribution required is 

which yields the likelihood function L(8 I x ,  A), used in (144). [Formally, the 
M-step of (144) yields a posterior mode. It will give the ML estimate when 
nL(A) = 1.3 Of course, this application of the EM algorithm is reasonable only 
if either (145) or (147) is easy to derive. In particular, it should be expressible 
in closed form. Otherwise, it would probably be just as good to maximize the 
likelihood L(8, 5 1 x)  = f ( x  1 8,5) in 8 and 5 simultaneously. 

For the mixed linear model, parallels between this construction and the EM 
construction given in Section 8.3b are straightforward. There, the complete data 
is (y, u), and the incomplete data is y, which comes from the ML hierarchy [as 
in (22)] 

(Recall that when a parameter, or unobservable, doesn't have a distribution 
specified in the hierarchy, we take it to have a point-mass distribution.) The 
hierarchy (148) is actually simpler than (143), since there are only two levels. 
We thus have 

E-step: calculate il = E(u 1 y, fi, ti, 6); 
M-step: maximize L( P, R, D I y, il) to obtain b, ti, 6 . (149) 

As explained in Section 8.3, in the E-step we only need calculate the conditional 
expected value of the sufficient statistics, which often will provide a simplification. 

Y IB,U,R - m x s  + Zu,R) 

As another example, consider the REML hierarchy of (24), 

(150) B - uniform( - 00, a), u - X(0, D), 

which can also be written without fl as 

We now have 

incompletedata: y; 

completedata: y, u 



352 HIERARCHICAL MODELS AND BAYESIAN ESTIMATION 

Thus, the EM steps are 

E-step: calculateii = E(u I y, R, fi); 
M-step: maximize L( R, D I y, ii) over R and D to obtain 

(152) 
and 0; 

where, from (48), 

E(u I y, R,B) = BZ’V‘-’(y - XS), (153) 

where v = ZbZ’ + and fi = (X ‘V- ’X) - lX ‘v- ’y ,  and 

L(R, D I Y, u) = [ I f ( Y  I B, u. R )  dB]h(u). (154) 

an easier expression than (25), the usual REML likelihood. The closed form 
( 153) allows easy calculation of the E-step, making the EM algorithm reasonable 
in this situation. Thus, we have exchanged a single, difficult, likelihood problem 
[as in (24) and (25)] for an iterative sequence of easier problems. 

9.6. PHILOSOPHICAL CONSIDERATIONS I N  HIERARCHICAL MODELING 

Specification of a hierarchical model results in conceptually straightforward 
estimation methods. All calculations result from applying the laws of probability 
to obtain some particular density (or likelihood). Once the density or likelihood 
is obtained, application of standard techniques yields estimates for all quantities 
of interest. A goal of this chapter is to illustrate many of these techniques, so 
once the hierarchy is specified (any hierarchy!) reasonable estimates can be 
obtained. 

Of course, in order to gain all of these wonderful estimation principles, we 
had to specify the hierarchy. Furthermore, all our estimates are good only if 
the hierarchical specification is reasonable. Thus, we have gained so much only 
because we have assumed so much. If there is reason to believe that the hierarchy 
is wrong then it might be prudent to investigate other hierarchies. The subject 
of robust Bayes analysis (Berger, 1985) is concerned with such questions. In 
particular, a set of estimates would be regarded as robust if different hierarchies 
yielded similar values. [Angers ( 1987) investigates hierarchies that have some 
built-in robustness properties.] 

The hierarchical model, along with some Bayesian interpretations, also brings 
along some ease of inference. (Although we say “Bayesian interpretations”, this 
is really more than is needed. In fact, most of the inferences considered in this 
chapter do not need any Bayesian interpretation. A more precise description 
would be “conditional interpetation”.) The key feature of a conditional inference 
is that it is made conditional on the observed value of the data. That is, the 
data are considered fixed, and the inference about the parameter is made in the 
face of uncertainty about the parameter, not uncertainty about the data. This 
is in direct contrast to classical statistics, where the inference is made in the 
face of uncertainty about the data, that is, over repeated trials of the experiment. 
It is possible to evaluate hierarchical estimates according to these criteria (for 
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example, MLEs are hierarchical estimators, and they are often evaluated using 
classical criteria), but we have not done so. 

Another advantage of the hierarchy is the ease of estimating both means 
and variances. Using the general structure of ( 143), we can estimate any quantity 
from the appropriate posterior distribution. For example, any inference about 
6 would come from the formal posterior distribution 

or its empirical Bayes counterpart n(O I x, i), where 1 is estimated from the 
marginal distribution (likelihood) 

m ( x  I 1) = L(1 I x)  = f(x 10, l)ne(e I 5)nA(1) do. s 
The hierarchy also cautions us about underestimation of variance, as long as 
we keep our notatio? straight. If we infer using n(e I x, i) then our inference is 
conditional on 5 = 5, indicating the assumption we are making. 

The ease of inference of the hierarchical model is also evident in its 
straightforward interpretations of its entities. For example, for inference from 
the hierarchical form of the classic mixed model 

y = XB + Zu + e 

we do not have to worry about what quantities are fixed or random, or whether 
we are trying to estimate or predict. We only have to worry about whether the 
quantity is observable (data) or unobservable (parameter), and worry about 
calculating the distribution of the unobservable given (conditional on) the 
observable. The strategies mentioned throughout the chapter having to do with 
variance estimation (in particular the caution about forgetting the “missing 
piece”) are not formally a concern of hierarchical models, but rather a concern 
of statistical estimation in general. Perhaps it is an illustration of the strength 
of hierarchical models that this concern is brought to the forefront, and can be 
dealt with in a reasonably straightforward way. 

Throughout this chapter we have continually shown the connection between 
hierarchical estimates and their classical counterparts, in particular noting that 
in many cases the “usual” estimates can be obtained by allowing a distribution 
in the hierarchy to have infinite variance. In particular, recall equation (48) 
and the resulting discussion. There it was shown in the normal hierarchy 

that if we take B = oc) then the estimates of u (the random effects) and B (the 
fixed effects) are 

E(u I y)  = D Z ’ V - ’ ( y  - XB) (best linear unbiased predictor) 

and (157) 

E( y )  = = (X’V - X)- X’V - ’ y (best linear unbiased estimator) , 



354 HIERARCHICAL MODELS AND BAYESIAN ESTIMATION 

- 
0 
0 

0 

0 

0 

1 

1 

1 

1 -  

Thus, the estimator of random effects results from a prior specification with 
finite variance, while the estimator of fixed effects results from a prior 
specification with infinite variance. This can be interpreted as saying that such 
a specification shows that we know more about random effects than fixed effects! 
This is because we model more structure in a random effect than a fixed effect. 
For a random effect we usually assume knowledge of the probability distribution 
of the levels, an assumption not made for fixed effects. 

The observations of the previous paragraph are similar to those of Robinson 
(1991), who gives a very readable account of BLUP in particular and the 
estimation of random effects in general. The ramifications of fixed versus random, 
and of finite versus infinite variance, are treated in detail by Robinson, so we 
will not repeat those arguments here. We will, however, give an example (adapted 
from Robinson’s paper) that shows why estimation of random effects assuming 
a distribution with finite variance is a reasonable thing to do. 

Example. The following small, fictitious, data set shows coded first lactation 
milk yields for 9 dairy cows in 3 herds, each sired by one of four sires. 

and 

Herd 

1 
1 
2 
2 
2 
3 
3 
3 
3 

x =  

Sire 
A 
D 
B 
D 
D 
C 
C 
D 
D 

- 
1 0  

1 0  

0 1  

0 1  

0 1 

0 0  

0 0  

0 0  

-0 0 

Yield 

110 
100 
110 
100 
100 
110 
110 
100 
100 

We fit the usual mixed model 

y = Xfl+ Zu + e, 

where e - N(0, I,) and u - N(0, &I4), and 

Z= 

‘ 1 0 0 0  

0 0 0 1  

0 1 0 0  

0 0 0 1  

0 0 0 1  

0 0 1 0  

0 0 1 0  

0 0 0 1  

0 0 0 1 .  
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with results 

(159) 
b = [ 106.64 104.29 105.461' (BLUE offixed herd effects), 
ii = [ .40 .52 .76 - 1.673' (BLUP of random sire erects) . 

The rankings in ii are very sensible. Examination of the data shows that the 
cows sired by D all have the lowest yield, and in ii sire D has the lowest value 
( - 1.67). The other cows all have the same yield, and so their sires are somewhat 
equivalent. However, there are two daughters of C, and only one from each of 
A and B. Also, there are two daughters of D in herd 2, which contains the 
daughter of B. This gives slightly more information on B than on A. Thus, in 
terms of information (variance) we have the most information on C, second 
most on B, and least on A. This order is reflected in the ranking by Q of 
[A B CJ according to the values C.40 .52 .76]. 

In contrast, if we had treated u as a fixed factor, and had performed least 
squares on the entire model, we would obtain the (non-full rank) solution 

b =  [I00 100 1001' and Q = [ lo  10 10 03'. 

Now the sires A, B and C receive equal ranking, even though there is a differing 
amount of information on them. This is because treating an effect as fixed is 
similar to assigning it infinite prior variance. The fact that we have slightly 
more information on C makes no difference to infinity. Each sire is now treated 
the same. Thus, allowing a factor to be random, and hence assigning it finite 
variance, allows the resulting estimator to be sensitive to small changes in the 
amounts of information in the data. An advantage of a hierarchical model is 
that it gives us a framework under which all of these models can be evaluated 
and compared. 

9.7. SUMMARY 

General hierarchy 

x 1 8  - f ( x  1 e) and e - n ( e )  . 
Posterior distribution and mean 

The mixed model hierarchy 

1. Givenu = u,andB= Po, y = XS0 + Zu, + e, e - fc(.); 
2. ( 4  B) - f"*fd' 9 .) 

Under normality 
Y IB,u - x ( X S  + Zu,R), 

B - Jr/.(Bo, B), u - "0, D), 

with S, u and e being independent. 
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Ordinary maximum likelihood (ML) hierarchy 

Y I B, u * "XB + zu, R), 
u N N ( 0 , D ) .  

Restricted maximum likelihood (REML) hierarchy: 

Empirical Bayes estimation of r 

( i )  Specify for r a distribution n(r I q), where q parameterizes the distribution. 
( i i )  Use the formal Bayes posterior oft, 

to estimate t, for example by calculating E(t(y, q). 
(iii) Using ML, calculate estimates Q of any unknown (hyper)parameters from 
the marginal distribution 

m(Y I tl) = f ( Y  I t, q)n(r I tl) dr. (27) s 
(iv) The empirical Bayes estimate of t is E(r  I y, 4). 

Means and variances in the normal mixed model hierarchy 

Mean and variance of y 

conditional on B: and var(y I B) = ZDZ' + R = V; 
unconditionalon fl: E(y) = XS0 and var(y) = XBX' + ZDZ' + R 

Posterior mean and variance of B 
conditional o n  u: 

E(y 18) = XB 

= XBX' + V . 

E ( p J u , y )  = ( X ' R - ' X  + R - ' ) - ' [ X ' R - ' ( y  - Zu) + B-'po], 
(46) 

v a r ( p I u , y ) = ( X ' R - ' X  + B - ' ) - '  (60) 

(40) 

(41 1 

= B - BX~(XBX' + R)-'xB; 

unconditional o n  u: E(fl ly)  = ( X ' V - ' X  + B - ' ) - ' ( X ' V - ' y  + B - ' p  01, 

v a r ( p l y )  = ( X ' V - l X  + B - ' ) - '  

= B - BX'(XBX' + ZDZ' + R)- 'XB.  
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Posterior mean and variance of u 

conditional on g: E(uIg,y) = DZ'V-'(y - Xg), 

var(uIg ,y)=(D- '  + Z'R-'Z)- '  

= D - DZ'V-'ZD; 

unconditional on g: E(u 1 y )  = DZ'(V + XBX')-'(y - Xg,), 

var(uIy)= [Z'(XBX'+ R ) - ' Z +  D- ' ] - '  (47) 
= D - DZ'(XBX' + ZDZ' + R)- 'ZD . 

Note: The two expressions for the variances are obtained from one another 
using the identity 

(P + Q'S-'Q)-' = P-'  - P-'Q'(S + QP-'Q')-'QP-'. 

Special case E(u) = 0, R = o;I, B - '  = 0 

Posterior mean and variance of fl 
conditional on u: E(fl Iu,y)=(X'X)- 'X'(y-Zu),  

unconditional on u: E(f l ly)  = j = (X'V-'X)- 'X'v-'y,  (43) 

(43) 

var(fl 1 u, y )  = o;(X'X)-'; 

var(flly) = var(b) = (x'v-'x)-' . 
Posterior mean and variance of u 

conditional on fl: E ( u l f l , ~ ) = ( ~ ; D - '  + Z'Z)-'Z'(y-  Xfl), 

var(uIfl,y) = ( D - '  + Z'Z/o;)-'; 

unconditional on fl: E(u 

var( u 

y) = BLUP( U) = DZ'V - ' (y - Xb), 

y) = D - DZ'CV-' - V-'X 

x (X'V-'X)- 'X'V-']ZD. 
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where G ] h  is the ( j ,  h)  element of the inverse negative Hessian of / ( I  1 x)  = 
1% I x )  

and 

Estimation of u using the EM algorithm in the REML hierarchy of (24): 

incomplete data: y ;  

complete data: y, u; 

implement 

E-step: calculate Q = E (  u I y, f i ,  0) = fiZf 9 - ( y  - XS); 
h'l-step: maximize L( R, D I y, 6) over R, D to get f i  and D; (152) 
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9.8. EXERCISES 

E 9.1. For the hierarchy 

X I A - binomial( A, p) ,  

A - Poisson(j.) 

(a )  verify E (  X 1 A )  = pA and var( X I A)  = PA; 
(b)  show that the marginal distribution of X is Poisson with 

parameter pj.. 

In a general hierarchical model E 9.2. 

xi - f ( x i  I oil, 
oi - ~ ( 6 1 ,  

for i = 1 , .  . . , n, show that the xis  have identical marginal distributions. 
(This is a basis of empirical Bayes estimation.) 

For the hierarchy of (35), which leads to the classical mixed 
model, a formal Bayes estimator of B is given by E ( B  I y)  = 
C - ’ (X‘Ly + B-  ’ Po),  where C is given in (39). 

(a )  Argue that the empirical Bayes principle of Section 9 . 2 ~  dictates 
that estimates for C, B and Po in E ( B  1 y) be obtained from 

E9.3. 

J[ f f ( Y  I B 9  u, R)fp(B I BOY B)f”(U I D) d u ]  dB ’ 

( b )  Show that the marginal density in (a )  is given by equation (83). 
(c) Show that the result of (b)  implies that the point estimates 8, 

0 and fi of R, D and R are the same whether they are obtained 
to estimate E(u I y )  or E ( B  1 y). Is this a good thing? 

Use the hierarchy of (22) together with Wishart distributions 
for D and R to obtain (non-closed form) expressions for 
empirical Bayes estimates of D and R. Are there values of the 
Wishart hyperparameters for which the estimates obtained 
here are the same as ML estimates? 

(b) For the hierarchy of (24) repeat (a )  after replacing “ML 
estimates” by “REML estimates”. 

Note. The “ML-REML prior”, namely x(D, R)  = 1 ,  can be thought 
of as a prior with infinite variance. Thus we would expect things 

E 9.4. (a )  
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to match if E = 03 in (32). However, remember that we must be 
careful about this case, as shown in E 9.8. 

(a)  Apply an empirical Bayes strategy, as outlined in (26) and 
(27), to the general hierarchy of (19), and show how to estimate 
R alone (the matrix D is to be integrated out). 

(b)  Apply your strategy to the hierarchy of (22). Is there any 
connection between your estimate of R and the ML estimate 
of R? 

(c) Apply your strategy to the hierarchy of (24). Is there any 
connection between your estimate of R and the REML estimate 
of R? 

Verify that the third exponential in (38), the basis for the marginal 
density of y, is a perfect square in that 

E9.5. 

E 9.6. 

y'(L - LXC-'X'L)y - 2y'LXC-lB-'Po + Pb(B-' - B - ' C - ' B - '  1 Po 
= [y - E(y)]'(L - LXC-'X'L)[y - E(y)], 

where 
E ( y )  = (L  - LXC-'X'L)-'LXC-'B-'Bo = Xpo, 

by establishing 
B-lC- iX'L(L - L'XC-lX'L)-'L'XC-'B-l = B-1 - B-lC-1B- l  

(See Appendix M, or E 9.12.) 

Verify (41). Results ( I )  and (2) of Appendix S.6 may be helpful. 
Illustrate some of the problems alluded to following (43), when 
equating the statements "B = 03" and "B-' = 0". 

(a )  Show that the matrix 

E 9.7. 
E9.8. 

B,,=[" n 1  '1 
satisfies limm+m Bn- ' = 0, a matrix of all zeros, but Bn is 
not a matrix with each element equal to infinity. 

(b)  What mathematical or statistical meaning would you attach 
to the statements "B = 03" and ''B-' = 0" in order that they 
be equivalent? 

Show that the BLUE (best linear unbiased estimator) of B, 
b = (X'V- X)-  X'V - ' y, can be derived as a special case of E(  y) 
of (39). That is, specify and interpret the values needed for the prior 
parameters in order to have 

E9.9. 

E(flly) = fi = (x 'V- 'X)- 'X'v- 'y .  

Comment on the interpretation of these parameter values. 
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E9.10. For the hierarchy in (35) establish that 

E ( u l B , y ) = u 0  + A - ' Z ' R - ' ( y - X B - Z u , )  and 

var(uIB,y) = A - '  . 
Methods similar to those used to establish (53) will work, along 
with (27) of Appendix M.5. 

E9.11. With (49) and V = ZDZ' + R verify 

(a) that V,,V,;' of (50) is BX'(XBX' + V)-'; 
(b) E(B I Y )  and v 4 B  I Y)  of (52). 

E9.12. ForthematricesA = D-' + Z 'R- 'Z ,L  = R - '  - R - l Z A - l Z ' R - ' ,  
C = X'LX + B - '  and V = ZDZ' + R establish the following 
identities [they can be used to establish the correspondence between 
the expressions in (39) and (40)]: 

(a) L = V - ' ;  
(b) 
(c) A - ' Z ' R - '  = DZ'V- ' ;  
(d) 

L - LXC- 'X 'L  = (XBX' + V)-' = (XBX' + ZDZ' + R)- ' ;  

(L - LXC- 'X 'L)- 'L 'XC- 'B- '  = X; 
(el IVl = IRI ID1 IAl; 
( f )  IVl = IK'VKI JX'V-'XI for K satisfying K'X = 0 and 

E9.13. For the hierarchy (35), or from (49), use E9.12 to establish for 
uo = 0 and V = ZDZ' + R that 

(a) 

K(K'VK)- 1 K' = v- 1 - v - ' ~ ( X ' V -  1 x ) -  1 x'v - 1. 

E(u 1 y)  = u, + DZ'(XBX' + ZDZ' + R)-'(y - Xp,, - Zu,) 

= DZ'(V + XBX')-'(y - Xp,); 

(b) 
(c) 

V - ' X  - V - ' X ( X ' V - ' X ) - ' X ' V - ' X  = 0; 

E ( u l y )  = DZ'(V + XBX')-'(y - Xpo) 

= DZ'V- ' [y  - X ( X ' V - ' X ) - ' X ' V - ' y ]  for B - '  = 0 

= D Z ' V - * ( ~  - xg) for 0 of(43) 
= BLUP of u . 

Note that Po is eliminated when B- ' = 0. 

E 9.14. For the hierarchy (67) 

(a) show that 

(b) derive var(a I p, y). 
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E 9.15. This exercise establishes, in general, the identities used in Section 
9.3d. For the hierarchical specification 

x - . f ( x  I e, 11, 
8 - n,(0 I 11, 
1 - 

show that for a function g(e) 

(a )  E C d e ) I x l  = E{ECg(e)lx.Jl);  
(b)  varCs(8)lxl  = E { v a r C g ( ~ ) l x , 4 )  + var{ECs(Wx,13).  

In each case the outer expectation is over the distribution of 1. These 
results can be established by writing n(B I x) = n(O I x, 1)n(1  I x) d1 
and interchanging the order of integration. 

E 9.16. Consider the normal hierarchy of (18), where Po # 0, and assume 
that R, B and D are all diagonal matrices; and use q as the vector 
of symbols Po, R, B and D. 

(a )  Derive an empirical Bayes estimate of u, along with an 
approximation of its variance, starting from the proper Bayes 
estimates E (  u I fl, y, q) and var( u 1 fl, y, q). 

(b )  Derive an empirical Bayes estimate of u, along with an 
approximation of its variance, starting from the proper Bayes 
estimates E(u I y, q) and var(u I y, q). (Note that here we start 
with the posterior estimate of u after fl has been integrated out.) 

E 9.17. Consider the same normal hierarchy as in E 9.16, where Po # 0, but 
no longer assume that R, B and D are diagonal matrices. Repeat 
(a )  and ( b )  of E9.16 in this more general case. 

E 9.18. The hierarchical specification that uses a point mass density for fl 
is (22). If fl is considered fixed but unknown, this hierarchy leads 
to ordinary maximum likelihood estimation. 

(a )  Derive an empirical Bayes estimate of u, along with an 
approximation of its variance, based on the proper Bayes 
estimates E(u I y, P, q) and var(u I y, P, q), where q is the vector 
of symbols R, D, with R and D being diagonal matrices. 

(b)  Show how to implement your estimation strategy of (a )  in the 
more general case of non-diagonal R and D. 

(c) Reconcile your answers in (a )  and (b)  with ordinary maximum 
likelihood estimation. 

E 9.19. The hierarchical specification (24) leads to REML estimation. 

(a )  Derive an empirical Bayes estimate of u, along with an 
approximation of its variance, based on the proper Bayes 
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estimates E(u I y, q) and var(u I y, q), where q is the vector of 
symbols R, D, with R and D being diagonal matrices. 

(b) Show how to implement your estimation strategy of (a) in the 
more general case of non-diagonal R and D. 

(c) Reconcile your answers in (a )  and (b)  with REML. 

E 9.20. In this exercise derivations of empirical Bayes estimates in the 1-way 
random model, given in Section 9.3d, are to be completed. 

Derive (87); that is, obtain an explicit expression for the 
likelihood function L ( p o ,  a:, a:, a: I y). (Note that this is a 
special case of derivations given in Section 9.3c.) 
Define ij' = [q l  fj2 f j 3  d o ]  = [j0 3; 3; C:]. Derive 

f o r j , k =  1 ,..., 4. 
For ij of (b), obtain an expression for the empirical Bayes 
estimate E(ai 1 y, 4). 
Use the Kass-Steffey approximation to show 

var(ai I y )  'u var(a, I y, ii) + 6'Z6 

for 

E9.21. Here we explore, in a simple case, the relationship between two 
variance expressions, using a special case of the beta-binomial 
hierarchy (1 16) with ni, = n, bi = a = 1. A Bayes estimator of p is 
E ( p  1 t), where t = yk, and a variance approximation is often 
based on var(p I t), which is not var[E(p 1 t ) ] .  

(a) Show that 

(classical), 

(classical), 

(b) As n + 00, show that 



364 HIERARCHICAL M O D E L S  A N D  BAYESIAN ESTIMATION 

showing the asymptotic equivalence of the classical and 
Bayesian calculation. [Other examples of comparisons of 
classical and Bayesian variances are in (42) and (73).] 

E 9.22. For the hierarchy of ( 1  16) estimates of a, and Pi can be obtained 
by the method of moments. [This estimation method is less preferred 
than maximum likelihood, but sometimes has the advantage of 
yielding expiicit answers. See Casella and Berger (1990, Chap. 7) 
for a complete discussion.] From (124) we can obtain the marginal 
mean and variance of yi,., the mean and variance of the beta- 
binomial distribution, and equate these to the sample moments to 
obtain the method-of-moments estimates of a and fl. 
(a)  Using ( 124), show that for j = 1 , .  . . , bi 

(b)  Let nil = n,. Show that for each i the sample mean and variance 
of yiI., . . . , yiq. are given by ( 126). 

(c) Equate these sample moments to the moments in (a)  to show 
that the method-of-moments estimators of ai and Pi are given by 
( 127). 

E 9.23. Hierarchical models and empirical Bayes methods are feasible only 
if there is enough replication to be able to estimate all parameters. 

(a )  For the hierarchy of ( 1  16) show that if b, = 1 then the MLEs 
for pi and a,/(a, + p,) are the same; and the method of moments 
(as in the previous exercise) fails. 

(b)  For the general mixed model hierarchy of ( 8 )  and (9)  formulate 
some principles about how much replication (or data) is 
necessary to estimate all parameters of interest. 

E9.24. A useful variation of the beta-binomial hierarchy is the beta- 
geometric hierarchy 

yi, - geometric(p,,), 

pij - beta(ai,Bi) for i = 1 , . . . , a ,  j = 1 ,..., b . 
Here there are ab combinations, and the ij combination has success 
probability pi, and variance var(p,,). This model also arises in animal 
breeding experiments. If for each of ab cows to be artificially 
inseminated the process i s  a Bernoulli trial, with success probability 
pi,, and the trials are repeated until a success occurs, then y,, - 
geometric(p,,), where P ( y i ,  = k )  = p,,( 1 - pi,)’, k = 0, 1,2 ,... . The 
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interpretation of the rest of the model is similar to the beta-binomial 
hierarchy. 

(a) Derive expressions for x ( p i j  I yi j ,  a,, pi), the posterior distribution, 
and m(y,, I a,, pi), the marginal distribution. 

(b) Derive the posterior mean and variance E(p , ,  I y,,, a,, P,)  and 

(c) Derive an expression for the full likelihood of the hierarchical 
model, and show how to obtain MLEs for a, and pi. 

(d) Usingeither a prior distribution for a, and /I,, or a Kass-Steffey 
approximation, obtain an estimate of var(p,, I y,,). 

E9.25. A model similar to the logit-normal hierarchy of (136) is the 
probit-normal hierarchy, also discussed in Chapter 10. This hierarchy 
uses normal distributions with a probit link function (see Section 
10.5). The hierarchy is, for i = l , . .  ,, n, 

W P i j  I yij, 41, Pi)* 

yi - Bernoulli(p,), 

pi = E(yi  10, U) = @(xi6 + z;u), 
B - ~v(Bo, B), u N J"(0, D), 

where @ is the standard normal cumulative density function. 

(a) Write an expression for ,!,(Po, B, D I y), the full likelihood for 
the hierarchy. 

(b) Derive an expression for the REML likelihood L(D I y) and 
show how to obtain a REML estimate of D. 

(c) Derive a strategy for obtaining a point estimate of u. 

E 9.26. Another variation of the logit-normal model of ( 136) is based on 
the geometric distribution, similar to the use in E 9.24. The hierarchy 
can use either a logit or probit link function and is, for i = 1,. . . , n, 

yi - geometric(p,), 

pi = E(Yi I B, u), 

pi  = @(x;fl + ziu) or logit(pi) = log - = x #  + z;u, 
(1  :J 

B - J " ( B o ,  B) and u - N(0, D) . 
Answer (a), (b) and (c) of E 9.25 using the logit hierarchy. The 
answers for the probit hierarchy are similar. 

E 9.27. Based on the hierarchy (136), show how to obtain estimates of B 
and B. Use a strategy similar to that used in (140)-( 142). 

E 9.28. To ( V  + XBX')-' apply the identity 

( D  + CA-'B)-' = D-'  - D-'C(A + BD-'C)-'BD-' .  



366 HIERARCHICAL MODELS AND BAYESIAN ESTIMATION C9.83 

Then show that 

(a)  for V, X and B being scalars u, x and b respectively, the limit 
as b 

(b) for V, X and B as matrices the limit of the right-hand side is 
V - ’  - V-lX(X’V-lX)- lX’V-’ ,  in contrast to scalar intuition 
which suggests that ( V  + XBX’)- tends to 0 as B --* m. 

m is zero; but 
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BINARY A N D  D I S C R E T E  DATA 

10.1. INTRODUCTION 

Techniques for the estimation of variance components from binary (0/ 1)  or 
discrete (categorical) data are much less widely developed than for continuous 
data. The lack of methods for such data is due in large part both to the 
difficulty of specifying realistic models and, once specified, to their computational 
intractability. In this chapter we explore the problems in identifying tractable 
models for binary and categorical data, and review some of the approaches that 
have been proposed to deal with them. 

To see why models are more difficult for discrete data than for continuous 
data, we return to the construction of models for continuous data, and consider 
how we defined random effects and error terms. The latter were defined as 
y - E(y I u) [see (60) of Section 4.6, for example] and to them we attributed a 
distribution, sometimes N(0, .:I) and, in all cases, a distribution having 
constant variance, independent of the value of the mean of y. This is not a 
reasonable assumption for discrete data. Consider binary data where y, takes 
on only the values zero and one. Then yi is distributed as a Bernoulli random 
variable with probability of success pi = Pr { y, = 1 } = E(yi) and variance 
var(y,) = pi (  1 - p,) = E(yi)[ 1 - E(yi)]. As the mean of yi approaches one or 
zero, the variance approaches zero and this dependence between mean and 
variance must be included in any reasonable model. Thus a model with an 
additive error component with fixed variance cannot capture the dependence 
between mean and variance and therefore is inadequate for categorical data. 

Further problems arise when specifying the distribution of random effects. 
For simplicity, consider a model for a binary variahle yfj with a single fixed 
effect px, and a single random effect a,. Conditional on the random effects, the 
mean of yij will be taken as 

( 1 )  

For the continuous data situation the a, are usually assumed to be i.i.d, with 
variance 0." and are often assumed to have a normal distribution. For the binary 

367 

U Y , ,  I a,) = BX,,  + a, * 
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data situation, since the mean or conditional mean of yi j  cannot be larger than 
one or less than zero, the ai cannot have a normal distribution, and as the mean 
of yi, approaches zero or one the variance of the a,  must approach zero. So the 
distribution of the ai also cannot have a fixed variance. The usual way of 
accommodating these requirements is to consider nonlinear models which allow 
the random effects to enter into the conditional mean in a non-additive fashion. 

A common model for binary data where yi, has a Bernoulli distribution with 
probability of success of pi ,  is the logistic regression model where logit( pi,), 
defined as logit(pi,) = log[pij/( 1 - pi,)], is assumed to be linear in the fixed 
and random effects. Thus a mixed model analogous to (1) could be defined as 

yi, I ai - independent Bernoulli[E(yi, I a i l ] ,  
with 

logit [E(yi, 1 a i ) ]  = pxi, + ai and ai - i.i.d. N(0, a:) . (2 )  

Comparing this to the continuous data situation, we see that the distribution 
assumed for yi,, conditional on the random effects, is a Bernoulli as opposed 
to a normal distribution, and logit [ E(yi, 1 a i ) ]  instead of E ( y , ,  I a i )  is modeled 
as linear in the fixed and random effects. In nonlinear models such as (2) the 
function (logit here) which connects the mean of y and the effects is called the 
linkfunction. Otherwise the constructions are the same. The use of the Bernoulli 
distribution takes care of the connection between mean and variance. The logit 
transformation maps the interval (0 , l )  for pr,  on to the whole real line, where 
problems with the upper and lower limits of the pi,  disappear. It is then 
reasonable to assume a normal (or other unbounded) distribution for ai. 

This approach is not without its problems. As discussed in Section 10.3, the 
computations for ML or REML for model (2) are quite intensive; much more 
so than for continuous data. This approach also raises a conflict in interpretation 
of the parameters. In the continuous data model, ( 1  ), p is the amount of change 
in the mean of yij associated with a change of one unit in xi,. This is true in 
the conditional distribution of yi, given ai, as well as in the marginal distribution, 
since 

E(Yij) = ECE(yij I ail1 = E(Bxij + ail = Pxij * 

This identical meaning in the marginal and conditional distributions holds 
because of the linear model. For (2) it no longer holds because the model is 
nonlinear (E  10.1). p represents the change on the logit scale of the conditional 
mean of yi, for a change of one unit in xi,. But the same is not true of the 
marginal mean of yi, since, in general, 

In fact, no closed form expression exists for E(yi,) under this model. 
What does this mean in practical terms? Consider animal breeding data, 

where y,, is one if a cow experiences difficulty in calving and zero otherwise. 
Further suppose that p represents the effect of birth order and the a, are 
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individual animal effects. Then B is interpreted as the effect of increasing birth 
order on the logit of the probability of calving difficultyfor an indiuidual animal 
(because this is conditional on the animal effects). However, because of (3), 
does not represent the change in the logit of the probability of calving difficulty 
in the entire population. This would require averaging the conditional distribution 
over all animals to obtain the marginal distribution. Zeger, Liang and Albert 
(1988) give formulae for the marginal and conditional means of y, as functions 
of fixed effects, for a number of different models, including the logit-normal 
and probit-normal models described below in (9) and ( 1  1). 

The nonlinear link ( 3 )  between the mean of y i j  and the fixed and random 
effects correctly models the fact that the variance of yi, induced by the random 
effects is less as the mean of y,, approaches zero or one. Yet this very fact 
increases the difficulty of interpretation since the variance in y,, due to the 
random effects is dependent on the mean, i.e., the fixed effects. Thus separate 
interpretations of the influence of the fixed and random effects on yi, are no 
longer possible. 

10.2. ANOVA METHODS 

Given these problems, what approaches have been proposed for analyzing 
discrete data? If the data consist of binomial proportions, all with a constant 
number of trials, n, then the usual recommendations are to analyze the 
proportions directly (or their arcsin transformation) using ANOVA methods, 
assuming they are approximately normally distributed and homoscedastic. 
However, analyzing proportions can only be recommended when the proportions 
are in the middle range (e.g., 0.2-0.8) and heteroscedasticity is unlikely to be 
a problem. With highly varying proportions the observations will have quite 
different variances and should be appropriately weighted in the analysis. Because 
of the presence of variance components, the weighting factor is no longer the 
binomial variance p (  1 - p ) / n  and the proper weights depend on the relative 
size of the variance components and the binomial variance. Furthermore, the 
arcsin transformation is not necessarily appropriate when the binomial p is 
allowed to vary with the random effects as is the case in (2). See Cochran (1943) 
for a clear discussion of these points. Landis and Koch (1977) give the details 
of using MANOVA to estimate variance components for a one-way random 
effects model with categorical data. When the group sizes are unequal, or the 
proportions cover a wide range, then more sophisticated techniques are 
necessary. 

10.3. BETA-BINOMIAL MODELS 

a. Introduction 
For a binary variable y a natural approach to capturing the variability in 

the mean of y is to model it directly rather than indirectly as in (2). That is, 
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assume a parametric distribution for p = E(y) .  A logical distribution is the beta 
distribution, since it is a flexible distribution on the interval (0, 1); it is also the 
conjugate prior density for the binomial distribution from Bayesian analysis 
and it leads to mathematically tractable results. If y is distributed as a 
binomial(n,p) variable, conditional on the value of p, and p has a beta 
distribution with parameters tl and P, then the marginal distribution is 
beta- binomial, i.e., 

where B(a,  /3) = JA x‘-’( 1 - x ) ~ - ’  dx is the beta function. 

b. Model specification 
How do we allow the values of the parameters a and P to vary in order to 

form realistic models? Let us consider for continuous data the mixed model 
with a single fixed effect and nested random effects: 

Y i j k  = p + qi + y i j  + eijk, where the qi are fixed effects, 

yi, - i.i.d. N(0, c,”) 

and (4) 
eijk N i.i.d. M ( 0 ,  c;), independently of the yij . 

This model allows the mean of the y i j k  to vary with i and allows the Y i j k  to be 
correlated within levels of i and j, i.e., p(y , jk ,y , jk! )  = et/(cz + u:) for k # k’. 

By following the hierarchical specification (see Chapter 9) of a model for 
the binary data, we can induce a correlation among all the ys that have the 
same p. Thus, to mimic the correlation structure in model (4), we would use 
the following specification: 

and 
y i j k  1 pij  - independent Bernoulli(pij) 

pi, - independent beta(ai, p i )  
for i = 1,2,. . . ,a,  j = 1,2,. .., bi and k = 1,2,. . ., ni j .  This induces a correlation 
among all the y s  within each ( i ,  j) combination, i.e., among those with the same 
pij  (E  10.3). Also, since the parameters of the beta distribution depend only on i ,  
the mean of the conditional distribution of y i j k  given pij is allowed to vary with i. 
In this general form ( 5 )  also allows the variance of the conditional mean of Y i j k  

to vary from one level of i to the next, which (4) does not. 
What is the variance component for this model? Since the variance of the 

conditional mean is allowed to have different variances depending on i ,  we need 
an estimate of the variance in each of the classes, given by the variances of the 
beta distribution, 

eiBi var(pij) = 
(ai + Pi)’(ai + Pi + 1) ’ 
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It does not really make sense to try to reparameterize the model to have a 
single variance since, as discussed above, the conditional mean and the variance 
must be related. Noting that (see E 10.3) 

(6) 

where pi = E(pij) = ai / (a i  + pi )  as in (10) of Appendix S.6d and oi = 
1 / ( a i  + pi + 1 ), Crowder (1978) suggests restricting all the oi to have a common 
value o. Note that (6) incorporates the need for the variance to decrease to 
zero as pi approaches zero or one. Also, oi is the intra-class correlation coefficient 
so that yijk and yijkf are uncorrelated if and only if oi is zero. Thus cr is the 
analog of o:/(of + cr;), the intra-class correlation coefficient, for normal, linear 
models; i.e., equation (4). For some situations cr would therefore be a useful 
parameter of interest. 

var(Pij) = pi( 1 - pi)oi, 

c. Likelihood 
The likelihood for model ( 5 )  takes a relatively simple form. Denoting the 

number of successes within level ( i , j )  by tij = y,. = xkyijk, the log likelihood 
can be written as 

For interpretational and numerical reasons Williams ( 1975) suggests 
reparameterizing 1 in terms of the mean of the beta distribution, pi = a,/(ai + pi), 
and the parameter 8, = l/(ai + pi). In this reparameterization 

( 8 )  

Closed form maximum likelihood estimators for pi and Oi do not exist for this 
model, so (7) or (8) needs to be maximized numerically. 

d. Discussion 
The beta-binomial approach is somewhat limited in its application to 

variance components estimation problems. Since we model the correlation by 
having the correlated Bernoulli variables all selected from a distribution with 
the same probability of success, we are limited to the type of model ( 5 )  where 
the random effects are nested within the fixed effects. This precludes any sort 
of regression model which has independent variables specific to each Bernoulli 
variable. Also, since we are capturing the variation in the conditional mean 
with a single distribution, the beta-binomial approach is not amenable to 
multiple random effects. Thus model ( 5 )  is about the most general model possible 
with this approach. 
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10.4. LOGIT-NORMAL MODELS 

A more flexible approach to variance components for binary data is the 
approach outlined in thc introduction. This approach uses a logit function to 
link the mean of y to the fixed and random effects and assumes the random 
effects are normally distributed. Conditional on the random effects u, 

y, 1 u - independent Bernoulli [ E(y, 1 u)], i = 1,2,, . , , n, 

logit[E(yilu)] = x;fl + z;u (9) 

and u - N(0, D), 

where, in the model for the vector of logit [ E(y, 1 u)] for i = 1,2,. . . , n, xi and z; 
are the ith rows of X and Z, the model matrices for the fixed and random 
effects, respectively. For certain specific situations this approach is developed 
in Pierce and Sands ( 1975), Stiratelli, Laird and Ware (1984), and Wong and 
Mason (1985). 

A main drawback to this approach is computational. The likelihood based 
on (9 )  is proportional to 

where 
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10.5. PROBIT-NORMAL MODELS 

a. Introduction 
Probit-normal models are a class of models very similar to logit-normal 

models that arise by replacing the logit function in (9) by the probit function 
@ - ' ( a ) ,  where @(* )  is the standard normal c.d.f. This gives a model 

y, I u - independent Bernoulli[ E ( y ,  I u)], i = 1,2,. . . , n, 
w, I u) = Wx;B + z;u) 

and (11) 

u-.N(O.D). 

This model retains the flexibility of the logit-normal models as well as most 
of the computational problems. The likelihood for ( 1  I )  is proportional to 

where 
II 

&,,(y I p) = @(x# + z;U)y"l - @(x# + z;u)]' -Yl . 
I =  1 

This model is used in Harville and Mee (1984), where it is extended for use 
with ordered categorical data, and in Gilmour, Anderson and Rae (1985) for 
a single random effect. It is also essentially that used in Ochi and Prentice 
(1984) for a model similar to ( 5 ) .  To overcome the computational problems, 
which were declared "insurmountable" for the general model by Harville and 
Mee, they resorted to ad hoc estimation methods, whereas Ochi and Prentice 
developed a complicated approximation scheme for finding the maximum 
likelihood estimators, and Gilmour et al. used quasi-likelihood methods. 
McCulloch (1990) shows how to adapt the EM algorithm to probit-normal 
models. 

b. An example 
We illustrate the use of the probit-normal model on a data set (courtesy of 

Professor S. Via at Cornell University) on reproductive success in aphids. 
Twenty-eight female aphids were collected in the field in both the early and 
late summer. Clonal lines were raised from each female in the laboratory in 
two separate chambers (sublines). For each clonal subline 0 to 2 females were 
raised on alfalfa and on clover. A total of 412 individuals were tested and each 
individual was recorded as surviving to reproduce or not. So there are two 
random effects (clone and subline nested within clone) and four fixed effects 
(constant term, crop, time and crop by time interaction). 
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Let yi ,k lrn represent the mth response on the ith clone, j th  subline, crop k and 
time I, where Yr,krrn = 1 if the aphid survived to reproduce and 0 otherwise. The 
model employed was 

@-'  C E ( Y l j k 1 r n  I u ) l  = + @k + f i j  + Y k l  + ulf -k u2j 

and 

u1 N JCC(O, I& u2 - N ( 0 ,  Ic7,2), 

where u1 is the vector of clone random effects and u2 is the vector of 
subline random effects. The log-likelihood was numerically maximized, giving 
a maximum value of - 181.667 and estimates 8: = .166 and 8: = ,035. 
This would give an estimated within-clone, within-subline correlation of 
(.166 + .035)/( 1 + .166 + .035) = .17 on the probit scale. 

10.6. DISCUSSION 

It should be clear from the preceding outline that methods for the analysis 
of binary or categorical data are only available for a limited variety of problems. 
For situations with binomial or categorical data with proportions in the 
mid-range and approximately equal n, ANOVA methods may be adequate. 
For simple situations the beta-binomial approach may be adequate or the 
logit-normal or probit-normal models may be computationally feasible. For 
more complicated situations the beta-binomial approach becomes inadequate 
and the logit-normal and probit-normal models become computationally 
limiting. Surely, as computers become more and more powerful, such models 
will come into greater use. 

The logit-normal and probit-normal models are very similar. Zeger, Liang 
and Albert (1988) show how to approximate one from the other. However there 
are some slight differences. The probit-normal models reduce to the usual 
probit analysis when there is a single random effect and a single observation 
per level of the random effect. The logit-normal models do not reduce to a 
standard logistic regression analysis ( E  10.5). Thus the logit-normal differs from 
the normal, linear model, which, with a single observation per level of the 
random effect, reduces to a fixed effects analysis. Also, the marginal mean of y ,  
in the probit-normal model is slightly simpler than the logit-normal. It can be 
shown ( E  10.4) that 

so that the marginal mean has a form similar to the conditional mean. On the 
other hand, for inferences about the fixed effects the logit-normal model may 
be simpler. It allows exact conditional inference for some balanced data 
situations (Conaway, 1989). 
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10.7. SUMMARY 

Binary data variance components models 

Beta-binomial 

yi jk  I pij - independent Bernoulli(pij), 

p i ,  - independent beta(ai, pi); 

1 

ai + pi + 1 

1 

( i  = q and j = r, k # s), 

( i  = q , j  = r,  k = s ) .  

P ( Yijk ~ q r s  1 = 

Logit -normal 

yi I u - independent Bernoulli [ E (  yi I u)], 

where 

and 

logit[E(yi I u)] = x#l + z;u 

u - N ( 0 , D ) .  

The log likelihood is given in (10). 

Probit-normal 

yi I u - independent Bernoulli[E(y, I u)], 

where 

and 

E ( y ,  I u) = u)(x;p + zlu) 

u - N ( 0 , D ) .  

The log likelihood is given in (12). 
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10.8. EXERCISES 

E 10.1. Suppose y = 1 / (  1 + e-f l -a) ,  where a - (0,a2). 
(a) Show that if p = 0 and the distribution of a is symmetric about 

zero then 

and 

E 10.2. If y - binomial( n, p) conditional on the value of p, and if p - 
show that the marginal distribution of y is beta-binomial, 

E 10.3. For model ( 5 )  show that 
(a) the log likelihood is given by (7); 
(b) the log likelihood can be rewritten as (8); 
(c) the correlation of ylik with yqrs is 

0 ( i  # q or j # Y), f 
( i  = q and j = r, k # q ) ,  

( i  = q , j  = r and k = s); 

1 
P ( yijk 9 yqrs ) = 

(d) varE(y,,)p,,)=O if and only if O , = l / ( a , + ~ , ) = O  for 

E 10.4. (a) For the model in equation ( 1  1 )  show that 

Wi, I Pi,)  E (091 1. 

(b) On the probit scale how do the coefficients of the fixed effects 
compare for the conditional and marginal means? 
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E 10.5. Consider a simple version of the probit-normal model: 

yi I u - independent Bernoulli [ @( x,P + u , ) ] ,  

u - ./V(O,IO*) . 
In this model there is one level of the random effect for each 
observation. Show that y, follows the usual probit model, i.e., 

yi - independent Bernoulli[@(x,p*)] 

for a suitable definition of j?*. (Hint: See E 10.4.) The equivalent 
logit-normal model is 

II 1 + exp( -xi/? + ui) 1. yi 1 u - Bernoulli 

Show that y, does not follow the usual logit model, which is 

1 + exp( -x,P*) 
y, - independent Bernoulli 
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O T H E R  P R O C E D U R E S  

Estimation methods based on ANOVA, ML, REML and Bayes have been 
considered at length in preceding chapters. Nevertheless, there are other 
estimation topics that merit discussion, and from a wide array that is available 
we have chosen just three: ( i )  defining and estimating covariance components, 
which is important in applications 3s varied as animal breeding and educational 
testing; ( i i )  defining variance components in terms of a covariance structure, 
which models a variance component as a covariance so that a negative estimate 
has meaning as a negative covariance; (i i i)  criteria-based estimation (such as 
minimum norm and minimum variance estimation), which is somewhat more 
theoretical than other methods. 

1 1.1. ESTIMATING COMPONENTS OF COVARIANCE 

Suppose we measure weight and body length of piglets at two weeks of age. 
Let y , i j  be the weight of pigletj from sow i ,  and yZij its body length. The model 
equations for a 1-way classification random model for each of these observations 
can be taken as 

and Y Z i j  = p2 + a21 + e 2 i J ,  ( 1 )  

for i = I ,  2, ..., a sows and j = 1,2, ..., ni piglets from sow i ,  with a total of 
n. = N piglets. p1 and pz represent overall means of weight and body length, 
a I i  and rZi are the effects of sow i on the two variables, and elll and ezil are 
the corresponding random error terms. Treating the a l s  and azs as random 
effects with zero means, the usual random model conditions are 

var(a , )  = u2,10, var(e,) = a,Z,IN and cov(a,,e’,) = 0,. N 

and (2)  

var(a,) = aijIa, var(e,) = u;JN and cov(a,,e;) = 0, . 

l ’ l i j  = pl + a l i  + e l i j  
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The inclusion of components of covariance between sow effects and between 
error terms involves having the model also include 

cov(a,,a;) = T,I, and cov(e,,e;) = reIN . (3 )  

This is the assumption that cov(al,, a2,) = T= for all i, but cov(aIi, a2i , )  = 0 for 
i # i ‘ :  similarly cov(eI,j, e2,j) = 7, but cov(eli,, ezi.,.) = 0 unless i = i’ and j  = j’. 
Thus T, is the covariance between the two sow effects, one on piglet weight and 
the other on piglet body length. To the geneticist this is a multiple of the genetic 
covariance between the two traits, which, along with the variance components 
ah, and ah2, leads to genetic correlation, a parameter of great interest. 

A second example where this model might be suitable, with components of 
covariance being of interest, would be test scores on schoolchildren in different 
classes that had each taken an English test and a mathematics test. Another 
example would be fleece weight and staple length of the fleece obtained from 
shearing a thousand ewes, each of which was the daughter of one of, say, 
30 different rams. Then the components of covariance between the sire effect 
on fleece weight and the sire effect on staple length could be of interest. These 
examples, which are similar and straightforward, represent only one of several 
ways that components of covariance between random effects can be included 
as part of a model. Along with considering estimation procedures, we therefore 
also indicate a variety of ways in which covariance components can be present. 

a. Easy ANOVA estimation for certain models 
The schoolchildren example just described is the simplest illustration of a 

class of components of variance and covariance models for which ANOVA 
estimation of the covariance components is based very easily upon whatever 
ANOVA estimation is used for the variance components. For that example yljk 

and y2jk of ( 1 ) will be the English score and the mathematics score, respectively, 
of child j in class i. 

Under conditions such as this, where every observational unit (a child, in 
this case) has observations on the same pair of variables, there is a very easy 
ANOVA method for estimating the covariance components of (3) when the 
same form of model is used for each variable as, for example, in (1). It is just 
a simple extension of whatever ANOVA method is chosen for estimating the 
variance components. If, for B being some symmetric matrix, y;Byl is the 
ANOVA estimator of o:, in the model for y1 then, of course, the same ANOVA 
estimator of nh2 in the model for y2 is y;By2. As we now show, the corresponding 
ANOVA estimator of the covariance component olf  is y’,By2. But one does 
not have to compute y;By2 in that form. Because, in terms of our example, 
with oh,+2 and 03, + L  representing the components of variance for the variable 
Y l  + Y2,  

7, = cov(ali,a21) = t (o ; ,+ ,  - oi l  - of,) 

YiBY2 = t “ Y 1  + Y2)’B(Y, + Y2) - YiBYl - Y P Y 2 1 ,  

and 
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it follows at once that 

The nature of this result is true in general for models of this form, as pointed 
out by Searle and Rounsaville ( 1974). All one has to  do to estimate a component 
of covariance is to use the ANOVA estimates of components of variance of y l ,  
of y, and of y1 + y,. Thus for (4), using (82) and (83) of Chapter 3, we write 

d:, = MSE1, d:, = (MSA, - MSE,)/f 

= MSE,, d:2 = (MSA2 - MSE,)/f ( 5 )  

= MSEl+2, e,+* = (MSAl+2 - MSEl+,)/f, 

and 

where f = (N - Xp;/N)/(a - l ) ,  and, for example, 

provides estimates of the covariance components based on estimated variance 
components. In this way, when a computing routine specifically calculates 
ANOVA variance components estimates, it can also be used [by means of (4) 
and (6) ,  for example] for deriving ANOVA estimates of covariance components. 

b. Examples of covariance components models 
The model widely used throughout this book for data on a single variable is 

y = Xg + Zu + e, 

where fl and u represent fixed effects and random effects, respectively; and u is 
partitioned as u’ = [u’, u; ... u:] into sub-vectors u, of order qr ,  with 
E(u,) = 0, var(u,) = u;I,,, cov(u,, ui,) = 0,, ,,,, and cov(ui, e‘) = 0,, N. Thus 

(7) 

is a block diagonal matrix of diagonal matrices u&,. This is because the 
covariance between every possible pair of (different) elements of u has been 
taken as zero. Generalizations of this model to allow for covariances between 
elements of u merely consist of having a form for D different from its block 
diagonal form in (7). At least two possibilities are available. 

var(u) = D = {d u:Iq,}iLl 
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4. Couariances between eflects of the same random factor. Let u,, be an 
element of ui for t = 1,. . . , 4,. Suppose covariances between all pairs of elements 
of u, are to be non-zero but covariances between elements of different us are 
to be zero; then 

cov(u,,, u,,.) = d, , , .  for t # t‘ and cov(u,,, u,,,,) = 0 for i # i’ . (8) 

var(u) = D = {,, Dii},Zl . 
In this case the second equation of (9) shows the block-diagonal structure of 
the dispersion matrix of u, and the first equation in (9) defines the nature of 
those blocks. Situations in which d,,ff, is different for every t ,  t‘ pair seem unlikely, 
and certain patterns of values may be suitable on some occasions. For example, 
the intra-class correlation pattern of (28) in Chapter 3 might be appropriate: 

Dii = a:C(1 - pi)Iql + P,J~,I, 

di,,,, = &Jf,f* + P,Jl.lf - f$ 

(10) 

which has d,,,, = a: and d,,,,. = pic?. Another possibility is 

where d,,,, is the Kronecker delta, a,,,, = df,,f = 1 for t = t‘ and zero otherwise. 
This has var(ui,) = a: and cov(ui,, u,,.) = p,a: for It - t’I = 1 and zero otherwise, 
as illustrated following (28) of Chapter 3. 

-ii. Covariances between eflects of &rerent random factors. The most 
general situation would be to have cov(uif, u,,,,) = dii.,,,. so that 

and (11) 

COV(U, ,U~. )  = D,,, = {,,, d, i , , f f , } f2’ l , f ,%l 

var(u) = D = {,,, D,,,},,i,’- . 
Again, it seems unlikely that every dii.,,,. would be different. One possibility is 

Di, = 0:[(1 - Pii)Iq, + P~~J,,I 
and (12) 

D,.  = pii.a,opJq, ql. for i # i’, 

so that 

var(ui,) = a: V t = 1, . . . , q,, 

COV(U,), U i f )  = pip: v t # t’ = 1,. . . ,4, (13) 
and 

cov(uif, u , . ~ . )  = pi,.aioi, for t = 1,. . . , qi ,  t’ = 1,. . . ,q,. and i # i’ . 
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-iii. Couariunces between error terms. The usual variance-covariance 
structure taken for error terms is var(e) = 0:1,. This assumes that all error 
terms have the same variance, of , and that covariances between all pairs of 
(different) error terms are zero. Clearly, though, one could posit any structure 
suited to the source of one's data, the most general being var(e) = R, a 
symmetric, positive definite matrix. Structures for var(e) other than a;IN can 
be modeled in the same manner as for var( u) in (9) and ( 1 1 ), or in any manner 
suited to the situation at hand. Block diagonal R, or covariances arising in 
multi-trait models in genetics, are two such possibilities. 

c, Combining variables into a single vector 

equations (1)  can be written, with Z, = Id  l , , } i l l ,  as 
The examples of Section 1 l.la deal with two variables for which the model 

and 

These can be combined into a single vector 

which can be written as 

y = X$ + Zu + e 

with 

Y =  
Y2 

Z=[" '  0 Zl "1, .=[::I and .=[::I. 
Then for the variances and covariances of (2) and (3) 

and 
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The advantage of combining data vectors like this is that it puts data into a 
standard format to which ML and REML can be applied directly, as indicated 
in subsections e and f that follow. Moreover, the combining of just two vectors 
into a single vector can be easily extended into combining more than two 
vectors: and the standard format still applies. 

d. Genetic covariances 
In modeling biological data there is often interest in genetic relatiomhips 

that arise from the biology of a situation. In the sheep example used earlier, 
for instance, we considered data from ewes that were daughters of a small group 
of sires. And in modeling the fleece weight data by the first equation in ( 1  3), 
the elements of a1 are the sire effects on fleece weight. A matrix that quantifies 
whatever genetic relationships exist among such sires is called the relationship 
matrix, and is usually denoted by A. [It can be calculated for any set of animals 
that are descended from some base population; and its inverse, A - '  (which can 
be calculated directly from genetic relationships without having to actually 
invert a matrix), is described in Henderson ( 1976).] Given that matrix A, then, 
for the sires having daughters in our study, the variance of a l ,  instead of being 
o:,Ia, becomes var(a,) = o:,A. Here then, we are introducing covariances that 
arise from the genetics of the situation and which must be taken into account 
in estimating the variance component of,. 

The use of A also extends to where there are data y,  and y2 on two variables 
from the same animals, whereupon var( u) of ( 15) becomes 

2 

var(u) = D = [ d l A  ] = [:I li2] 8 A . ?,A of2A 

And, of course, extension to more than two variables is clear. In this way not 
only are the covariances between sire effects for different traits taken into 
account, but so also are the genetic covariances due to relationships of the sires 
to one another. 

e. Maximum likelihood (ML) estimation 

4. Estimation equations. We have seen in the preceding subsections how 
a variety of different occurrences of non-zero covariances incorporated in a 
model can all be represented very generally in the model 

y = Xfl+  Zu + e, (17) 

with cov(u, el) = 0 and 

V = var(y) = ZDZ' + R . 
We now assume normality. Then, as in (13) of Chapter 6, the log likelihood of y 
is 

I =  - ~ N l o g 2 n - + l o g ~ V J  -+(y -Xf l ) 'V- ' (y -Xf l ) .  ( 1 9 )  
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Differentiating this with respect to fl gives 

21, = X'V-ly  - X'v- lx f l ,  (20) 

and equating this to 0 gives, with v and ) representing the ML estimators of 
V and fl, respectively, 

xT-'x$ = X'V- 'y .  (21) 

x) = x ( x ' V - ' X ) - x ' V - ' y .  (22) 

Hence the ML estimator of the estimable vector Xfl is 

All this is similar to Section 6.2a. 
But for estimating the variance and covariance components that make up 

the elements of V we must now be more general than in Chapter 6, wherein 
we took V = Xi-, Z,Z;of as in equation (10) of that chapter. That meant 
differentiating 1 of ( 19) with respect to  just the o:s, which led in turn to equations 
(21) and (25) of Chapter 6. Now we need to cover a variety of forms for V. 
Yet all of them when u and e are taken as having zero covariance are of the 
form V = ZDZ' + R. And from Appendices M.7e and f we have the general 
results 

- = - V - '  - V - '  and -1og1VI = tr av-1 av a 
ae ae ae 

where elements of V are considered as functions of 8. 
Using those results, we array the variance and covariance components 

that occur in V as a vector 0 = {E e h } h q l ,  where u represents the total 
number of different components. For instance, in the sheep example 
8' = [o:, uiz z, cr;, o:z re] and u = 6. Then 

and equating this to zero gives 

t r [ p - ' ( c l  aeh 0-6  )] = (y  - X ) ) f v - ' ( ~ ~ e ~ ~ v - l ( y  - X)), (25) 

where 

av 
is - written with 6 in place of 0 . 

With X) from (22) it is clear on defining 
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as in preceding chapters, that v - ’ ( y  - Xb) = py, and so we get the ML 
estimation equation as 

tr[ v-’( El )] = y’?(”i )?y, for h = 1, ..., u . (27) 
aeh O = e  doh e - a  

To further consider the derivative term, which occurs on both sides of this 
equation, let us now distinguish e d  and 0, as elements of 8 that occur, respectively, 
in var(u) = D and var(e) = R, whatever the forms of D and R may be. Then 

Hence the ML equations (27) become 

for each parameter e d  of D. and 

for each parameter 9, of R. 
At this point there appears to be no further tractable, algebraic, simplification 

of the general case. One now has to make use of the precise forms that D and 
R have for the task at hand, in order to know what the different elements 8, 
and 8, are, and where they occur in D and R. Then the derivatives in (29) and 
(30) can be specified. For example, with D of ( 16) 

A 0  
aa:, aa:, 

Since there is a multitude of forms that D and R can have, this further 
simplification is left to the reader for whatever D and R are being used. Rather 
than algebraic simplification it may be possible to use computing packages that 
handle elementary differential calculus, in combination with those that carry 
out ML calculations. 

-ii. Large-sample riispersion matrix. As in Chapter 6, the large sample 
dispersion matrix of the ML estimators is the inverse of the information matrix. 
Here, as there, in (39) of Chapter 6, 

var(b) ‘v (x’v-’x)-’ . 
And 
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Denote av/aeh by v h  and a2v/aehaek by v h k n  Then from (24) 

ai - = -+ tr(V-'V,) + +(y - xp)'V-'V,,V-'(y - Xp)  

= f tr[ -V'-'V,, + v-'vhv-'(y - Xg)(y - Xg)'] 
aeh 

and so, on using E[(y - Xg)(y - Xp)'] = V, 

Hence 

Of the u variance and covariance parameters in V, suppose u,, of them are in 
D and u - ud = u, of them are in R. Order elements of 8 so that 8' = [8; O;], 
with the u,, parameters pertaining to D being in 8, and the u, of R being in 8,. 
Let edi and O,, be the ith and j th elements of8d and ofor, respectively. Then( 31 )is 

Depending on the form of Z and on whatever structure or pattern there is in 
D and R, the trace terms in these matrices may simplify, and the arithmetic 
will also be aided by the standard results tr(X'X) = CiCjx;, = sesq(X) and 
tr(X'Y) = CiC,xiJyr,. Since specific details do depend so much on the exact 
form of Z, D and R, there is little or no merit in attempting any further 
simplification of these formulae for the general case. 

f. Restricted maximum likelihood (REML) estimation 

the same replacements as made in Section 6.7b, namely replace 

y by K'y, 1, by K'Z, 

X by K'X = 0, 

4 .  Estimation equations. We make the transition from ML to REML by 

V by K'VK = K'ZDZ'K + K'RK 

and in doing so recall that P gets replaced by (K'VK)-' but that 
P = K(K'vK)- 'K' .  Then the ML equations (29) and (30) become 
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and 

which reduce, for each parameter Od in D, to 

and for each parameter 8, in R to 

4’. Large-sample dispersion matrix. In the sampling dispersion matrix for 
ML making the same replacements as in subsection i above gives 

Again, there is no merit in attempting further simplification of formulae such 
as these. 

1 1.2. MODELING VARIANCE COMPONENTS AS COVARIANCES 

The problem of sometimes getting negative values for estimated variance 
components has been seen to arise in the ANOVA methods of estimation. And 
even with ML and REML solutions this negativity can be a problem when it 
occurs in the midst ofan iterative procedure, for then the calculated D = {d n?Iq(} 
will not be positive definite, and is singular if negative values for any 0’s are 
replaced by zero. Nevertheless, because a variance component can also be 
interpreted as a covariance, negativity in that context is not necessarily out of 
place. For example, in the 1-way classification random model with model 
equation y,, = p + a, + ell the covariance between y,, and yiY for j # j’ is 0:: 

cov(yi,, y,,.) = cov(p + a, + e,,, p + ai + e iY)  = cov(a,, a,) = 0,” . 
Since covariances can be negative, and because t h e  are situations in which a 
covariance of the form cov(y,,,y,,.) might truly be negative, such a situation 
would seem to throw doubt on the utility of a model that leads to a covariance, 
which can be negative, being identical to a variance, which cannot be negative. 
So maybe developing a model that circumvents this possibility is what is needed. 
This is what Green (1988) discusses in the framework of clinical trial data 
wherein the covariance between observations on the same person receiving 
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different doses of the same drug could be negative if large doses of the drug 
were such as to produce adverse effects. 

There have therefore been several papers recently (e.g., Smith and Murray, 
1984; Green, 1988; Hocking, Green and Bremer, 1989) describing models for 
variance components and their estimation in terms of a covariance structure. 
The estimation method employed is essentially an ANOVA method and, indeed, 
for balanced data it is identical to ANOVA methodology. For balanced 
data and for all-cells-filled unbalanced data it provides excellent diagnostic 
opportunities for assessing the different covariance contributions to a variance 
component estimate, which is especially useful when that estimate is negative. 
These diagnostics are demonstrated by Hocking et al. (1989). 

a. All-cells-filled data 
We briefly illustrate the modeling and estimation method in terms of the 

2-way crossed classification, random model, drawing heavily on Hocking ( 1985), 
Green ( 1988) and Hocking et al. (1989) to do so. 

As usual (e.g., Chapters 4 and 5), the traditional random model equation 
for y[jk, the kth observation in the ith row and jth column, is taken as 

(32) 

where i = 1, . . . , a, j = 1, . . . , b and k = 1, . . . , nil. All effects (except p )  are random, 
with zero means, zero covariances and variances a,’, a;, a: and a:, respectively. 
In contrast, the model used by Hocking et al. has no model equation but “is 
given simply by describing the mean and covariance structure implicit in” (32) 
in the following manner: 

Yijk = p + + f l j  + Y i j  + eljk, 

E(y,jk) = p,  

var(yijk) = 4 0  + 41 + 4 2  + 4 1 2  

41 for i = i’ and j # j’, 

cov(y~jk,y,tfkl) = 42 for i # i’ and j = j’, (33) i 41 + 42 + 412 for i = i‘,j = j ’  and k # k’ . 

As is easily seen “the two forms of model are mathematically equivalent” 
(Hocking et al. 1989, p. 228) in the sense of there being a one-to-one 
correspondence of the variance components of (32) to the covariances in (33), 
namely 

But the two models are not statistically equivalent, because their parameter 
spaces are not the same. Variances cannot be negative, whereas covariances 
can, although the negativity of the covariances in (33) is restricted by needing 
the dispersion matrix of y to be positive definite, e.g., 4o + 4,  + 42 + 412 > 0. 
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Now observe that since 

cOv(Yil,, Y f j ’ k ’ )  = 41 

for each i, and for every j , j ’  pair with j # j’, so also does cov(j$., jf,,.) = 41. 
And an estimate of this for the j ,  j ’  pair is Xi= (ji,. - jj.,.)(ji,,. - jj.,,.)/(u - l), 
where 

1 “  

i =  1 
(35) 

Therefore, on using all )b( b - 1) pairsj,j’ forj < j ‘ ,  the estimate of 41 is taken as 

& 
)(a - l)b(b - 1) 

It is to be emphasized that (36) applies only for all-cells-filled data. It is 
identical to 8; obtained from Yates’ ( 1934) unweighted means analysis of ( 145) 
in Chapter 5. And it is unbiased for = 0.’ (see E 11.3). Estimation of & is 
analogous to (36). 

b. Balanced data 
For balanced data (35) reduces to j.,.: 

for n,, = n Q i and j .  (37) 

Thus the mean of the cell means, j.,., of (35) reduces for balanced data to the 
regular column mean j.,., as in (37). And then (36) reduces to the familiar 
ANOVA estimator 

(38) = 8: = (MSA - MSAB)/bn 

of (26) in Chapter 4, derived from Table 4.5. 

c. Diagnostic opportunities 
The really interesting feature of J1 of (36) is that it demonstrates for 

all-cells-filled data that the ANOVA estimator of 0,’ for balanced data and the 
unweighted-means-analysis estimator for unbalanced data can each be expressed 
as a simple average of estimated covariances. And from this one can look at 
the individual estimated covariances that go into that average, and scrutinize 
them for any underlying patterns. Hocking et ul. (1989) give an example of 
doing this, using (36) and noting that for having four levels of the column factor in 
their data, the values of the covariance estimate Zf(ji , .  - jj.,.)(jf,,. - jj.,,.)/(u - 1) 
are as shown in Table 11.1. Although 8: = = (34.1 + 35.3 + 37.0 + 13.1 
+ 13.0 + 13.3)/6 = 24.3, it is clear from Table 11.1 that the estimated covariances 
involving column 1 are all considerably larger than those among columns 2, 3 
and 4. The diagnostic value of (36) is self-evident. 
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TABLE 11.1. VALUESOFTHEESTlMATEDCOVARlANCE 

fZAJ1, .  - 9.,*)(J,,'. - 9.f.) 
j'  3 2 j '  = 3 j '  = 4 

j -  1 34.1 35.3 37.0 
j = 2  13.1 13.0 
j = 3  13.3 

Source: Hocking e? a/. (1989, Table 3). 

This, then, is the underlying idea of what Hocking et a/. call their "Ave" 
method of estimation. That paper contains much more detail than is given here, 
including a weighted version of the Ave estimator, and presentation and 
discussion of efficiency values for the case of 1 15 observations in a 4-by-4 layout 
with 1 1  cells each having 10 observations and the other 5 cells each having one. 
This is considered for 14 different combinations of the values 0, 0.1,0.5, 1 and 2 
for 6: and 6:. They summarize by saying their "limited numerical evidence.. . 
suggests that in many cases these estimators are very efficient". Efficiencies are 
compared with those of a Henderson Method 111 estimator and of estimation 
from the weighted squares of means as in (147) of Chapter 5. No comparison 
is made with ML or REML estimation. 

d. Some-cells-empty data 
Green ( 1988) extends the estimation procedure typified by (36) to the case 

of some-cells-empty data. For each pair j, j' let mjy be the number of rows in 
which the cells in columns j and j '  have observations, i.e., in which both nu > 0 
and nij ,  > 0, for i = 1,. . . ,a. Thus mjy = a - Xi'= , 6ne,u,o for S being the 
Kronecker delta. Then define .MjY as the set of indices i for those mil. rows for 
which n,, > 0 and n,y > 0, and also define 

9.Ay,. = c jjij.lmjy and j.yu). = c jju../mjl, . 
is.#,,, Is.Mjf 

Then 4, is estimated as 

Example. Consider Table 11.2 as a set of observed cell means, with four 
empty cells. For Table 11.2 the values of m,,, and j.,u.). are as follows: 

m , ,  = 2, 

m13 = 39 

9.1(2). - - (12 + 16)/2 = 14, 

9-1(3).  = (12 + 21 + 24)/3 = 19, 

9.2(1).  = (14 + 20)/2 = 17, 

j .3 (1) .  = (15 + 23 + 25)/3 = 21, 

m 2 3  = 2, y".*(j). = (14 + 16)/2 = 15, j . 3 ( z ) .  = (15 + 21)/2 = 18 . 
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TABLE 11.2. OBSERVED CELL MEANS 

j =  1 i = 2  i = 3  

i = l  12 14 15 
16 21 i = 2  - 

i = 3  16 20 
23 i = 4  21 
25 i = 5  24 

- 
- 
- 

IJsing these and the means in the table in the equation for c$l gives 

f3 (2 )4 ,  = [( 12 - 14)( 14 - 17) + (16 - 14)(20 - 17)]/(2 - 1)  

+ [( 12 - 19)(15 - 21) + (21 - 19)(23 - 21) + (24 - 19)(25 - 21)j / (3 - 1 )  

+ [( 14 - 15)( 15 - 18) + (16 - 15)(21 - 18)]/(2 - 1)  = 51, 

which leads to J1 = 17. 
A weakness of this method of estimation for data having many empty cells 

is that, depending on the pattern of empty cells throughout the data layout, it 
is possible for much of the data to be unused in the estimation process. For 
example, suppose the check marks in Table 11.3 represent cells that contain 
data. Then all values of mlj. are 0 or 1 and no estimation of 4I is possible; and 
the same is true for m,,, and the estimation of I $ ~ .  

TABLE 11.3. CELLS CONTAINING DATA 

j =  1 j = 2  j = 3  j = 4  

i=  1 d d 
i = 2  d d 
i = 3  d d 
i = 4  d d 

11.3. CRITERIA-BASED PROCEDURES 

ANOVA estimation originated from the empiricism of equating mean squares 
to their expected values. Although that implicitly yielded unbiasedness, there 
was no specification of desired criteria for estimating variance components with 
the object of developing estimators that satisfy those criteria. Certainly, minimum 
variance properties were established for ANOVA estimators from balanced 
data-but only long after such estimators were first suggested. And ML and 
REML estimators get their attractive properties such as consistency, efficiency 
and asymptotic normality through being the outcome of the maximum 
likelihood method, and not by specifying those properties as criteria at the 
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outset and then developing estimators to satisfy those criteria. This is the 
methodology that is described now. It leads to a variety of procedures with 
acronymic names such as MINQUE, MIVQUE, MIMSQUE, MIVQUE(0) 
and I-MINQUE, the underlying philosophy being to derive estimators that 
have a n i m u m  gorm (or variance, or mean square) and which are quadratic 
functions of the data and are unbiased. We begin with specifying these criteria. 

a. Three criteria 
A generalization of estimating a single variance component is estimating a 

linear combination of components, p’u’, where p’ represents any known vector. 
Since a variance is a second moment, it seems natural to estimate it by a 
quadratic form (which is a homogeneous second-order function) of data. We 
therefore consider estimating p’u’ by y’Ay for symmetric A, but with A to be 
determined by whatever criteria we wish to impose on y‘Ay as an estimator of 
p’u’. With the model equation 

r r 

1=0 I = O  
y = X$ + c Z,u, and V = var(y) = c Z,Z;o:, (39) 

three criteria come to mind. 

4. Unbiasedness. Since E(y’Ay) = tr(AV) + $‘X’AXfl unbiasedness de- 
mands 

p‘u2 = C, tr(AZ,Z;)of + fl’X’AXfl . (40) 

p r  = tr(AZ,Z;) and X’AX = 0 .  (41) 

Requiring (40) to be true for all o: and for all fl leads to 

It is tempting to think that X‘AX = 0 of (41) leads to AX = 0, but this is 
not necessarily so. It is true that A‘ = A implies A = L’L for some L’ of full 
column rank and then X‘AX = X’L’LX. Therefore X‘AX = 0 is X’L’LX = 0. 
But X’L’LX = 0 implies LX = 0 only if L is real; whereupon LX = 0 implies 
AX = 0. But L is not always real. It is when A is non-negative definite (n.n.d.), 
so that for A n.n.d. and symmetric X‘AX = 0 does imply AX = 0. 

A being n.n.d. is only a sufficient condition for X‘AX = 0 to imply AX = 0. 
As an example, when estimating the class variance component ot from balanced 
data of a 1-way classification random model, the A N O V A  estimator is 
8: = (MSA - MSE)/n, as in ( 5 5 )  of Chapter 3. In writing this as y‘Ay the 
matrix A is not n.n.d. Evidence for this is in the negative estimate 8: = -10 
of (56) in Chapter 3. Of course, for A N O V A  estimators from balanced data 
AX = 0 is always true, even though A may not be n.n.d., as just noted. 

Translation inuuriance. A quadratic form y’Ay is said to be translation- 
invariant in the context of the model (39) if its value is unaltered by location 
changes in $, i.e., if fl becomes fl + 6 then y’Ay is translation-invariant 
if y’Ay = (y  - XG)’A(y - X6). This reduces to (2y + X6)’AXS = 0 or, for 
z = 2y + X6 to z‘AXG = 0. We want this to be true for all z’ and 6. Among 

4. 
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those values will be the cases when z’ and 6 are, respectively, a row and a 
column of an identity matrix. Thus each element of AX must be zero and so 
AX = 0. Since AX = 0 always implies X’AX = 0, we therefore also have 
unbiasedness of y’Ay if p ,  = tr(AZ,Z;)V i ;  but unbiasedness does not always 
imply translation invariance except if A is n.n.d. 

4ii. Minimum uariance. The variance of y‘Ay does, in general, involve 
third and fourth moments of elements of y. But confining attention to y being 
normally distributed gives, from using (38) in Theorem S4 of Appendix S.5, 

(42) var(y’Ay) = 2 tr[(AV)’] + 4p‘X’AVAX$. 

And the mean squared error of y‘Ay as an estimator of p’u2 for given p is 

MSE(y’Ay) = var(y‘Ay) + [E(y’Ay) - p’uZ]* 

= 2 tr[(AV)’] + 4p‘X‘AVAXp + [tr(AV) + p‘X‘AXp- p ’ ~ ~ ] ~  . 
(43 1 

A criterion for deriving estimators can be to minimize (42) or (43). 

b. LaMotte’s minimum mean square procedures 
LaMotte ( 1973b) considered five different classes of estimators, governed by 

different combinations of the criteria of the preceding subsection. In each he 
determined A, subject to those criteria, by minimizing the mean squared error 
given in (43) assuming p and u2 (and hence V) known. His five classes and 
their estimation follow. In all cases the estimator involves pre-assigned values 
of p and u2, which for that purpose are denoted by Po and u;. Replacing and 
u2 by fi0 and u;, we define 

(44) 

(45) 

Po = V,’ - v,’x(x’v,’x)-x’v,’, 

Bo = X(X’V; ‘X)-X’ + So for So = X(lV;’&X’, 

and 

(46) 
v, ‘SV, 1 

1 +c, 
B, =V, ’ -Po-  , with co = &,X’Xp, . 

Using these expressions [for which LaMotte (1973b) has two useful lemmas; 
see E 11.4(b,c)], the five classes of estimation procedures given by LaMotte 
( 1973b) are summarized as follows. In all cases the given form of y‘ Ay is a best 
estimator of p’u2 at Po, u;; i.e., whe? assuming fl = Po and u2 = u& The reader 
is referred to Appendix A0 of that LaMotte paper for his excellent discussion 
of describing an estimator as “best at 8,”. 

4. Class C,: unrestricted 

y“(Zc, + 1)V-l - v,’xp,pbx’v,’]y. P ‘ 4  
c; + ( n  + 2)(2c, + 1) 

y‘Ay = 

This estimator is neither unbiased nor translation-invariant. 
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-ii. Class CI: expectation of y‘ Ay containing no 8. A is confined to satisfying 
X‘AX = 0. This is not unbiasedness, because tr(AZ,Z;) = p r  is not also being 
demanded of A. 

P’u: Y ’ P O Y  yrAy = 
N - r x + 2  

The only criterion imposed on this estimator is that its expected value does not 
contain Po. 

Class C,: translation-invariant. The estimator in this class is derived 
using AX = 0, and it turns out to be the same estimator as in class C,. I t  is 
translation-invariant. 

-iii. 

-iu. Class C3: unbiased. Define 

Mi,o = P0ZiZ;Po + PoZiZiB, + B,Z,Z;Po 

for P and B- of (44) and (46). The estimator of p’u2 is p’1’ for 6’ satisfying 

{m tr(Mi,oZjZ;))i,jlo~2 = { c  Y’Mi.oY)ilo 0 

This is the best (at Po,u:) estimator that is unbiased. 

-u. Class C,: translation-inuarianr and unbiased. The estimator of u2 is 
given by 

This estimator is unbiased, translation-invariant and best at B0, a:, 

LaMotte (1973b) gives extensive details for the derivation of these results, 
and also for mean squared errors and attainable lower bounds thereof. 

Notice that the estimation equations (47) of Class C, are the same as those 
for REML in (104) of Chapter 6 except that P there represents P with the 
solution u2 to those equations replacing u2, whereas in (47) Po is P with the 
pre-assigned u; replacing a’. Thus the REML equations have to be solved 
iteratively, but equations (47) are just a simple set of linear equations in the 
elements of 6’, because Po is a matrix with numerical elements. No iteration 
is required as with REML. Since, for unbiased estimators, mean squared error 
equals variance, equations (47) also represent minimum variance unbiased 
estimators, on assuming P is actually Po. We proceed to derive (47) ab initio. 

c. Minimum variance estimation (MINVAR) 
As an estimator of p’u’ for known p’, we seek symmetric A such that y‘Ay 

has the following properties: 

( i )  translation invariance, which requires AX = 0; 
( i i )  unbiasedness, which additionally demands tr(AZiZi) = p i ;  

( i i i )  minimum variance, which means (under normality) that 

var(y‘Ay) = 2 tr(AV)’ + 4$’X’AVAX$ = 2 tr(AV)2 

{,,, t r (PoZ,Z~PoZ,Z~)} i , j~o  ii2 = { E  y’PoZiZ~Poy) i~o  . (47) 

(using AX = 0) is to be a minimum. 
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Thus the problem is to choose A so that tr(AV)’ is minimized, for V p.d., 
subject to A = A’, AX = 0 and tr(AZ,Z;) = p i  for i = 0, 1 ,..., r. Since it is 
tr(AV1’ that is to be minimized with respect to elements of A, it is clear that 
the resulting A will have elements that are functions of elements of V. But those 
elements of V are functions (usually various sums) of the variance components 
that we seek to estimate in the form y’Ay. Thus our anticipated estimators are 
to be functions of the parameters they are estimating. This is not acceptable. 
We circumvent this situation as follows. 

Suppose the variance components were to be considered known, represented 
by u2. Then ask the question “What value would u’ have to be in order for 
the preceding minimization problem to be satisfied?” In other words, what 
equations would uz have to satisfy so that for any known p’ we would have 
p’u’ = y‘Ay such that tr(AV)Z is a minimum subject to A = A’, AX = 0 and 
tr(AZ,Z:) = p ,  for i = 0, I , .  . . , r? Solving this problem can be achieved in a 
variety of ways. We begin by redefining the problem to put it in a form for 
which the answer is well known. 

Since V is p.d., non-singular Viexists such that V = ViVj. (See E 11.5.) Using 
Vi, define 

2, = V-iZ, and A = VfAVj, (48) 

and 

noting that 

k%=O and V - j M V - i = P .  (50) 

Also observe that 

A = A’ = A f i  = M A  = MAM if and only if AX = 0 and A = A’ . 
(51) 

The two trace terms of the minimization problem can now be written as 

tr( AV)’ = tr( AVAV) = tr(V4AVAVi) = tr( A’) = (vec A)’ vec A, 
and 

tr(AZ,Z;) = (vec A)‘vec(fiZii;M). 

Then, because from (51 ), using A and M implicitly includes AX = 0 and A = A‘, 
we can rewrite the minimization problem as: find A to minimize 

(vec A)’ vec A subject to (vec A)’(r vec(MZjZiM)) = p’ . 
We solve this minimization problem with the following well-known lemma. 

( 5 2 )  
- -  I 

Lemma. t’t is minimized, subject to t’W = A’, by t = WB for A = W’W8, 
for some vector 8. 
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Proof. For 28 being a vector of Lagrange multipliers, minimizing 
t’t - 28’ ( I  - W’t) with respect to elements of t and of 8 leads, respectively, to 
t = W8 and I = W’t, for which the latter is then 5 = W’W8. 

Comment. The lemma as stated is a simple result in mathematics. It does, 
of course, have an important application in statistics, in least squares estimation 
where for z 5 (Wg, I )  we seek t‘z as an unbiased estimator of I’g that has 
minimum variance. 

We use the lemma to solve the minimization problem of (52) by writing 

t = vec A, W = { r  vec(MZ,Z;M)) and I = p . w - 1  

Then (52) is solved in the form 

vec A = {, vec(Ri , i :R)}@ (53) 

(54) 

and 

p = { E  [vec(M2$;M)]‘} { r  vec(MZi2;R)}8 . 
These equations simplify. First, (53) is vec A = X,O, vec( &lg,Z;M), and because 
A and M have the same order, this is 

A = xieiRiiZ;M. 
Then, in substituting for A, M and 2 from (48) and (49) and using (50), this 
reduces to 

A = z,epz,z;P . ( 5 5 )  

Similarly, using (vec K)‘  vec L = tr( K L )  for any K and L of appropriate orders, 
(54) reduces to 

p = {,,, tr(PZ,Z;PZJZJ)}i,,~,8. (56) 

Therefore, since we want u2 to satisfy p ’ d  = y’Ay, we have on using( 55) and (56) 

e’{,,, tr(PZ,Z;PZ,Z;)}u2 = y’(x,B,pz,z;P)y = 8’ IC Y’PZ,Z;PY} . (57) 

Throughout this development p of p ’ d  has been assumed known; and 8 depends 
on p through (54). Therefore, in wanting the development to apply to all p, we 
also want it to apply for all 8. Hence in (57) we let 8’ be successive rows of I 
(of order r + 1 )  and so get the equations 

{,,, tr(PZ,Z;PZ,Z;)}d = {c y’PZ,Z;Py} . (58)  

These equations have to be solved for u2. Since P involves a’, through V-’, 
a solution for u2 has to be obtained by numerical techniques. Clearly not all 
of its elements will necessarily be non-negative. 

The solution to (58) has been called the minimum variance, location-invariant, 
unbiased estimator of d. But, because of the iterative procedure involved, it  
will not be an unbiased estimator of u2. Nor, even under normality, will it have 
minimum variance. It might better be called PSEUDO-MINVAR. 
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Notice that the form of (58) is exactly the same as the REML equations in 
(104) of Chapter 6. Thus REML solutions and solutions to (58) are identical. 
And, of course the form of (58) is also similar to (47) for LaMotte’s Class C,: 
replacing P in (58) with Po gives (47), whereupon it is a minimum variance 
(under normality), location-invariant, unbiased estimator at u& But, of course, 
(58) has to be solved iteratively whereas (47) has just a single solution, one 
that depends on u;. 

d. Minimum norm estimation (MINQUE) 
In a series of four papers, Rao (1970, 1971a,b, 1972) suggested a method of 

estimation that does not require the normality assumption that is the foundation 
of ML, REML and MINVAR (minimum variance). It has the same basis as 
LaMotte’s approach, of estimating p’u2 by y’Ay with A = A’, AX = 0 and 
p i  = tr(AZ,Z;), but instead of deriving A by minimizing an unknown variance 
(or mean square), it minimizes a known norm, a Euclidean norm, which is akin 
to a generalized variance. The derivation is as follows. 

In the model y = X f l +  xi=, Z,u, the random vectors u, are unknown. They 
have mean zero. Therefore if ui = {c ui,}, were known, a “natural” estimator 
(Rao’s own word-1972, p. 113) of o: would be u;u,/qi, where qi is the order 
of ui. Thus a “natural” estimator of p’u2 would be 

In contrast we are going to use as an estimator p’h2 = y’Ay = u’Z‘AZu. Hence 
the difference between the two estimators is p’a2 - p’6’ = u’(Z’AZ - A)u. 

Rao chose to minimize a weighted Euclidean norm based on this difference, 
using o& as preassigned values of u: in the form D = {d u&Iq,}. Thus D is 
simply var(u) with o& in place of a:. Then the norm that gets minimized is 
tr(FF‘) for F = Dt(Z’AZ - A)D! Modest algebra, including the use of 
p ,  = tr(AZ,Zi), reduces this (see E 11.7) to 

P:ad,i tr(FF‘) = w[(AV,)~] - & -, 
qi 

where V, is V with oi in place of u2. It is tr(FF‘) that is to be minimized with 
respect to elements of A. But since those elements do not occur in p i ,  oi,i or qi, 
we have only to minimize tr[(AV,)2]. Thus the minimization problem is to 
minimize tr[(AV,)2] subject to A = A’, AX = 0 and p i  = tr(AZ,Z;). This is 
exactly the same minimization problem as in the preceding subsection, only 
with Vo replacing V. Accordingly its solution is (58) with that same replacement, 
leading to the estimation equation 

{,,, tr(P,ZIZ;PoZ,Z;)}62 = {c y‘PoZiZ;P,y} . (59) 

Equations (59) yield what are known as MINQUE estimators: dnimum 
- norm, quadratic llnbiased estimators. They are exactly the same as (47) for 
LaMotte’s Class C,. Moreover, they have the same form as the MINVAR 
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equations of (%)-and the REML equations of (104) in Chapter 6. But there 
is that big difference: MINVAR and REML equations (they are the same) have 
to be solved by iteration: the LaMotte Class C4 and the MINQUE equations 
(which are the same), do not. The reason for this is that in (59 )  the unknown 
variances occur only in 6’. This is because Po in (59) has elements that are all 
known numbers: it is P with u’ replaced by u;, where u; has been decided on 
as part of the estimation process. Thus (59) is simply a set of r + 1 equations 
that are linear in the r + 1 unknown variance components. They get solved, 
and the solutions are the MINQUE estimates; but they do, of course, depend 
on what has been used as ui. And if n people had the same data and used the 
same model, but used n different vectors u;, then (59) would yield n different 
MINQUE estimates. This is a distinctive feature of the MINQUE procedure. 
It is something we do not favor. Nevertheless, the estimators are locally minimum 
norm (minimum variance, under normality) in the neighborhood of a;, and 
are locally unbiased. 

e. REML, MINQUE and I-MINQUE 
The REML equations are 

{,,, tr(PZiZ$%jZ;)}iP = { c  y’PZiZ;?y}, 

tr(PoZiZ;PoZ,Z;))62 = { c  Y’poz,z;poY 1 - 

(60) 

(61 1 
Equations (61) get solved directly for 6’. Equations (60) have to be solved 
iteratively. To start the iteration, an initial value has to be used for a’; call it 
a:. Then equations (60) yield the first iterate, 6:. But (60) using u: for u2 in 
P is identical to (61). Therefore 6: will be exactly the same as the solution of 
the MINQUE equations (61 ). Thus we have the relationship 

whereas the MINQUE equations are 

a MINQUE = a first iterate solution of REML . (62) 

And notice that it is “a MINQUE”, not “the MINQUE”. For a given set of 
unbalanced data different values of G; used in Po of (61) will not necessarily 
yield the same MINQUE 6’. Indeed, one can expect the &values to be different 
for each e;. A genetic application of the connection between REML and 
MINQUE is discussed by Henderson (1985). and Rao (1979) also considers 
the connection more generally. 

Consider the MINQUE equations (61) again. They yield an estimator, 6;,), 
say. Bearing in mind that u; is a pre-assigned value of u2, it would not be 
unnatural, having obtained ii:l) based on u; from (61), to contemplate using 
6:11 in place of ui in (61) and solve, yielding what we may call 6t2); and this 
process could be continued. It is called iterative MINQUE, or I-MINQUE. 
Clearly, if one uses I-MINQUE to convergence then, providing the starting 
values for iterating I-MINQUE are the same as for iterating REML, 

I-MINQUE estimates = REML (based on normality) solutions . (63) 
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True it is that neither MINQUE nor I-MINQUE require normality 
assumptions, but so far as estimates are concerned (63) is valid. Moreover, 
Brown (1976) has shown that I-MINQUE estimators, the basis of which require 
no normality assumptions, are asymptotically normally distributed; and Rich 
and Brown (1979) consider the effect of imposing non-negativity constraints 
on I-MINQUE estimators. 

Equations (62) and (63) are both clearly statements about solutions of 
equations, so far as REML goes; i.e., non-negativity requirements of REML 
estimators have not been brought into play. This highlights the as-yet- 
unmentioned fact that MINQUE as a method contains no provision for 
precluding negative estimates. Choosing 0: and solving (61) is no guarantee 
against getting one or more negative estimates. 

f. REML for balanced data 
The REML and MINVAR procedures are, under normality, the same-as 

discussed following (60). But we also know [e.g., Graybill ( 1956) and colleagues; 
see Section 4.43 for balanced data the ANOVA estimators are MINVAR. Hence 

REML (based on normality) solutions = ANOVA for balanced data . 
(64) 

g. MINQUEO 
A particular easy form of MINQUE is when u: is taken as a null vector 

except for o& = 1. Then the MINQUE equations (61 ) reduce for M = I - XX + 

to 

{,,, tr(MZiZ;MZ,Z>)}62 = { c  y’MZ,Z;My} . 
The resulting estimators were suggested by Rao (1970) in the first of his four 
papers on MINQUE. 

With minimum variance estimators being called MIVQUE, estimators 
obtained from (65) have been called MIVQUEO by Goodnight (1978)-but 
MINQUEO seems more general. Without using any name, Seely [1971, 
equation (6)] has MINQUEO as a method of estimation, Corbeil and Searle 
(1976a) have it as the starting point of the (iterative) REML procedure, 
and Hartley et al. [1978, equation ( lo)]  espouse its use on grounds of 
relatively easy computability, a feature that is promoted by Goodnight ( 1978). 
Reconciliation with (62) of the Corbeil and Searle (1976a) description and of 
the Hartley et al. (1978) description are the topics of E 11.8 and E 11.9. 

h. MINQUE for the I-way classification 
By way of example we outline derivation of the MINQUE equations (61) 

for the 1-way classification with unbalanced data. The full details are extensive 
and are left for the solutions manual that will be available from the authors; 
and the results are as in Swallow and Searle (1978). The task is to simplify (61) 
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to be in the form 

where soo = sesq(ZbPoZo), sol = sl0 = sesq(ZbP,Z,), s l l  = sesq(Z\PoZl), 
uo = sesq(ZbP,y) and u1 = sesq(Z;P,y). In making these simplifications we 
use the model equation 

y = p l N  + Z l a  + e with X = IN,Z0 = I N  and Z,  = {d I,,,} . 
This leads to 

2 

Jfll} ' with A, = + n,a;,,, 
az.04 i J = l  

where C T : , ~  and a;,, are the pre-assigned values of a: and a; that are to be the 
basis of the MINQUE procedure. Then 

Po = V,' - k { m  Jfl, -} x nl. ' 
A i b  , . i '=O 

After tedious algebra we find, for k ,  = n,/A,, that 

~1 = & k : ( j i .  - kCikijji.)* (67) 

Various adaptations to the MINQUE equations are suggested by Chaubey 
( 1984) for eliminating the possibility of MINQUE estimators being negative. 

11.4. SUMMARY 
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with ( 1 1 )I ( 12 1 

Dii = o f [ (  1 - pii)Iq, + piiJ,], and Dii. = pii.aiai.Jqi ql. for i # i' . 

Also var(e) = R; left to the reader. 

Genetic covariances: relationship matrix . (16) 

Maximum likelihood : 

V = ZDZ' + R; 
ML equations; 

var(ii*). 

Restricted maximum likelihood: Section 1 1. I f  

Modeling variance components as covariances: Section 1 1.2 

Model: 

Estimation: 

Balanced data simplification: 

Diagnostics: Section 1 1.2~. 

Some-cells empty data: Section 11.2d. 

Criteria-based procedures: Section 1 1.3 

Estimate p'a' by y'Ay. 

Unbiasedness : 

p i  = tr(AZ,Z:) . 

Translation invariance: 

A X = O .  

Minimum variance: 

var( y ' Ay 1; 
MSE(y'Ay) . 

LaMotte's procedures: Section 11.3b. 

Minimum variance estimation (MINVAR): 

{,,, tr(PZiZ;PZ,z;)}aZ = { c  y'PZ,Z;Py} . 

(42) 

(43) 
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Minimum norm estimation (MINQUE): 

{,,, tr(Poz,Z;P,zjz;))il2 = {f y’PoZ,Z;Poy) . 
a-MINQUE = a first iterate of REML . 

I-MINQUE estimates = REML solutions 

REML solutions = ANOVA for balanced data 

(59) 

(62) 

(63) 

(64) 

(65) 

(66 )* ( 67 1 

Special case (MINQUEO): 

{,,, tr(MZ,Z;MZjZ;)}6’ = { c  y’MZ,Z:My} . 
MINQUE for the I-way classification: 

11.5. EXERCISES 

E 11 .1 .  Apply the estimation method described in Section 1 l .la to 
estimating components of covariance in the 2-way crossed classi- 
fication, no interaction, random model, with one observation per 
cell. 

Apply (29), (30) and (31) to the following variations of the 1-way 
classification. 
(a) Model ( l ) ,  just the ylrj  data. 
(b) Model ( I )  and (2), without (3); i.e., ‘I# = ‘I, = 0. 
(c) Model ( l ) ,  (2) and (3). 
(d)  Model ( l ) ,  (2) and (10) with IT: = IT: and pi = p V i. 
(e) The preceding case with p = 0. 
( f )  Model ( I ) ,  (2) and (11)  with a:=a:, p r r = p l  V i  and 

pit, = p2 V i # i ’ .  

(g) The preceding case, with p1  = 0. 
( h )  Model ( I )  with D of (15), but R = az1. 
( i )  Model ( I )  with D of (16). 
Try each of the preceding cases ( i )  with balanced data and (i i )  with 
unbalanced data. You may find some cases more difficult than 
others. 

E 11.2. 

E 11.3. (a) Show that of (36) is unbiased for IT:. 

(b) For balanced data reduce (36) to (38). 
(c) Show that 
(d)  Why are the data of Table 11.3 very unsatisfactory for 

estimating 4’ in a manner analogous to (36)? 

of (36) is 8: of (145) in Chapter 5. 
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E 1 1.4. Matrices P, B, S and B- and scalar c are defined in Section 1 1.3b. 
(a) Show that PX =0, PS=O, SV-’S=cS, PVP=P and 

BB-B = B. 
(b) For symmetric A show that X’AX = 0 if and only if there 

exists a symmetric C such that A = PCP + PCB- + B-CP. 
(c) For symmetric A show that AX = 0 if and only if there exists 

a symmetric C such that A = PCP. 
For results in Section 11.3: 
(a) The canonical form under orthogonal similarity of V is 

U‘VU = {d l i )  for orthogonal U and the li being eignroots 
of V (e.g., Searle, 1987, p. 283). Show that this leads to the 
existence of nonsingular Vi such that V = ViV! 

(b) Verify (5 1 ). 
(c) Show that tr(AZ,Z;) = (vec A)’vec(&lZ,Z;M). 
(d) Confirm (55) and (56). 

Verify the comment that follows the lemma in Section 11.3~. 
For F and Do defined in Section 1 1.3d show that 

E 11.5. 

E 11.6. 
E 11.7. 

P : 4  tr(FF’) = tr(AVo)2 - c. - . 
‘ qi 

E 11.8. [Corbeil and Searle ( 1976a).] Using a matrix T of full row rank 
N - rx  and such that T’(TT’)-’T = M and E(Ty) = 0, these 
authors define 

L = T’(THT’)-’T 

for H = V/6: as in (28) of Chapter 6. Then their REML equations 
are 

( N  - r )&;  = y‘Ly (68) 

(69) 

and 

6; tr( ZiZ;L) = y’LZ,Z$y for i = I,. . . , r . 

(a) Prove that LHL = L. 
(b) Prove that LH is idempotent, of rank N - rx. 
(c) By multiplying the ith equation of (69) by r ~ f  and summing 

over i = 1,. . . ,rr incorporate (68) into (69) to yield the 
equations 

(70) 

(d) Show that ui = [ O  Ol;] used in place of u2 reduces (67) to 
the MINQUEO equations (65). 

(e) Explain why L = Pa:. 

{,,, tr(Z,Z;LZjZ~L}i,jCo62 = { c  y’LZ,Z;Ly},,‘, . 
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E 11.9. [Hartley, Rao and LaMotte (1978).] These authors use a matrix 
that we call W, which they describe as X orthogonalized “By 
a Gram-Schmidt orthogonalization process.. . ”, omitting any 
linearly dependent columns. Then for 

v, = (I - WW’)Z, 

{m tr(v,v;vjv;},,f0u2 = { c  y’V,V;y},P, . 

(71) 

(72) 

their equations are 

Show that these are the MINQUE equations (65). 
E 11.10. Derive (67)’from (66), using (60). 
E 11.11, (a)  Write &I = (MSA - MSE)/n of Section 3.5 as y‘Ay and 

derive A as a linear combination of the three matrices I, €3 J,, 
J,, and 1,”. 

(b) Show that AX = A1 = 0. 
(c) Use A derived in (a )  to confirm 8: = - 10 of (56) of Chapter 3. 
(d) For data consisting of two observations in each of two classes, 

namely 4,14 and 6,16, calculate 8; = (MSA - MSE)/n. 
(e) For the data of (d) calculate the numerical value of A of (a) 

and use it to confirm 6: of (d); and show that AX = 0. 



C H A P T E R  12 

T H E  D I S P E R S I O N - M E A N  M O D E L  

This chapter deals with the general mixed model restructured so as to be a 
linear model that has u2 as the vector of parameters; i.e., for 3 and CY (which 
shall be defined), E ( g )  = 3u2. It is called the dispersion-mean model and was 
first proposed by Pukelsheim (1974). It can also be viewed as an outcome of 
the seminal work of Seely (1971). A variation of it is used by Malley (1986). 

12.1. THE MODEL 

As in Chapter 11, we confine attention to estimating a linear function of 
variance components by a translation-invariant quadratic form y ’ Ay with A 
symmetric. Hence we deal here only with y‘Ay where 

y = Xp + Zu + e 

and 

A = A’ and AX = O  

as in Section 11.3a-ii. We also use M of (18) and (19) in Appendix M.4b, i.e., 

(2) M = I - X(X’X)-X’ = I - XX’ = M’ = M2 with MX = 0 .  

Then, along with the symmetry of both A and M, it follows that 

AM = A  = A ’  = MA; and so MAM = AM = A .  (3) 

Now consider y’Ay: 

y’ Ay = y’ MAMy [A = MAM] 

= vec(y’MAMy) [y’Ay is scalar] 

= [(My)’ @ y’M] vec A [vec(ABC) = (C’ @ A )  vec B] 

= (vec A)’( My @ My) [transposing a scalar] . (4) 

405 
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Therefore E(y’Ay) for any A = M A M  depends, apart from A, only on 

= (M 6 M )  vec Z,Z;a: 
(i10 ) 

= (M 6 M)Zi vec(ZiZ;)o: 

= (M 6 MI{, vec(ZiZ;)},l0{, 

= {rvec(MZ,Z;M)), , ’o{ ,a~}ibo [vec(ABC) =(C‘@A)vecB]  . 
( 5 )  

I = M y  0 M y  and I = {, vec(MZ,Z;M)} . (6) 

E(4Y)  = 9 - 0 2 ,  (7)  

Now define 

Then ( 5 )  is 

which is a linear model for u2, where, by virtue of(6) and the definition of M in (2), 
the elements of I are squares and products of the residuals after fitting the 
fixed effects model y = Xp + e using ordinary least squares. Thus it is that, for 
estimating any linear function of the variance components by the translation- 
invariant quadratic form y‘Ay, the model ( 7 )  is the underlying model for the 
variance components: and that quadratic form can always be expressed, using 
(6) and (7), as a linear function ofelements o f I ;  i.e., y’ Ay = (vec A ) ’ I  because 

y’Ay = y’MAMy = vec(y’MAMy)=(y’M@y’M)vecA 

= (vec A)’(My 0 M y )  = (vec A ) ’ I  . 

Hence the choice of any symmetric A (satisfying AX = 0) to be used in y‘Ay 
is equivalent to the choice of the linear combination (vec A ) ’ I  of elements of 
y. Therefore we can confine attention to (7). This is the key to much of the 
subsequent development of this chapter. 

12.2. ORDINARY LEAST SQUARES (OLS) YIELDS MINQUEO 

We show that the ordinary least squares (OLS) equations for estimating 6’ 
from (7), namely I ’ I a 2  = I ’ y ,  are in fact the MINQUEO equations of 
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Chapter 11. This is so because 
S’S = { c  [vec(MZ,Z;M)]’}{, vec(MZ,Z;M)} 

= {,,, [vec(MZ,Z;M)]’ vec(MZ,Z;M)} 
= {,,, tr(MZ,Z;MMZ,Z;M)} 

= {,,, tr(Z,Z;MZ,Z;M)} 

[(vec A‘)’ vec B = tr(AB)] 
[M = M2].  

Similar algebra reduces S’y, so that S’Sd = S ’ y  becomes (see E 12.1) 

(,,, tr(Z,Z;MZ,Z;M)}a* = {c y’MZ,Z;My}, 

which is the same as the MINQUEO equation in (59 )  of Chapter 11. 

12.3. FOURTH MOMENTS IN THE MIXED MODEL 

Having used OLS in the dispersion-mean model, we proceed to consider 
generalized least squares (GLS). This demands knowing var( I). With 
I = My @ My = (M @ M)(y @ y) from (a), it is clear that elements of I 
involve squares of elements, and products of different elements of y. Therefore 
v a r ( I )  involves fourth moments of elements of y. To derive var(I), we begin 
with var(u @ u) for u in the general mixed model 

ZiZ:ai2, (8) 
r r 

y = Xg + Zu = Xg + C Z,u, with var(y) = V = ZDZ’ = 
i = o  in0  

having, as usual 

var(u) = ~ ( u u ’ )  = D = {d o ; ~ ~ , } , : ~  and q = q.  = q, . (9) 
110 

a. Dispersion matrix of u @I u 
Noting that u @ u = vec(uu’) gives 

var(u @ u) = E (u  @ u)(u @ u)’ - [E(u @ u)][E(u @ u)]’ 

= E(  uu’ @ uu‘) - [ E vec( uu’)] [ E vec( uu‘)]’ 

= E(  uu’ @ uu’) - (vec D)( vec D)’ . ( 10) 

4. A normalizing transformation. To simplify E( uu’ @ uu’), define 

w = D-ju = { wk}k! 1, with ~ ( w )  = o and var(u) = ~ ( w w ’ )  = I,; 

and, for y: and 7, being kurtosis parameters given by 

E(w:)  = 3 + 7: and E(u;fi) = uf(3 + 7,) = E ( u & )  V j ’ ,  

we have 
{d 7 ? } k z  1 = {d 7L1q,}iz0 * (11) 

This simply means that n, of the 7:s have the value y i ;  i.e., y: = 7, for 
k = m i - l  + 1 ,..., m,, where m, = Z;=,n,. Then 

E(  UU’ @ UU’) = (Di @I Df)E( WW’ @ WW’)( Di @ D*) . (12) 
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The middle term in (12) is 

E(ww’@ ww’) = E { c  Wk{r w1ww’},!1}kil 

for which a typical term is E(wkwlw,w,); and this, because the wks have zero 
mean and zero covariance, has only two non-zero values 

E(W;) = 3 + y: and E(wiw:) = 1 ;  (13)  

i.e., whenever k = 1 = m = n, E(wkwlw,w,) = 3 + y ; ,  and if k, I ,  m and n are 
equal only in pairs E( wkw,w,w,) = 1 .  Otherwise, the value is zero. Using these 
values, we now illustrate E (  ww’ @ ww’) for a small example, and argue from 
that to the general case. 

4. Example. Consider the model equation y,, = p + at + e,, for a 1-way 
classification with just one class, i = 1, having only two observations, n, = 2. 
This means 4 = qo + 41 = 2 + 1 = 3, and 

w‘=  Ce11lae e12/oe a ~ / a a l *  (14) 

Then ww’ @ ww’ has order 9, and the 9 pairs of subscripts on the WkWl  products 
in vec(ww’) are 

[ l l  21 31 12 22 32 13 23 331’. 

The quartets of subscripts in ww’ @ ww’, which is vec(ww’)[vec(ww’)]’, are 
therefore as shown in Table 12.1. 

Each element in the matrix of Table 12.2 is the number of subscripts that 
are the same in the corresponding element of Table 12.1; e.g., in Table 12.2 the 
leading element is 4, corresponding to the element 1 1  1 1  in Table 12.1. Thus the 
first five elements in the first row of Table 12.2 are 4, 3, 3, 3 and t p ,  the t p  
corresponding to the 1212 in Table 12.1, in which there are two pairs of equal 
subscripts. Then E(ww‘@ ww’) is a 9 x 9 null matrix except that, in accord 
with (13), it has 3 + y t  and unity corresponding to each element 4 and t p ,  
respectively, in Table 12.2. Thus, on using ( 1  1 )  and (14) to get 7: = y ;  = yo 
and y 5  = yl, 

E (  ww’ 0 ww’) = 
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- 
4 3 3  
3 tp 2 
3 2 tp 

3 tp 2 
tp 3 2 
2 2 2  

3 2 tp 
2 2 2  
tp 2 3 - 

TABLE 12.1. QUARTETS OF SUBSCRIPTS I N  ww’ @I ww’ = vec(ww’)[vec(ww’)]‘ for w’ = 
[ W I  wz WJ] 

3 tp 2 
tp 3 2 
2 2 2  

tp 3 2 
3 4 3  
2 3 t p  

2 2 2  
2 3 t p  
2 tp 3 

1111 1112 1113 
1121 1122 1123 
1131 1132 1133 

2111 2112 2113 
2121 2122 2123 
2131 2132 2133 

3 2 tp 
2 2 2  
t p 2 3  

2 2 2  
2 3 tp 
2 t p 3  

t p 2 3  
2 t p 3  
3 3 4  

1211 1212 1213 
1221 1222 1223 
1231 1232 1233 

2211 2212 2213 
2221 2222 2223 
2231 2232 2233 

1 1311 1312 1313 
1321 1322 1323 
1331 1332 1333 

2311 2312 2313 
2321 2322 2323 
2331 2332 2333 

3111 3112 3113 
3121 3122 3123 
3131 3132 3133 

3211 3212 3213 
3221 3222 3223 
3231 3232 3233 

3311 3312 3313 
3321 3322 3323 
3331 3332 3333 

TABLE 12.2. NUMBER OF EQUAL SUBSCRIPTS I N  ELEMENTS OF 

TABLE 12.1. USING tp TO REPRESENT TWO PAIRS OF EQUALITIES - 

Scrutiny of ( 15) shows that 

where 

T, = 

E(  WW’ @ WW’) = TI + T2 + T, + T4, 

TI = 131, 

= I,,,,, = S, [Section M.91, 
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T3 = 

and 

T4 = 

1 ’  . .  
. . .  
. . .  
* . .  

1 . .  
. . .. 

* . .  
. . .  

1 . .  

* .  
. .  
. .  

where 0; is a row of q zeros. For the diagonal elements 3 + yo in ( 1 5 )  note that 
the 3 is accounted for in (16) because each of Ti, T2 and T3 has 1 in the same 
element, and the y o  comes from T,. And for T, of order q 2  x q 2  rather than 
32 x 32 of(20), 

T4= { d ~ o  0; yo 0; 0; yo 0; 71 0; 71 0; 

a ’ .  0; y, 0; 0; y,}, (21 1 

with, from ( 1 I ) ,  y, occurring qi times, for i = 0,. . . , r. Inspection of (21 ) reveals 
that it is, using ( 1  1 ), 

T4 = {d vec{d y i I q , } i L O }  * (22) 

-iii. The general form o f E ( w w ’  @ ww’). The general form of ( 1 5 )  is now 
clear: using q2-order forms of (17)-( 19), together with (22), in (15) gives 

E(ww‘ @ ww’) = I + S, + (vec I,)(vec I,)’ + T, . (23) 
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Therefore substituting (23) into (12) and then that into (10) gives 
var(u 8 u )  + (vec D)( vec D)’ 

= ( D f 8  Df)[I + S, + (vec I,)(vec I,)’ + TA](Dj@ Dj) . (24) 
In multiplying out (24), the second term simplifies by using (58) of Appendix M.9, 
and the third term becomes (vec D)(vec D)’ based on (53) of Appendix M.9. 
Thus (24) becomes 

var(u €3 u )  = ( D  8 D)(I + S,) + ( D f 8  Dj )TA(Dt8  Di) . (25) 
b. Fourth central moments of y 

4. General case. The fourth central moments of y are given by 

F = varC(y - XIU 8 ( Y  - X8)I 

= var(Zu 8 Zu) (26) 
= ( Z  8 Z)  var(u 8 u)( Z’ €3 Z‘) 

= ( Z @ Z ) [ ( D @ D ) ( I  + S,) + (DfODf)TA(Df8Df) ] (Z’€3Z’ ) ,  

= ( V  8 V)(I  + S N )  + ( Z D f 8  ZD’){d vec{d yiIq,}i20}(DfZ’8 D’Z’), 

using (25) 

(27) 

using (8) and (22). 

-ii. 
(27) to 

Under normality, Normality assumptions include y i  = 0, which reduces 

F, = (V 8 V)(I + SN) - (28) 

c. Dispersion matrix of 4y 

4. General case 

var(4y) = var(My 6 MY) 

= var[M(y - XP) €3 M(y - XS)] [MX = 03 

= (M 8 M)F(M €3 M) 

=(MVM@MVM)(I + S,) 
+ ( M Z D j 8  MZDf){, vet{,, yiI,,}ilo}(DjZ’M 03 DjZ’M), 

after using (58) of Section M.9. To facilitate subsequent discussion, especially 
when considering the case of zero kurtosis (e.g., normality), we label the two 
parts of the sum in (29) separately, and write 

var(4y) = -Y + < 

Y = (MVM @ MVM)(I + S) 

(30) 

(31)  

on writing S for SN and defining -Y and 6 as 
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and 

Yk = (M 6 M)(ZDi @ zDt){, VeC{, ylIql}ilo}(DiZ’ @I D k ’ ) ( M  6 M) . 

-ii. Under normality. When y is normally distributed, i.e., 

(32) 

y J V g ,  V), (33) 

4y ‘y (Id, V )  . (34) 

The quadratic form y’ Ay is translation-invariant when A is symmetric and 

then y ,  = 0 V i in (32) reduces (30) to Y of (31) so that 

d. Variance of a translation-invariant quadratic form 

AX = 0, whereupon its variance is 

var(y’Ay) = var[(X@ + Zu)’A(Xg + Zu)] 

= var(u’Z’AZu) [AX = 01 

= var [ vec( u‘ Z‘ AZu)] 

= var[(u’Z’ 8 u’Z’) vec A] 

= var[(vec A)’(Zu 63 Zu)] 

[u’Z‘AZu is scalar] 

= (vec A)’F(vec A), using (26) . (35) 

Using (27) gives (35) as 

var(y’Ay) = u1 + u2 

for 

ti, = (vec A)’(V 0 V ) ( I  + S) vec A 

= 2(vec A)’(V 6 V )  vec A 

= 2( vec A)’ vec( VAV) 

= 2 tr[(AV)’] [ (54) of Section M.91 (36) 

[( 57) of Section M.91 

[( 53) of Section M.91 

and for 

u2 = (VeCA)’(Z~~@~~t){dVeC{dyl~q,}l~o}(DtZ’@DDtZ’)vecA. (37) 

Also, on using 

H~~~ = D+Z’AZD~ = {hsI}s,$l and L~~~ = {dYiIql ) ,=’o  = { I ~ ~ } ~ , ? = ~ ,  
(38) 

(37) can, again, with the help of (53) of Section M.9, be written as 
4 c l  

d =  I t =  1 
u2 = (vec H)’{d vec L) vec H = 1 1 h,Z,I,, . (39) 
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But, from (38), L is diagonal, with I,, = 0 except when s = t ,  for which I,, is a 
7,. Therefore (39) is 

r 41 

“2 = c Yi c h:, 
i = o  r = 1  

r 41 

= 1 yi c [square of ( t ,  t)th element of ( i ,  i)th submatrix of DiZ’AZDi] 
i = O  f = l  

41 

= y p ?  c [square of ( t ,  t)th element of ( i ,  i)th submatrix of Z‘AZ] 
i = o  r = 1  

r 

= 1 yp:(sum of squares of diagonal elements of ZiAZ,). 
i = O  

Therefore from (36) and (40) 
r 

var(y’Ay) = 2 tr(AV)2 + 1 yiuf(sum of squares of diagonal elements of ZIAZ,) . 
i = 0  

(41 1 
This is the variance, under non-normality, of a translation-invariant quadratic 
form y’Ay. Under normality, yi = 0 V i and (41) reduces to the familiar form 
var(y’Ay) = 2 tr(AV)2. Equation (41) is, ofcourse, equivalent to the result given 
by Rao (1971b). See E 12.6. 

12.4. GENERALIZED LEAST SQUARES (GLS) 

a. GLS yields REML equations under normality 

var(4Y) = Y for Y of (31). For convenience we write 
With normality, every Yi is zero and so of (32) is null. Then (30) gives 

B = MVM (42) 

(43a) 

and then from (3 1 ) 

Y = var (9 )  = (B @ B)(I + S )  = ( I  + S)(B @ B), 

with 

Y -  = )(I + S)(B- @ B - )  . 

These two expressions for Y and Y - are based on (56) and (58) of Appendix 
M.9. GLSE on E ( I )  = $‘a2 then yields 

S’Y-S62 = 3’Y-q * (44) 

At first glance these equations seem innocent enough for calculating h2 as 
an estimator of u2. But through Y of (43) and B of (42) the Y -  in (44) involves 
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uz, which is unknown. Therefore (44) cannot be solved for 8’. Nevertheless, 
by replacing 62 in (44) with u2, we can think of the resulting equations, namely 

Z”Y-luZ = r v - g  (45) 

as being quasi-GLSE equations in u2. Clearly their solution for a’ will have 
to be obtained by numerical methods. 

We proceed to reduce (45) to be in terms of y, X and Z and functions thereof. 
First, from (6) and (43b) 

(46) 

using (53) of Section M.8, 

[transpose] 

[(57) of Section M.9 with 0 = 41 

I ‘ Y -  = [(M@M){,vec(Z,Z;)}]‘a(I + S)(B- COB-) 

= ;[{, vec(MZ,Z;M)}]’(I + S)(B- B B - ) ,  

= ;[(B- 0 B-)(I + S ) { ,  V ~ C ( M Z , Z ; M ) } ~ L ~ ~ ’  

= $[(B- @ B-){, vec(MZ,Z;M)},L,]’ 

= $[{, vec(B-MZ,Z;MB-)},L,]’, using (53) of Section M.8 
(47) 

= ${, [ vec(B - MZ,Z;MB- )]’},Lo 

Therefore 

X ’ Y - 3  = i{, [vec(B-MZ,ZiMB-)]’}{, vec(MZjZ[iM)} 

= ${, tr[(B-MZ,Z;MB-)MZjZ;M]} [(54) of Section M.81 

= ${, tr(Z,Z;PZjZ;P)}i.jLo . 
Similarly, from (47) and (6) 

[Section M.4f] 

3 ’ Y - W  = $[{, [vec(B-MZ,Z;MB-]’},l,](My@ My), 
and this is a column of scalars. Therefore it is 

3‘Y-‘?!V = ${, (y’M 0 y’M) vec(B-MZ,Z;MB-)},l0 

= ${, y’M(MVM)- MZiZiM(MVM)- My },Lo, 
using (53) of Section M.8, 

[Section M.4f-j = ${, y‘Pziz;Py},l0 . 
Therefore the GLS equation X ’ Y - % u 2  = T Y - y  of (44) is 

{, t r (Ziz ;Pz jz ;P)}az  = {, y’PZiZ;Py}, (48) 

which is the same as the REML estimation equation in (90) of Chapter 6. 
What we have dealt with here is the case of normality-of assuming 

y - N ( X f l ,  V). That leads to var(4Y) = Y as in (34), which, via (45), produced 
(48). But nothing prevents us conceptually from considering exactly the same 
approach with non-normal data. The sole change in (45) will be that Y will 
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be replaced by Y + Yk of (30)-(32). This offers an extension of the ideas of 
REML to situations other than normality, and is an alternative to the marginal 
likelihood interpretation discussed in Section 9.2. 

We next show that REML equations are the same as BLUE equations in 
the dispersion-mean model E ( q )  = Su’. To do so, we need some results from 
estimating the fixed effects when V is assumed known. 

b. Excursus on estimating fixed effects 
In the general linear model E(y) = Xfl with var(y) = V and V non-singular 

it is well known that the GLS estimator of XP, denoted GLSE(XP), is the same 
as the best linear unbiased estimator BLUE( XP): 

GLSE(XP) = X(X’V-’X)-X‘V-’y = BLUE(XP). 

When V is singular, it can be shown that using V -  in place of V- ’  yields 
GLSE(XP) = X(X’V-X)-X’V-y. For this case we have two important theorems 
concerning the equality of GLSE(XP), OLSE(XP) and BLUE(XP). The first is 
from Zyskind and Martin (1969). that 

GLSE(XP) = BLUE(XP) if and only if V V - X  = X . (49) 

The proof of this is omitted, because of its length-primarily because it requires 
the derivation of BLUE(XP) for singular V as 

BLUE(XP) = ( I  - M)[I - VM(MVM)-M]y 

(see Pukelsheim, 1974; Albert, 1976). The second theorem we use is that 

BLUE(XP) = OLSE(XB) iff VX = X Q  for some Q . (50) 

This comes from Zyskind (1967), wherein VX = X Q  is only one form of the 
theorem’s necessary and sufficient condition. The theorem applies for both 
nonsingular and singular V. The proof for nonsingular V is left to the reader 
as E 12.4; that for singular V is lengthy (see Searle and Pukelsheim, 1989). 

c. REML is BLUE 
Having shown in (48) that quasi-GLS estimation in the model E ( 9 )  = Su2 

leads to REML equations, we now show that REML equations are BLUE 
equations in that model by showing under normality that (49) is satisfied; i.e., 
that YY-S  = S. We see this as follows. 

Y T - S  = Y(S‘Y-)’ 

= (MVM @ MVM)(I + S))[{, vec(MVM)-MZ,ZIM(MVM)-}I 

from Y of (43) and S’Y- of (47). Hence 

YV-S  = +(I + S){, vec[MVM(MVM)-MZ,Z;M(MVM)-MVM]}, 
and because V is n.n.d., MVM(MVM)-MZ, = MZ, and so 

Y Y - 3  = +(I + S):, vec[MZ,Z;M)} = {, vec(MZ,Z;M)} = I. (51) 
Q.E.D. 
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Therefore, by the Zyskind and Martin ( 1969) result in (49), the REML equations 
are BLUE equations for the estimation of u2 from the dispersion-mean model. 

12.5. MODIFIED GLS YIELDS ML 

Suppose we knew p. Then consider 

9 0  = ( Y  - XP) @ ( Y  - XP) 

with 

~ ( g , )  = E {  vec[(y - xp) (y  - x ~ Y ] }  = vec V = vec(&z,z;u:) 

= {, vec(Z,Z;)}u2 = Cu2, for C = vec(Z,Z;)} . (53) 

Hence, on assuming normality of y and using (26) and (28), we have 

lo - (Ca2, F-,.) for Fur. = (V @I V)(I + S) . (54) 

In comparing l - ($a2, V )  with go - (Cd, FUN.) we see from (6) and (53) 
that 

I = vec(MZ,Z;M)} and C = {, vec(ZiZ;)}, 

and from (43a) and (54) that 

V = ( B @ B ) ( I  + S), with B = MVM, and FA. = (V@V)(I  + S). 
Therefore C is I (and Fwv. is V )  with M replaced by I. Thus, because 
VV - LT = S, as in ( 5  1 ) it is clear that 

and so GLS applied to go of (54) yields the BLUE equations for u2. 
Furthermore, because (48) is the quasi-GLSE equation for u2 obtained from 
l, replacing M by I in (48) gives the quasi-GLSE equation for u2 obtainable 
from lo. One must also replace l = My @ My by go = (y  - Xp) 8 ( y - Xp), 
which (after replacing M by I), is equivalent to replacing y by y - Xp; and 
note that replacing M by I in P = M(MVM)-M (see E 12.3) means replacing 
P by V - ' (assuming V to be non-singular). Thus (48) becomes 

tr(Z,Z;V-1Z,ZJV-')},,,'=o~2 = { , (y  - xp)'v-'z,z;v-'(y - xp)},lo,  
(56) 

as the GLSE equations based on go. And because of ( 5 5 )  they are the BLUE 
equations for estimating u2 from go. 

An impracticality of (56) is that P is unknown. Replacing Xp by XPo = 
X(X'V-'X)-'X'V-'yleads toreplacingv-'(y - Xp)byV-'(y - Xpo) = Py, 
and then the equations are 

(57) { tr (V  - 1 zi z;v - 1 z,z;,> ,,,L 0 = { Y'PZi ZjPy} , Lo, 
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which are the ML equations in Chapter 6. This result was first obtained by 
Anderson ( 1978). 

12.6. BALANCED DATA 

Estimation of variance components from balanced data involves numerous 
relationships emanating from the incidence matrices X and Z being partitionable 
into submatrices that are Kronecker products (KPs) of identity matrices and 
summing vectors; and with V = XiafZiZ; having each ZiZ; as a K P  of I- and 
J-matrices (details are shown in Section 4.6). These relationships lead to 
estimators from balanced data that have several attractive properties. 

Seely (1971) has very general results that are salient to establishing some of 
these properties. They lead, for example, to the result under normality (i.e., 
when every kurtosis parameter y i  = 0) that 

ANOVA = UMVUTIQ, ( 5 8 )  
meaning ANOVA estimators have the property of being gniformly minimum 
- variance, unbiased, panslation-invariant, quadratic. We adopt freely from 
Anderson et al. (1984) in discussing this topic further. 

a. Estimation under zero kurtosis 
4. History. The variances of the minimum variance estimators of ( 5 8 )  do, 

of course, depend on var(y) = V = Xia:Vi,  where V, = ZiZ;. More than that, 
existence of UMVUTIQ estimators of the a:s comes from V and the V,s having 
a certain structure. To be precise, let 

(59) 

be the set of all matrices that are linear combinations Z,tiV, of the V,s for the 
t i s  being any real scalars (represented by R). Then W is defined by Seely (1971) 
as a quadratic subspace of symmetric matrices when every member B of W has 
B2 also in W. 

Seely’s (1971, p. 715) results on uniform minimum variance unbiased 
estimation are established on the basis of two assumptions: 

W = { Ci t iV i  I t , E  R}, 

(a)  that W is a quadratic subspace of symmetric matrices; and 
(b)  that matrices Hi exist such that ViX = XHi for each i. 

These assumptions certainly hold in most fixed effects model, as in Atiqullah 
( 1962), wherein V = aiV, and V, = I,. They also hold for the random effects 
model in Theorem 7 of Graybill and Hultquist (1961), since their requirement 
that an analysis of variance exists leads to Seely’s assumption (a), while their 
assumption ( iv)  is Seely’s assumption (b). Since Seely ( 1971, p. 717) shows that 
his assumptions (a )  and (b)  necessitate invariance of the resulting estimator, 
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neither Atiqullah (1962) nor Graybill and Hultquist (1961) need a restriction 
to invariant quadratic estimators. 

In general, however, an ANOVA model with balanced data does not 
necessarily satisfy Seely’s assumption (a )  for the same kind of reasons that 
Seely’s ( 1971, p. 719) example of the balanced incomplete block design does 
not, and as further evidenced in Example 1 of Kleffe and Pincus (1974, p. 53). 
Another demonstration that W is not always a quadratic subspace is given by 
Searle and Henderson (1979) for the 2-way crossed classification where both 
V- ’  and V2  include a term in J, whereas V itself does not. But the V,s of V, 
together with J, do form a quadratic subspace and V is a member of it. Indeed, 
there are typically two distinct situations. 

( 1 )  For some models (e.g., crossed classification models having no nested 
factors) the Vis do not define a quadratic subspace. This is because, by the 
crossed nature of the factors, there is a product of two V,s that yields J,, and 
J, has to be included in W. 
(2) For other models (e.g., completely nested models, and mixed models having 
random factors that are, within themselves, effectively nested) the V,s define a 
quadratic subspace and no product ViV, yields J,, and so there is no need to 
include J,. 

In contrast to V = var(y), consider the variance of My from which 
I = My @ My is formed: 

r 

var(My) = MVM = 1 o:MV,M. (60) 
i s 0  

The analogous form of W for matrices MViM is then 

L%M = { ZitiMViM I t i €  W} (61) 

Concerning gM, Theorem 6 of KlefTe and Pincus (1974, p. 52) shows that in 
any linear model the quadratic subspace property that is not always evident in 
V is needed only of BM. For balanced data this is always the case, i.e., W M  
defines a quadratic subspace, resulting from the fact that M and the Vis are all 
linear combinations of KPs of Is and Js. No matrix such as J, ever has to be 
included with the the MViMs. This is so because MJ, is null. Note, too, that 
the analogue of Seely’s assumption (b) is trivially satisfied, since My has 
expectation zero. 

Theorems 1 and 3 of Seely (1971) assert that for balanced .data with zero 
kurtosis there exists an unbiased invariant quadratic estimator of the variance 
components that has uniformly minimum variance in its class (UMVUIQ). 
Under normality this estimator retains the UMV property among all unbiased 
invariant estimators, whether they are quadratic or not (UMVUI). We now 
show that this estimator also coincides with the ANOVA estimator, thus 
justifying (60) and (61 ). 
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-ii. The model. Under zero kurtosis (every yi = 0) we have, as in (34), 

= (My @ My) - ( In2 ,  U )  (62) 
for I of (6) and U of(  3 1 ). We now show two important properties of this model. 

Property A of the model: ZiZ;X = XQi for some Qi. As described in 
Chapter 4, when there are m main effect factors in a model, X and Z can each 
be partitioned, X into f submatrices (for f fixed effects factors) and Z into 
r + 1 submatrices (for r random effects factors plus error). Each submatrix is 
a K P  of m + 1 matrices, each of which is an I or a 1. Therefore there are 2"" 
possible matrices that can be submatrices of X or Z. Furthermore, each of them 
(typified for convenience as z,,, be it a submatrix of X or of Z) is such that 
zhz; is a K P  of m + 1 matrices that are each I or J. Hence, because I and J 
matrices commute in multiplication, so do ZhZb and Z,Z;. Moreover, since 
I2 = I, IJ = JI = J and J2 = nJ, 

ZhzizkZ; = z,z;z,zi = 4lzIz; (63) 

for every pair, h, k = 1,2,. .. , 2,+l, and for q51 > 0 being a scalar and 1 being 
some integer in the range 1,2,. . . ,2"+ I .  Also, (63) means that, for example 

(64) ZiZ;V = EjafZiZ;ZjZj = Cjafc#+jZ,Z; 

for 4ij being some scalar. Hence 

for V = a:ZiZ; we have V2 = -1 OIZIZ;, 
i = o  I =  1 

where 8, may be zero for some values of 1 in the range 1,2,. . . ,2"+ 

X,,,, are, respectively, Vir and V,, for t = m + 1 : 
Now define Vi, Vi,, X, and X,, by the following equations, where Vi,,,.+ and 
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TABLE 12.3. PRODUCTS V,,X,, = Xp,Glp, 

[ 12.63 

Now in (66), each V,, is either I or J, and in (67) each X,, is either I or 1, all 
of order N,, the number of levels of the tth main effect. Therefore the four 
possible values of the product V,,Xp, in (68), together with a matrix Gipl 
defined such that V,,VP, = X,,G,,, in each case, are as shown in Table 12.3. 
Therefore from (68) 

m +  1 m +  1 

ZiZ:X = {r  @ XlfGip,} , ,~l  = {rX,G,,}pLl for G,, = @ Gip,  (69) 
I= 1 r = 1  

for Qi = {d G,,}pLl.  Thus Z,Z;X = XQ,. 
Conformability for the product XifGipf in (69) might seem to be lacking in 

some cases because, in Table 12.3, two values of G,,, are scalar. However, matrix 
products do exist even when a scalar is involved; e.g., for scalar 8, both A8 and 
( A  @ B)( f3 @ L)  = A0 €3 BL exist. Therefore (69) does exist. 

Property B of the model: YZ = Z Q  for some Q. Equation (47) shows 
Z’Y-.Andfrom(43)and(45)weseethat Yissimply Y -  withB @ Breplacing 
i ( B -  @ B-).  Making this replacement in Z’Y-  of (47) with B = MVM of 
(42) and transposing therefore immediately gives 

2 V Z  = {r vec(MVMZiZ;MVM)},Io . (71) 

In doing this note that B = MVM and hence BM = B. But with ZiZ;X = XQ, 
from (70) 

Therefore with MX = 0 
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this last equality coming from the symmetry of MZ,Z;M. Hence in (71) 

MVMZ,Z;MVM = MVMZ,Z;VM, using (72), 

= MVMZjaj $,jZjZ;M, using (64), 

= MZjaf r#+,VMZ, Z; M 

= MZjaf~,jVZjZJM, using (72), 

= MC,a~$,jC,a:~,,Z,Z:M, using (64), 

= Z, O,, MZ, ZiM for 8,, = Zjaf a: ~ , j$ j r  . 
= ~,(~ja:a:$,j$j,)MZ, Z;M 

Therefore in (‘72) 

Y I  = 2{r vcc(Z,Oi,MZ,Z~M)}ILo 
r 

= 2{r 8,, VCC(MZ,Z;M)},,‘O 
r = o  

= 2{r vec(lllZ,Z;M)},,’oQ = XQ for Q = {,,, 8i , , } i . i~=o . (73) 

4i. Conclusion. With zero kurtosis and I - (Xu’, Y )  we have YS = SQ 
for some Q. Therefore, by (50), t3e BLUE of e’ in this model is the OLSE in 
the same model. But OLSE, as we have seen in Section 12.2, has equation 

{,,, tr(MZ,Z;MZjZ;)},,j1062 = y’MZ,Z;My} . (74) 

Then, since W M  of (61 ) is a quadratic subspace of symmetric matrices, the result 
of Seely ( 197 1 ) discussed following (59) shows that the estimators 6’ of (74) 
are UMVUQ-and because they are also translation-invariant they are thus 
UMVUIQ; and, under normality, they are UMVUI. Furthermore, because in 
ANOVA models with balanced data, ANOVA estimators have these same 
properties, as discussed in Section 12.1, the estimators in (74) are the ANOVA 
estimators. 

We now turn to the case of non-zero kurtosis, which uses Y + Yk of (30) 
in place of V .  Otherwise we follow the same line of reasoning. 

b. Estimation under non-zero kurtosis 

4. Themodel, As was done by Seely (1970,1971), Pukelsheim ( 1976,1977, 
1979), Brown ( 1976, 1978) and Anderson ( I978,1979a,b), we have, for non-zero 
kurtosis, from (7) and (30) 

I = My@My - ( S u ’ , Y  + Yk),  (75) 

with I, Y and f k  given by (6), (31)  and (32), respectively, the latter being 

f r  = (MZ @ MZ)( Di @ D*){d vec( {d yiIq,)}i,’o))(D* @ D*)(Z’M @ Z’M) . 
(76) 
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This can be written as 

V k  = (MZ @ MZ)GAG'(Z'M @ Z'M), 

using 

C = { re l@el} lZo 

for el being the tth column of I, (for q = C ; = , q , )  and for 

A = { d  o"yilq,}iLl = {d dl } ,P l ,  

where for i = 0, 1, .... r 
i 

6, = ofyi for t = (i-' 1 qs ) + 1, (y q s )  + 2, .... 1 q s  . 
s = o  s = o  s = o  

1 * . -  
. . .  
. . .  
. . .  
e l .  

* . .  
. . .  
. . .  

1 . .  

[ 12.61 

(77) 

(78) 

. . . . . . . . .  

= GAG' . 1 
1 

. . . . 1 . . . .  

1 

&o . 

. . . . . . . . .  

4. AN0 VA estimation. For non-zero kurtosis ANOVA models with 
balanced data we now verify (58) by exhibiting a matrix H that satisfies 
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Y,S = SH, where S and Y, are defined in (6) and (32), respectively. Then 
since YS = SQ, we will have (Y + Yk)S = SQ* for Q* = Q + H, and so 
the condition for ordinary least squares estimation being the same as best linear 
unbiased estimation will be satisfied for the non-zero kurtosis case. Theorem 
4.5 of Pukelsheim ( 1977), Theorem 6 of Kleffe ( 1977) and Theorem 1.4 of Drygas 
(1980) point out the need for a matrix Q; we substantiate this, as in Anderson 
et al. (1984), by showing its existence for the non-zero kurtosis case in ANOVA 
estimation from balanced data. 

With I of (6) and Y, of (76) 

Y,S = Y,{r vec(MZ,Z;M)},Lo = {r  Y, vec(MZ,Z~M)},L, . 
In order to show that this is SQk for some Q,, we only need show that 
Y,S = {r Sh,},lo for h, being some vector. We therefore use (77) for Y k  and 
consider us defined by YS = { u,},Zo. Then 

us = Y, vec(MZ,ZjM) 

= (MZ @ MZ)GAG’( Z’M @ Z’M) vec( MZ,Z:M) 

= (MZ @I MZ)GAG’ vec( Z’MZ,Z:MZ) 
[(53) of Section M.8, and M2 = M] 

= (MZ @ MZ) vec[A diag(Z’MZ,Z:MZ)], (79) 

on using ( 5 5 )  of Section M.8, and where the notation diag(A) represents a 
diagonal matrix of the diagonal elements of A. 

Now suppose there are scalars I., for s = 0,1,. . . , r such that diag(Z’MZ,Z:MZ) 
in (79) has the form 

diag(Z’MZ,Z:MZ) = {d AisIq,}ifo = rs, say . (80) 

Then from (79) 

us = (MZ @ MZ) vec( Ar , )  = vec( MZAT,Z’M) 
r 

= vec(M ofyili,ZiZ;M) 

= vec(MZ,Z;M) a:yiAis 

= Sh, for h, = { E  a:yiAiSJilo . (81) 

i = o  
r 

i = O  

Therefore it remains to show that there are scalars A, satisfying (81). To this 
end, partition Z, into its columns zij for j = 1,. . . , qi and define 
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Every Z, is a K P  of Is and Is, so that partitioning the Is into their columns, 
denoted by e-vectors, gives each 

z,, as a K P  of es and Is; (83) 

ZkZ; is a KP of Is and Js; (84) 

(85) 

and every 

and 

XX+ is a sum of KPs of Is, Js and Cs [C = I - J]  . 
All these KPs are conformable, whereupon each of the two terms of (82) is also 
a KP. Therefore, on applying (83), (84) and (85) to (82), with each term in (82) 
being a scalar, it is clear that that scalar is a K P  of scalars (and hence a product 
of scalars), with the scalar that is in position t of the KP having, for some 
matrix Q,, one of the forms 

e;Q,e, = jth diagonal element of Q, 

or 

e;Q, 1 = jth row sum of Q, 

or 

l'Q,l = sum of all elements of Q, . 
And, from applying (86) to (82) we see from (84) and (85) that Q, is either the 
matrix in position t of zkz; (and so is either an I or a J), or else it is a product 
of matrices in position t of X X +  and zkz; (and so is either an I, a J, a C or 
a 0). Hence Q, does not depend on j. Therefore neither do the scalars in (86), 
and hence Lijk of (82) does not depend on j. Therefore ( 8  1 ) holds and so 

YkS = S{hs}sLo = SH for H = {h,}, lo . 
-iii. Conclusion. We now have 

Y% + VkJ = %Q + I H  = %(Q + H), 

and so in the dispersion mean model again, by (50), the BLUE of u2 is the 
same as the OLSE with balanced data. But this OLSE is ANOVA: and since 
BLUE in the dispersion mean model is UMVUI, we have ANOVA = UMVUI. 
And since we know this is true under normality, when kurtosis is zero, and we 
have now just shown that it is also true for non-zero kurtosis, we can therefore 
say it is true always. 

12.7. NON-NEGATIVE ESTIMATION 

In the general form of both random and mixed models there has been a 
long-time interest in the conditions under which non-negative quadratic 
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unbiased estimators of variance components are available. [See, e.g., Pukelsheim 
(1978) and Styan and Pukelsheim (1981).] Almost all reports on this topic and 
subsets thereof [e.g., dropping unbiasedness; see Hartung ( 1981 )] involve 
balanced data and quadratic subspaces of real symmetric matrices based on X 
and Z and their submatrices. An early discussion of these is Seely (1970), and 
their use in estimating variance components is to be found in such papers as 
Pukelsheim (1981a,b). Mathew (1984), Baksalary and Molinska (1984), Gnot 
el  al. (1985) and Mathew et al. (1991a,b). In particular, Pukelsheim (1981a) 
shows that, in the presence of a quadratic subspace condition, there is the 
dichotomy that either the ANOVA estimator (derived without paying attention 
to non-negativity) is automatically non-negative, or else the two properties of 
unbiasedness and non-negativity cannot be achieved simultaneously. In the 
latter case, unbiasedness needs to be replaced by some other meaningful 
statistical properties, and a variety of ways of comparing estimators emerges, 
as in, for example, Mathew ef al. (1991a,b). 

12.8. SUMMARY 

Model 

var(u) = D = {d oj?lq,}; var(y) = V + ZDZ’ . 
Dispersion-mean model 

M = I - X(X’X)-X = I - XX’ = M‘ = M2, with MX = 0; (2) 

4y = My €3 My and I = {, vec(MZ,Z;M)}; (6) 

E ( 9 v )  = X c 2 .  (7) 
OLSE + MINQUEO: Section 12.2 

1’1 = X’4y + {,,, tr(ZiZ;MZ,Z;M)}a2 = {c y’MZ,Z;My} . 
Fourth moments 
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var(4Y) = (MVM @ MVM)(I + S N )  
+ (MZDj @ MZDj)T,(DiZ'M @ DjZ'M) (29) 

= (MVM @ MVM)(I + SN), under normality; (31), (34) 

var(y'Ay) = 2 tr(AV)2 
r 

+ 1 yia4 (sum of squares of diagonal elements of Z;AZi) (41) 
i = O  

= 2 tr(AV)2], under normality. 

Estimating ts2 from the dispersion-mean model, with non-singular V 

GLSE(ts2) yields REML: 

S ' Y - S u 2  = S'Y-y-+ {,,, tr(Z,Z;PZ,ZjP)}a2 = { c  y'PZ,Z;Py} . (48) 

BLUE(u2) yields REML: (51 1 
(57) 

(74) 

GLSE on 4Yo I: ( y  - Xso) @ ( y  - Xso) yields ML . 
Balanced data 

ANOVA estimators are UMVUI . 

12.9. EXERCISES 

E 12.1. For Section 8.2 reduce S ' y  to a column of scalars y'MZ,Z;My. 

E 12.2. Verify Y -  of (45). 

E 12.3. By partitioning M of (2) as M = [ K KT']' for K'  of Section M4e, 
prove the theorem of Section M.4f through showing that the only 
non-null part of (MVM)- is (K'VK)-  '. 

E 12.4. Prove the theorem at the end of Section 12.4b, assuming that V is 
non-singular. 

E 12.5. Give direct proofs, without recourse to results in Section 12.4c, of 
the following results for go, C and F of Section 12.5: 

(a) F -  = $(I + S)(V- @ V-); 
(b) F F - C = C ;  
(c) C'F- = +{, [vec(V-'Z,Z;V-')]'}; 
(d) the GLS equations (48). 

E 12.6. Show that (41) is 

var(y'Ay) = 2 tr[(BAl)2] + 2 tr(flA28), 

where B = Z'AZ, A1 = D, fl is B with all off-diagonal elements 
changed tozero,andA, = {d yiufIqI},1,.Thisis Rao's( 1971b)form. 
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E S T I M A T I O N  F O R M U L A E  F O R  
U N B A L A N C E D  D A T A  

Catalogued here are detailed formulae for estimating variance components from 
unbalanced data for three nested random models and four forms of model for 
the 2-way crossed classification. The formulae are given without comment, and 
thus are to be viewed simply as a reference source. Most of them are from 
Searle (1971, Chap. 11)  with some improved layout, although a number given 
there have not been reproduced here. Only those considered to be the most 
useful are shown. For example, the 23 pages of the 3-way crossed classification 
are not included. 

Subscript ranges are shown as part of each model, but are not included as 
limits in summations, e.g., Z:= occurs as Xi. 

The first three models are nested random models: the 1-, 2- and 3-way cases. 
(The 1-way classification is usually not thought of as a nested classification but 
it can be: error, nested within classes.) In all nested models the three Henderson 
methods are all the same and are usually called the ANOVA method. This is 
true not only for nested models that are random models but also those that 
are mixed models. 

PART I. THREE NESTED MODELS 

F.1. THE 1-WAY CLASSIFICATION 

a. Model 

yij = p + a, + eij; 

i = 1,2, ..., a and j = 1,2, .. ., n,, with n = X,n, . 
421 

Variance Components 
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b. Analysis of variance estimators 
Calculate 

2 
a Y: Y.. 

t = l  J = 1  i = 1  ni N 

nl 

To= c y;, T,= c-, <=-, 
S2 = C,n? and S3 = C,n: 

Then 

8: = (To - T,) / (N - a )  

and 

8: = [T ,  - < - ( a  - l)d:]/(N - S 2 / N ) .  

c. Variances of analysis of variance estimators (under normality) 

var(8:) = 20:/( N - a), 

2afN2(N - l)(a - 1 )  4afa,2N 2a,4(N2S2 + S :  - 2NS3) var(8,2) = +- + 
( N  - a)(NZ - S2), N2 - S2 (N2 - S2)’ 

9 

d. Maximum likelihood estimation (under normality) 

also), 
Solve iteratively, as in ( 133). ( 134) and ( 135) of Chapter 3 (and see Chapter 8 

e. Large-sample variances of maximum likelihood estimators (under normality) 

and 
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Then 
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var(d:) = 2a4(Ciw:)/D, 

var(d:) = 2a3N - a + Ciw:/n:)/D 

and 

COV(dz, 6:) = -2a:(C,wf/n,)/D 

(Crump, 195 1 ; Searle, 1956). 

F.2. THE 2-WAY NESTED CLASSIFICATION 

c. Variances of analysis of variance estimators (under normality) 

var(8:) = 2a:/( N - b.) . 
Calculate 

k4 = ZIZjn$, k, = W j n $ / n i . ) ,  

k, = ZL(7Zln$)2/nL, k, = C.i(Zln$2/n?, 

k8 = Clni.(C,n$, k9 = W. 
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and 

2 ( k 7  + N k ,  - 2k5)af + 4(N - k12)aia,2 t 2(b.  - a ) ( N  - a)af/(N - b.)  var(&j) = 
(N - k 1 2 Y  

d. Large-sample variances of maximum likelihood estimators (under normality) 

var(d,2) cov(d,2,d$) cov(d,2,6:) ] [ t e a  :;; :;:I-’ 
cov(d,2,6;) var(d;) cov(d;, 5:) = 2 tab 

cov(d,2,6:) cov(dj, 6:) var(d,2) tae tge t e e  

with 
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F.3. THE 3-WAY NESTED CLASSIFICATION 

a. Model 

Yijhm = + ai + P i ]  + Yijh + ei]hm; 

i = 1 , 2  ,..., a, and j = 1 , 2  ,..., bi, k = 1 , 2  ,..., c,] 

m = 1,2,. . ., nijh,  and 

with 

b. = & b i ,  C i .  = Z j c i j ,  c.1 = C i C , j  and N = & z j & n i j k  . 
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c. Variances of analysis of variance estimators (under normality) 



THE 3-WAY NESTED CLASSIFICATION 433 

and 

and 
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PART 11. THE 2-WAY CROSSED CLASSIFICATION 

F.4. WITH INTERACTION, RANDOM MODEL 

a. Model 

y i j k  = + ai + Pj + Y i j  + e f j k ;  

i = 1 , 2  ,..., a, j = 1 , 2  ,..., b and k = 1 , 2  ,..., nij ,  

with 

n,, > 0 for s (i,j)-cells and C,C,n,, = N . 

TABLE F.1. ANALYSISOF VARIANCE ESTIMATION OF VARIANCE COMPONENTS IN 

THE 2-WAY CROSSED CLASSIFICATION. INTERACTION, RANDOM MODEL 

Terms needed for calculating estimators and their variances. 
For estimators only, calculate k , ,  k, ,  k 3 ,  k4 and k z 3 .  

k;  = k,/N for all r. 
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Then 

8: = SSE/(N - S )  = MSE 

and with 

1 
1 

N - k; k3 - k; k3 - 4 3  

k 4 - k ;  N-k ;  k4 - 4 3  

k; - k4 k; - k3 N - k3 - k, + k;3 

SSA - ( a  - 1)MSE 

6' = [ i ]  = P-'[ SSB - (b - 1)MSE 

as in (32) of Section 5.3b. This is equivalent to calculating 

SSAB* - (s - a - b + 1)MSE 

6, = [SSB + SSAB* - (S - a)MSE]/(N - k3) 

and 

6, = [SSA + SSAB* - (S - b)MSE]/(N - k4) 

with which 

8: = [ ( N  - k;)6, + (k3 - k;)6,, - { SSA - ( a  - l)MSE}]/(N - k', - k; + ki3), 

and 8: = 6, - 8: 8; = JB - 8: . 

(Searle, 1958). 

c. Variances of Henderson Method I estimators (under normality) 

var(8:) = 2&( N - s) . 
For P given above and for H and f being 

0 0 - 1  a - 1  

H = [  A 1 0 -:] and f = [  b - 1  ] 
var(6*) = P-'[Hvar(t)H' + var(Bf)ff']P-'', 

- 1  - 1  1 s - a - b + l  

and 

cov(6',8,2) = -P-'f var(8,2), 

where 

var(t) = var[TA T, TAB 7J'. 

Var(t) has 10 different elements; each element is a function of the 10 squares 
and products of a:, a:, a: and crf. The 10 x 10 matrix of these coefficients is 
shown in Table F.2. Apart from N, a, b, s and unity, Table F.2 involves only 
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28 different terms. These are shown in Table F . l .  An example of using 
Table F.2 is 

var(T,,) = 2 [ k 1 0 , 4  + k , a ;  + k230: + sof 

+ 2(kz ,o ;o f  + k23g;o: + N o ~ o ;  + k 2 3 a f ~ :  + Nafo; +  NO:^:)]. 

d. Henderson Method I11 estimators 

/%factor, with b levels. 
Label the factor having the smaller number of levels in the data as the 

Calculate R ( p ,  a, P)and h,  as in Table F.3. Also, using Table F. 1 ,  calculate 

h1 = N - k ; ,  hz = N - k ; ,  

h4 = N - k3 = h ,  

h3  = N - k k 3 ,  

and 

TABLE F.3. COMPUTING FORMULAE FOR THE TERMS NEEDED I N  USING HENDERSON‘S METHOD 111 FOR 

ESTIMATING VARIANCE COMPONENTS ADDITIONAL TO THOSE NEEDED IN HENDERSON’S METHOD I :  FOR 

THE 2-WAY CLASSIFICATION. MIXED OH HANDOM MODELS 

To calculate R(y, a, fl) compute 

For j=  I ,  ..., b 

cjl = n. j  - .$Ini. , 
i =  I 

rj  = y . j .  - 2 ni l j i . .  
i =  I 

b 

(Check: r l = O  

Forj,j‘= 1 ,2  ,..., ( b -  I )  

C = { c l j . }  and r = { r j }  . 
Then 

To calculate h,  compute 

F o r i =  1 ,..., a a n d j , j ’ =  1 ,..., b 

b 

F o r i = 1 ,  ..., a a n d j , j ’ = I  ,..., ( b - I )  

Fi = { AJY 1 . 
Then 

i= I 

and h,  = N - k + .  
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The available estimation equations, from (142) of Chapter 5, are 

(142a) 

(142b) 
1 

8: = - [ T A B  - R(p ,a ,  8) - (S - a - b + l)&,2] 
h6 

and any two of 

(142c) 

( 142d) 

(142e) 

Calculation of h6 and R(p ,a ,p )  needed for (124b) is shown in Table F.3. 

Because any two of equations ( 142c1 d and e) can be used, there are three 
different ways of using these equations, as shown in Table 5.4. 

F.5. WITH INTERACTION. MIXED MODEL 

a. Model 

Y i j k  = p + ai + p, + y l j  + eilk, pjs taken as fixed effects; 

i =  1,21...,a, j =  1,2 ,..., b and k =  1,2 ,..., n,,, 

with 

nij > 0 for s (ilj)-cells and CiX,ni, = N . 
The model is exactly the same as the random model case of the preceding 

section, except that the f l s  are taken as fixed effects. They are assumed to be 
fewer in number than the random effects in the data. 

b. Henderson Method I11 
Method I cannot be used because it is a mixed model; and Method I1 cannot 

be used because the model contains interactions between the fixed and random 
main effects. And in Method 111, equations (142d and e) come from sums of 
squares whose expectations contain fl. Therefore, Method 111 for this model 
has the prescription 

use ( 142a, b and c) and Table F.3 for h, and R ( p ,  a, fl) . 
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F.6. NO INTERACTION,  R A N D O M  MODEL 

a. Model 

Y i j k  = + ai + p j  + eijk; 

i =  1,2, ..., a, j =  1,2 ,..., b and k =  1,2  ,..., n i j ,  

with 

nij > 0 for s (i,j)-cells and XiCjn,j = N . 

b. Henderson Method I 
Calculate 

To = xiXjxky$k’ T, = Y.!./N, 

TA = Xiyf./ni. and TB = Zjyfj./n.j . 
Using Table F.1, calculate 

A1 = ( N  - k’ , ) / (N  - k 4 )  and ,I2 = ( N  - k ; ) / ( N  - k , )  . 
Then 

i2(T0 - TA) + Ji(To - TB) - (To - T,) 8: = 
A 2 ( N  - a )  + Al(N - b )  - ( N  - 1)  

’ 

8,‘ = [To - TB - ( N  - b ) 8 : ] / ( N  - k 4 )  

and 

8; = [To - TA - ( N  - a ) & : ] / (  N - k , )  . 

c. Variances of Henderson Method I estimators (under normality) 
Writing 

N - k ;  k ,  - k ;  a - 1  

Q = k 4 - k ;  N - k ;  b - 1  ] and a 2 = [ : ] ,  [ k ’ , - k 4  k ; - k ,  N - a - b + l  

It can be shown that the estimators are solutions to 

TA - 0 

Q u 2 = [  T B - T ,  ] = H t + [  0 ] 
To - TA - TB + T, TO - TAB 

for Ht of Section F.4c. 
When every nij = 0 or 1, TAB = To and Q&* = Ht, so that 

var(k2) = Q-’H var(t) H’Q”’ . 
var(t) will be calculated exactly as in Tables F.l and F.2 except with 0: = 0. 
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When some n i j  2 1, TAB exists even though it is not used in the estimation 
procedure. Nevertheless, 

Furthermore, To - TAB has variance 2 a 3 N  - s) and is independent of every 
element in Ht, whether a: = 0 or not. Therefore 

var(6’) = Q - ’ H  var( t )H’Q-” + 2q3q;ad(N - s) 

where q3 is column 3 of Q-I .  As with the ni j  = 0 or 1 case, var(t) is calculated 
from Tables F.l and F.2 using 0: = 0. 

d. Henderson Method 111 
Calculate R(p,a ,$)  of Table F.3, and from Table F.1 calculate 

h1 = N - k ; ,  

h4 = N - k 3 ,  

h ,  = N - k ; ,  

h l  = N - k4 . 
The available estimation equations, from (124), are 

To - R(p,a, B) 6; = 
N - a - b + l  

and any two of 

1 
6; = - [ R ( p , a , B )  - T’- (a - l)6,2], 

h l  

1 
s $ = - [ R ( p , a , f l ) -  T A - ( b -  I)&;] 

h4 

( 124a) 

(124b) 

( 124c) 

and 

hld ,2  + h,B$ = R(p, a, $) - T, - (a + b - 2)d: . ( 124d) 

Because any two of equations (124b, c and d )  can be used, there are three 
different ways of using these equations, as shown in Table 5.3. 

e. Variances of Henderson Method 111 estimators (under normality) 

section, Low ( 1964) derives the following variances and covariances. Calculate 
For estimators obtained using equations (124a, b and c) of the preceding 

N ’ = N - a - b +  1 

and, with the aid of Table F.1, 

f l  = k ,  - 2kI8 + XiEie(Ej~ij~~isj/n.j)’ 
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and 

fz = k ,  - 2 k I 7  + CjCI’(Zinijnij./ni.)z . 
Then 

var(8:) = 2a:/N’, 

cov(b:, 8: )  = - ( a  - l)var(b:)/h,, cov(b$, 6:)  = - (b - l)var(8f)/h4, 

var(b:) = 2 [ 0 3 N  - b ) ( a  - l) /N‘ + 2h,a:o: + f1a.43/h:, 

var(8;) = 2 [ & N  - a ) ( b  - l ) /N’  + 2h4a;~; + fza;]/h: 

and 

COV(8:,8$) = 2(7,4[k,, - 1 + ( a  - l ) (b  - l)/N‘]/h4h,. 

(Low, 1964). 

F.7. NO INTERACTION, MIXED MODEL 

a. Model 

yi jk  = p + mi + pj + eijk,  pis taken as fixed effects; 

i =  1,2 ..., a, j =  1,2 ,..., b and k =  1,2 ,..., nij, 

with 

tiij > 0 for s (i,j)-cells and CiCjnij = N . 

b. Henderson Method 111 
Method I cannot be used because this is a mixed model. Method I1 could 

be used because there are no interactions between fixed and random effects. 
But Method I11 is much easier because it simply involves using just two of the 
equations in the preceding model: 

use (124a and b); and Table F.3 for R ( p ,  a, fl) . 
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S O M E  R E S U L T S  IN M A T R I X  A L G E B R A  

Readers of this book are assumed to have a working knowledge of matrix 
algebra. Nevertheless, a few reminders are provided in this appendix. 

M.1. SUMMING VECTORS, AND J-MATRICES 

Vectors having every element equal to unity are called summing vectors 
and are denoted by 1, using a subscript to represent order when necessary; 
e.g., 1; = [ 1 11. They are called summing vectors because, with x’  = 
[x,  x2 x,], for example, l ’ x  = C:=, xi. In particular, the inner product of 
I ,  with itself is n: ILI, = n. A product of a summing vector with a matrix yields 
a vector of either column totals or row totals, of the matrix involved: for B 
having elements b,,, the product I’B is a row vector of column totals b.,, and 
B1 is a column vector of row totals b,. . 

Outer products of summing vectors with each other are matrices having 
every element unity. They are denoted by J. For example, 

1 

1.1;=[:1[1 1 I ] = [  1 1 1  ] = J 2 x 3  
1 1 1  

J-matrices that are square are the most common form: 

I , l h  = J, . 
Product of J s  with each other and with Is are, respectively, J s  and Is multiplied 
by scalars. For square J s  

J,’ = nJ, and J,I, = nl, ;  and tr(J,)  = n . 

Two useful variants of J, are 

J, = f J ,  and C,, = I, - J,,, 

tr(3,) = I and tr(C,) = n - 1 

with 

442 
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and products (omitting the subscript n )  

J 1 = 1 ,  C 1 = 0 ,  5'=3 a n d C ' = C .  

Thus 3 and C are idempotent. C is called the centering inatrix because Cx is 
a vector of elements xi - X for X = Z : ; = l x i / n .  

Illustration. The mean and sum of squares of data xl, x,,. . . , x, are easily 
expressed in terms of the preceding matrices. Thus 

x. l ' x  x'l n 
.f= C'='=> , s2  = 1 ( x i  - X)' = X'CX and n.2' = X'JX . 

i = l  n n n i =  1 

Linear combinations of I (an identity matrix) and J arise in a variety of 
circumstances, for which the following results are often found useful. 

( i )  (al, + bJ,)(crI, + BJ, )  = a d ,  + (up + ba + b p n ) J , .  

( i i )  (aI, + b J , ) - '  = - I, - - J , ) ,  for a # 0 and a # -nb .  
a *( a + n b  

(i i i)  lal, + b J , J  = a " - ' ( a  + n b ) .  
( iv)  Eigenroots of al, + b J ,  are a, with multiplicity n - 1, and il + nb. 

M.2. DIRECT SUMS AND PRODUCTS 

The matrix 

B, @ B, = [ B' "1 
0 B2 

is the direct sum of B, and B,, where those matrices can be of any order. This 
operation extends immediately to any number of matrices: 

k ;i i2 1:: 01. 0 
@ Bi = Bl @ B , @ B , @ . . . @  B, = 
i =  1 

Bk 

For A of order r x c with elements aij for i = l , . .  . , r  and j = 1,. , ., c, the 
matrix 

a 1 , B  U I ~ B  a lEB 

u , ~ B  u,,B * . *  a lCB 

u,,B u,,B 9 . .  u,B 



444 APPENDIX M CM.21 

is the direct product of A and B. For A being r x c and B being s x d ,  the order 
of A Q B is rs x cd. (Whereas the preceding formulation is in terms of a,,B, 
there is also an alternative in terms of bijA, but it is very rarely used today, 
and when it  is it is denoted B Q A in keeping with the above.) The matrix 
A Q B often goes by the name Kronecker product (KP)  because of Kronecker’s 
association with the determinant of A 0 B, although in this regard Henderson 
et a/. (1983) suggest that “Zehfuss product” would be more appropriate 
historically. 

The definition ofA @ Bextends very naturally to more than two matrices; e.g., 

A 0 B 0 C = A Q ( B  0 C), 
and 

One particularly useful application is that I can always be expressed as 
Kronecker products of Is of lesser order: 

Some useful properties of direct products follow. 

( i )  In transposing products the reversal rule does not apply: i.e., 

( A Q B ) ’ =  A ’ Q B ’ .  

( i i )  
( i i i)  
( iv)  For partitioned matrices, although 

For x and y being vectors: x’ Q y = yx’ = y 0 x’. 
For ,i being a scalar: l Q A = LA = A 0 A = A l .  

CAI 

AQCBi B , l # [ A O B i  AQB21 .  

A21 0 B = [A,  0 B A, 0 B], 

( v )  

( v i )  
(vi i )  

Provided conformability requirements for regular matrix multiplication 

For A and B square and nonsingular, ( A  Q B)- = A - Q B - 
Rank and trace obey product rules. For r A  and tr(A) being the rank 

are satisfied, ( A  @ B)(X Q Y )  = A X  Q BY, 

and trace, respectively, of A, 

r A m B  = r A r B  and tr(A 0 B) = tr(A) tr(B) . 

(vii i)  Provided A and B are square, )Apx,OBmx,nl  = IAImIBIP. 
(ix) Eigenroots of A Q B are all possible products of an eigenroot of A 

and an eigenroot of B. 
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M.3. A MATRIX NOTATION I N  TERMS OF ELEMENTS 

Familiar notation for a matrix A or order p x q is 

A=(a i j }  f o r i = 1 ,  ..., p a n d j = 1 ,  ..., q, 

where ajj is the element that is in the ith row and jth column of A. We abbreviate 
this to 

using m to indicate that the elements inside the braces are being arrayed as a 
matrix; and sufficient detail of subscripts follows the braces as is necessary, 
depending on context. 

This notation is extended to row and column vectors and to diagonal matrices 
with the use of r, c and d as follows. First, a column vector is 

the c being used to show that it is a column vector. Similarly 

is a row vector, and a diagonal matrix is 

where each of the last two symbols are used interchangeably. Extension to 
partitioned matrices is straightforward. For example, a direct sum is 

This notation has a variety of uses: e.g., 
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It can also be used in a nested manner. For example, with 

y .  I = { c y..} IJ  j = l i  '1, 

And it is especially helpful in algebraic simplifications when typical elements 
of matrices are easily specified, but giving each matrix its own symbol is not 
needed. For example, 

In this manner, it is an especially economic notation when successively 
introducing or developing new matrices in terms of already-defined symbols, 
but where one does not wish, or need, to have individual symbols for the 
matrices themselves. 

An adaptation of the block diagonal notation of ( 1 ) is useful for accommodating 
a situation that occurs with some-cells-empty data in the 2-way crossed 
classification. Consider the following two sets of nij-values for a 2 x 3 layout: 

Grid 1 
"ij 

2 3 7  
4 5 6  

Grid 2 
nij 

2 3 7  
4 0 6  

where dots represent null matrices (in this case vectors). For grid 2 the 
corresponding matrix that we want is 
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In trying to use the block diagonal notation of A ,  for A, we would have 1, in 
place of I 5 :  

We rewrite this as 

The d* means that when ni j  = 0 the symbol 1, is used but then the row that 
it occurs in is deleted. 1, is like having a column vector that has no rows: it 
has position but no dimension. 

M.4. GENERALIZED INVERSES 

a. Definitions 
Readers will be familiar with a nonsingular matrix T being a square matrix 

that has an inverse T- '  such that TT-' = T- 'T  = I. More generally, for any 
non-null matrix A, be it  rectangular, or square and singular, there are always 
matrices A - satisfying 

A A - A = A .  (2 )  

When A is non-singular, (2 )  leads to A -  = A - ' ,  but otherwise there is an 
infinite number of matrices A -  that for each A satisfy (2). Each such A -  is 
called a generalized inverse of A. 

Example. For 

A =  

4 9 1 4 6  

- 7 - t  - 2 - t  t 

-3 + 2t 1 + 2t -21 

- t  - l  t 

- 0  0 0 

( 3 )  
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Calculation of AA - A yields A no matter what value is used for t ,  thus illustrating 
the existence of infinitely many matrices A - satisfying (2). 

Two useful matrices involving products of A and A -  are 

A - A ,  idempotent, of rank r A ,  (4) 

A- = A - A A - ,  forwhich A A - A = A a n d A - A A - = A - .  ( 5 )  

and 

Any matrix A* satisfying AA*A = A and A*AA* = A* is called a rejlexive 
generalized inoerse of A. A simple example is A' = A - AA - of ( 5 ) ,  which provides 
a simple way of deriving a generalized inverse of A that is reflexive from one 
that is not. 

An important special case of both A -  and 4' is the unique (for given A )  
matrix A + ,  which satisfies what are known as the four Penrose conditions: 

( i )  A A + A  = A, (iii) A + A A +  = A + ,  

( i i )  AA + symmetric, ( iv)  A + A symmetric . 

Named after its originators, Moore (1920) and Penrose (1955), the matrix A +  
is called the Moore- Penrose inverse. Matrices A -  satisfying (2) are matrices 
that satisfy just Penrose condition (i), in (6), and reflexive generalized inverses 
A' of ( 5 )  satisfy ( i )  and (iii). The satisfying of all four conditions in (6) produces 
the matrix A +  that is not only unique for given A but which also plays a role 
for rectangular and for square singular matrices that is similar to that played 
by the regular inverse of nonsingular (square) matrices. A convenient derivation 
of A + is 

(6)  

A +  = A'(AA')-A(A'A)-A', ( 7 )  

where A' represents the transpose of A. Notice also that 

G = A - A A -  + ( I  - A-A)T + S(1- A A - )  

is a generalized inverse of A for any (conformable) matrices T and S. 

b. Generalized inverses of X'X 
Matrices of the form X'X play an important role in linear models. Clearly, 

X'X is square and symmetric and, for X having elements that are real numbers 
(i.e., do not involve fl), X'X is positive semi-definite (p.s.d.). Solutions for 
fl to equations X'XS = X'y occur frequently in linear model work, and are often 
in terms of generalized inverses of X'X, which we denote as (X'X)- and G 
interchangeably. Then G is defined by 

X ' X G X ' X = X ' X .  ( 8 )  

H = GX'X, idempotent, of rank rx . (9)  

Sometimes we also use H defined as 
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Note that although X’X is symmetric, G need not be symmetric. For example, 

7 3 2 2  9 0  0 

3 3  -13f -14 -17 
X’X = 

as a generalized inverse, and G is certainly not symmetric. Despite this, 
transposing (8) shows that when G is a generalized inverse of X’X, then so also 
is G’. As a consequence, as may be easily verified, 

(X‘X)‘ = GX’XG’ (11) 
is a symmetric, reflexive generalized inverse of X’X as defined in ( 5 ) .  

theory. 
The following theorem is a cornerstone for many results in linear model 

Theorem M.1. When G is a generalized inverse of X‘X: 

G’ is also a general id  inverse of X’X, (12) 
XGX’X = x, (13) 

( 14) 

(15) 
(16) 
( 17) 

Condition (12) comes from transposing (8). Result (13) is true 
because for real matrices there is a theorem [e.g., Searle (19821, p. 631 indicating 
that if PX‘X = QX’X then PX = QX; applying this to the transpose of (8) 
and then transposing yields (13); and applying it to XGX’X = X = XFX’X for 
F being any other generalized inverse of X’X yields (14). Using (X’X)- of (1 1) 
in place of G in XGX’ demonstrates the symmetry of (15) which, by (14), 
therefore holds for any G. Finally, ( 16) follows from considering an individual 
column of X in (13), and (17) is established by using (7) for X’. Q.E.D. 

Notice that (12) and (13) spawn three other results similar to (13): 
XG‘X‘X = X, X’XGX’ = X’ and X’XG’X‘ = X‘. These and (12)-( 17) are used 
frequently in some of the chapters. They have the effect of making G behave 
very like (but not exactly the same as) a regular inverse. 

A particularly useful matrix is M = I - XGX’. Theorem M.l provides the 
means for verifying that M has the following properties: M is symmetric, 
indempotent, invariant to G, of rank N - rx when X has N rows, and its 
products with X and X’ are null. Thus, with M having three equivalent forms, 

XCX’ is invariant to G; i.e., XGX’ has the same value forevery G, 
XGX’ is symmetric, whether G is or not, 

XGX’ 1 = 1 when 1 is a column of X, 

XGX’ = XX +, where X ’ is the Moore-Penrose inverse of X . 
Proof. 

M = I - XGX‘ = I - X(X‘X)-X’  = I - XX’, (18) 
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we have 

M = M ‘ = M 2 ,  r M = N - r x ,  M X = O  and X ‘ M = O .  (19) 

c. Partitioning X’X 
With X partitioned as X = [ X ,  Xz], 

1. [ x;x, x;x, 
x;x, x;x, 

X ’ X  = 

Then one form of generalized inverse of X ’ X  is (using Searle, 1982, p. 263) 

for 

being the same function of X ,  as M of ( 1 8 )  is of X, and hence 

M ,  = M; = M: and M , X ,  = 0 .  

[Note that i t  is the symmetry of X ’ X  that contributes to G of (21) being one 
form of ( X ’ X ) - .  Partitioning a nonsymmetric matrix into four submatrices does 
not, in general, lead to the resulting form of ( 2 1 )  being valid-see Searle (1982, 
Sec. 10.5).] 

Another form of ( X ’ X ) -  for partitioned X‘X, and different from G, is 

where 

M, = I - X2(X;X, ) -X; .  

Verification that ( 2 1 )  and (22) are each generalized inverses of X ’ X  of (20) 
demands using (13); and although we find that 

X G X ’  = X , ( X ; X , ) - X ;  + M l X 2 ( X ; M l X 2 ) - X ; M l  (23) 

and 

which look different, we know from ( 1 4 )  that they are the same. That each is 
invariant to the generalized inverses it involves is nevertheless clear. In (23) the 
first term is invariant to the choice of ( X ; X , ) - - b y  (14); and by the symmetry 
and idempotency of M, the second term is M,X2[(M,X2)IMIXz]-(M,X2)’ ,  
and so it too, by (14), has the invariance property. Nevertheless, a direct 
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development of the equality of (23) to (24) without appealing to (14) seems 
difficult. 

The preceding results of this section are all in terms of generalized inverses. 
When X’X of (20) is non-singular, all of those results still apply, with the 
generalized inverses being regular inverses. 

d. Rank results 
The standard result for the rank of a product matrix is rAB < rB. Thus using 

r ( X )  and rx interchangeably to represent the rank of X, we have r(AA-) 6 rA; 
and from A = A A - A  we have rA < r(AA-). Therefore r(AA-) = rA. Also, 
because A A -  is idempotent its trace and rank are equal. In particular, 
tr(AA+) = rA. Therefore from (17) 

tr[A(A‘A)-A’] = tr(AA’) = rA . (25) 

Applying (25) to each term in (23), using the indempotency and symmetry 
of M, in doing so, gives 

rX = rX, -k rX;M,X,, 

which, on using rAA’ = rA for A being real, leads to 

rX;MIX, = rM,X, = ‘[X, XI]  - rX,  * (26) 

This result is useful in the context of degrees of freedom for sums of squares 
based on (23), as in (98) of Chapter 5. A particular case of (26) is when X has 
full column rank: then so does M, X,; and, of course, M , X ,  also. 

e. Vectors orthogonal to columns of X 
Suppose k’ is such that k’X = 0. Then X’k = 0 and, from the theory of 

solving linear equations (e.g., Searle, 1982, Sec. 9.4b), k = [I - ( X ’ ) - X ’ l c  for 
any vector c, of appropriate order. Therefore, since ( X  - )’ is a generalized inverse 
of X’ we can write k‘ = c’(1 - X X - ) .  Moreover, because ( X ’ X ) - X ’  is a 
generalized inverse of X another form for k’ is k’ = c’[I - X(X’X)-X‘];  as is 
c’ (1-  XX’)  since X ( X ’ X ) - X ’  = XX’. Thus two forms of k‘ are 

k’ = c’(1 - XX-) ,  or k’ = c’[I - X ( X ‘ X ) - X ’ ]  = c’(1 - XX’) . 
With M defined in (18), as M = I - XX’ = I - X(X‘X)-X’,  we therefore have 
k’ = c’M. 

With X of order N x p of rank r, there are only N - r linearly independent 
vectors k’ satisfying k’X = 0 (e.g., Searle, 1982, Sec. 9.7a). Using a set of such 
N - r linearly independent vectors k’ as rows of K’, we then have the following 
theorem, for K’X = 0 with K’ having maximum row rank N - r and  K’ = C’M 
for some C. 

f. A theorem involving K’ of maximum row rank, for K’X being null 
Theorem. If K’X = 0, where K’ has maximum row rank, and V is positive 

definite then 

K(K’VK)-’K’ = P for P 3 V - I  - V - ’ X ( X ’ V - ’ X ) - X ’ V - ’  . 
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Khatri's (1966) proof of this is for X having full column rank. For the more 
general case considered here, of X not of full column rank, we offer a shorter 
proof (due to Pukelsheim, personal communication, 1986) than that given by 
Khatri. 

Proof. Both KK'  = K ( K ' K ) - l K '  and XX' = X ( X ' X ) - X '  are symmetric 
and idempotent, and K ' X  = 0. Therefore KK + X = 0 and XX + K = 0. Hence 
T = I - XX + - KK' is symmetric, and idempotent. Therefore 

tr(TT') = tr(T2) = tr(T) = tr(1) - tr(XX') - t r ( K K + )  

= N - r x - r K  

= N - r x  - ( N  - r x )  

= o .  

But T is real, so that tr(TT') = 0 implies T = 0. Therefore I - XX' = KK'. 
Because V is positive definite, a symmetric matrix V j  always exists such that 

V = (Vt)'. Then, since (ViK)'V-fX = 0, because K ' X  = 0, the preceding result 
applies for K and X replaced by V f K  and V-tX, respectively. Making these 
replacements after writing I - XX'  = K K '  as 

I - X ( X ' X ) - X  = K ( K ' K ) - ' K '  

gives 

I - V-iX(X'V-'X)-X'V-j = VfK(K'VK)-'K'Vj; 

An extension of this result is that P = M( MVM)- M. This is established by 
first noting that with M = I - XX' = KK', as in the preceding proof, 

K'MVMKCK '(MVM)- K "IK'MVMK = K'MVM(MVM)- MVMK 

= K'MVMK . 

Therefore 

(K'MVMK)- = K'(MVM)-K''. 

Hence, starting from P = K ( K ' V K ) - ' K '  and using MK = K gives 

P = MK(K'MVMK)- K'M 

= MK[K+(MVM)- K +']K'M 

= M(MVM)-M.  
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M.5. THE SCHUR COMPLEMENT 

In the inverse of a nonsingular partitioned matrix 

[: :] = 
:] + [-*['"](D - CA-'B)-'[-CA-' I] (27) 

the matrix D - CA-'B is known as the Schur complement of A. Marsaglia 
and Styan (1974a,b) give numerous results concerning Schur complements, of 
which we use primarily two. The first is 

( D  - CA-'6) - '  = D - '  + D-'C(A - BD-'C)-'BD-' ,  (28a) 

as may be verified by multiplying the right-hand side by D - CA - 'B. Similarly 

(D + CA-'B)-' = D - '  - D-'C(A + BD-"C)-'BD-' 9 (28b) 
on replacing A by - A  in (28a); and a useful special case of (28b) is 

D- I tt'D- I 

1/;1 + t'D-'t  ' 

( D  + Att')-' = D - '  - 

The determinant of D - CA -' B is derived as follows. To begin, observe that 

wherein the first equality comes from performing row operations on the rows 
through R to triangularize R. The second equality comes simply from transposing 
the matrix. Next, it is clear that 

Taking determinants and using (30) gives 

I: :I= 
In similar manner 

A1 ID - CA-'B( 

and so 

ID - CA-'B( = (IDI/IAI)IA - BD-'CI 

This is particularly useful when A is a scalar: 

ID - xy'/al = IDl(a - y 'D- 'x ) /a .  
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M.6. THE TRACE OF A MATRIX 

The trace of a matrix is the sum of its diagonal elements: 

t r ( A )  = Xiuii  . 

Thus & ( A )  is defined only for A being square. The trace of a product has a 
useful property: 

t r (  AB) = tr( BA) 

because 

tr( AB) = Xi( Cjuijbji) = X,( Cibjiuii) = tr( BA) . 

And for computing purposes a useful result for any matrix M is 

tr(MM’) = sesq(M), ( 3 3 )  

where sesq(M) represents the sum of squares of elements of M. We use the 
abbreviation sesq rather than ssqe to avoid any possible confusion of the latter 
with a sum of squares of data. Verification of (33) is 

tr(MM‘) = C i [ C j m i j ( r n ’ ) j i ]  = ZiZjmt = sesq(M) . 

A useful special case is when M is symmetric: 

t r (M2)  = sesq(M) when M = M’ . 

Another useful result is 

tr(JA) = tr(1l‘A) = tr(1’Al) = I’Al = ZiZjuij. 

M.7. DIFFERENTIATION OF MATRIX EXPRESSIONS 

a. Scalars 
Beginning with an example 

ai . ldx is defined as 

- a i  - _  
a x  

In general this extends to 

(34) 

a a 
a x  ax  
- (a’x)  = a  = -(x‘a),  (35) 
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the second equality arising from a'x = x'a. Also 

b. Vectors 

functions of elements of x, we define 
Beginning generally with yrx , and xp I ,  where elements of y are differentiable 

-- , a matrix of order p x r . (37)  : - i, 2}i=pl,j: 1 

Similarly, the transpose of this is 

_ -  a' a matrix of order r x p . (38)  

In particular 

Therefore, for A and B not functions of x 

a ax 

ax! ax' 
-(AX) = A- = A 

and 

(39) 

c. Inner products 

x. Then 
Consider u'v, where each element of u' and v is a function of elements of 

a(u'v) a aui 80, - = - x . u . o .  = &-u,  + xiu , - -  
ax ax 1 1 1  

ax ax 

Each term in each sum is a column vector. Consideration of conformability 
therefore leads to having 

au'v aui a V 1  

ax ax ax 
-= -v  + - u .  

d. Quadratic forms 
Utilizing the preceding results yields 

a ax! a 
ax ax ax 
-XIAX =-(AX) + -(Ax)'x 

= AX + A'x . 



456 APPENDIX M c ~ . 7 1  

When A is symmetric, which it usually is in this context of a quadratic form, 

(43) 
d 

- (x 'Ax)  = 2Ax for symmetric A . 
ax 

e. Inverses 
With scalar t, we define 

With A nonsingular, A A - I  = I gives 

and so 

f. Determinants 

related. Then denoting the cofactor of aij in IA l  by IAijl, we have 
Suppose A is a square matrix having elements that are not functionally 

one particular case of which is 

Whereas (46) applies when A is symmetric, (45) does not, for i # j, because 
then elements of A are functionally related; e.g., for some i and j write 

aij = aji = 8, say . 
Then in place of (45) we have 

alAl dl A1 aaij a1 Al aaji +-- - 
ae aaij ae aaji ae 

= IAijl + IAjiI 

= 21AijJ because A is symmetric . 

Hence, in general 

4'41 
dai j 
- = ( 2  - dij)IAijI for symmetric A, 

(47) 

(48) 

where Sij is the Kronecker delta, 6, = 0 for i # j and 6 ,  = 1 for i = j. 
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Suppose that elements of A are functions of the scalar t. Then 

This resu is usel 
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in deriving maximum likelihood equations .ar estimating 
variance components, in Section 6.2a. 

g. Traces 
a 

ax,] 
When tr(XP) exists, its value is C , Z , X ~ ~ ~ , ~ .  Hence - tr(XP) = p,, and so 

(50) 
a a 
- tr(PX) = - tr(XP) E ax ax 

because tr(XP) = tr(PX). And 

[a:# ] a a 
ax ax - tr(PX') = - tr(X'P) = - tr(X'P) = p . 

Hence, using tr(TS) = tr(ST) and (50) and (51), 

( 5 2 )  
a 

ax - tr(XPX') = XP' + XP . 

An alternative derivation of (50) based on (37) is as follows. First, when y' 
in (37) is a scalar, a'x say, (37) reduces to (35). Second, for the scalar 1 and 
with xk being the kth column of X, we define an fax as 

Then, for n; being thejth row of P 

the penultimate equality being based on (35). 
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M.8. THE OPERATORS vec A N D  vech 

The matrix operation vec X creates a column vector from the columns of X 
by locating them one under the other: 

vec[ 5 
I 1  
15 

Thus for X of order p x q 

X = {, 
whereupon vec X is pq x 1. 

of X, starting at the diagonal elements. 

vecX = IC x j } j e l ,  

Similarly vech X for symmetric X creates a column vector from the columns 

Searle (1982, Sec. 12.10) indicates some of the many results pertaining to these 
operators, with more details being available in Henderson and Searle (1979, 
1981). 

Three results involving the vec operator that get repeated use in Chapter 12 are 

vec(ABC) = (C‘ 8 A )  vec B, (53) 

tr(AB) = (vec A’)‘ vec B and ( t  8 t )  = vec(tt’) . (54) 

Proof of (53) is to be found in Searle (1982, p. 333); and, after a moment’s 
reflection, (54) is self-evident. 

A final result involving the vec operator and diagonal matrices is as follows. 
Define 

e, = t th  column of I,, G = {re,  8 e,},!, and A = {,, b , } , e ,  . 
Then for a square matrix A of order q define 

diag(A) = Id  arr}r=91, 



c ~ . 9 1  vec PERMUTATION MATRICES 459 

and we have 

GAG' vec A = Ire,  O e,}{, 6 , )  IC el B e ; }  vec A 

= X,6,(er O e,)(e; O e;) vec A 

= C,G,(e,ej 8 e,ei) vec A, by ( v )  of Section M.2, 

= C,6, vec(e,e;Ae,e;), by (53), 

= C,6, vec(e,a,,e;) because ejAe, = a,,, 

= vec( Erhrerao e;) 

= vec[A diag(A)], ( 5 5 )  

because e,a,,e; is a null matrix except for a,, as its tth diagonal element; and 
diag(A) represents a diagonal matrix of the diagonal elements of A. 

M.9. vec PERMUTATION MATRICES 

A particular form of permutation matrix ( I  with its rows permuted in any 
fashion) is that known as the vec permutation matrix, or commutation matrix, 
to be denoted equivalently as S, or I(,,,,. It can be described in a variety of 
ways, one being that it is an identity matrix of order n 2  with its rows (columns) 
permuted in such a way that I(,,,) can be partitioned as an n x n matrix of 
submatrices of order n x n, the (s,t)th of which is null except that its (t,s)th 
element is unity. Other descriptions and names can be found in MacRae (1974), 
Henderson and Searle (1979) and Magnus and Neudecker (1979). An example, 
for n = 3, is T, in Section 12.3. 

A number of useful results are the following: 

S n  I,,,,); 

s, = sy, s; = InI ( I  + S,)2 = 2(1 + s"); 
for An x n 

vec A' = S, vec A; 

for symmetric A,, ,, 
vec A = vec A' = S ,  vec A = [OI + ( 1  - O)S,]  vec A; (57) 

for A and B of the same order 

( 5 8 )  

Details of these and other results can be found in the references at the end of 
the preceding paragraph. 

S n ( A n x k  0 Bnxk)S, = Bnxk @ Anxk, 
S n ( A n x k  O Bnxk) = (Bnxk O A n x k ) %  * 
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M.10. THE EQUALITY V V - X  = X 

Theorem. If V V -  X = X then for y - (Xp, V )  

( i )  VV - X = X for V - being any generalized inverse of V ;  
( i i )  V V -  y = y almost everywhere, for E ( y )  = Xp; 
( i i i )  X’V -. X and X’V-  y are invariant to V -. 

Proof. 

( 1 )  

( i i )  

x = vv-x  = ( v v - v ) v - x  = vv- (vv-x )  = v v - x  . 

= ( I  - v v - ) [ E ( y  - x p ) ( y  - xp)‘](r - vv-)’ 
0 = ( I  - v v - ) v ( I  - vv-y 

= E( zz’) for z = ( I  - VV - ) (y  - Xp) . 

But E(zz ’ )  = 0 implies z = 0 almost everywhere. Therefore, almost everywhere, 

0 = z = ( I  - V V - ) ( y  - Xp) = ( I  - V V - ) y  when V V - X  = X. 

Hence VV - y = y. 

( i i i )  X‘V’X = X ’ V - ( V V - X )  = ( X ’ V ‘ V ) V - X  = X ‘ V - X ,  and the same for 
X‘V - y with the y in place of the final X of X’V - X. Q.E.D. 

As a result of (i), note that V V - X  = X is a condition on V, not on V - .  
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S O M E  R E S U L T S  I N  STATISTICS 

The assumption is that a reader’s background knowledge includes familiarity 
with matrix algebra and basic mathematical statistics. Nevertheless, just as with 
Appendix M, so here, a few reminders are provided. 

s.1. CONDITIONAL FIRST AND SECOND MOMENTS 

The joint density function of two random variables G and Y, say fG,y(gr y ) ,  
will be abbreviated notationally to f(g, y ) ;  and the conditional density 
fGIy=,(g,y) will be denoted f ( g  I y ) .  With E(g) denoting the expected value of 
g, and using E ,  to represent expectation over y ,  we then have the two well-known 
results 

E(g) = E,CQ I V ) l  

W g )  = E,CWg I Y ) I  + var,CE(g I V ) l  ’ 

cov(g, h )  = E,Ccov(g I YI h I Y ) l  + cov,CE(g I Y ) ,  E ( h  I Y ) l  

and 

For h being some other random variable, var(g) is the special case of 

when g and h are the same. 
Verification of the E(g) result is straightforward: 

J J  

46 1 
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s.2. LEAST SQUARES ESTIMATION 

Estimation by the method of least squares is an ancient topic. In exceedingly 
brief form, we develop just two aspects of the method here. Both are designed 
for estimating fl in the linear model having model equation y = Xfl + e and 
E ( y )  = Xfl. The first is the method of ordinary least squares (OLS), which 
fleetingly treats S = ( y  - Xfl)'(y - Xfl) as a function of fl and takes as the 
estimator (call it 8) the value*of fl that minimizes S. This leads to equations 
X'XS = X'y, with a solutionAfl = (X'X)-X'y.  Since S is not invariant to the 
choice of (X'X)- ,  whereas Xfl = X(X'X)-X'y  is [see (14) of Appendix M.41, 
attention is confined to Xg and linear combinations of its elements. Thus XB 
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is the OLS estimator of Xfl, which is summarized as 

OLSE(Xfl) = X(X’X)-X’y. 

On denoting var(y) by V, an adaptation of OLS when V is known and 
non-singular is to use (y - Xp)’V- ’ (y - Xfl) as S. By exactly the same procedure 
as is used in deriving OLSE( Xp), this yields what is called the - generalized least 
squares (GLS) estimator of Xfl: 

GLSE(Xp) = X(X’V-’X)-X’V-’y.  

This is also known as BLUE(Xp), the best, linear, llnbiased estimator of Xp. 
The meaning of this is that it is a linear function of the elements of the data 
vector y, it is unbiased for Xfl, and that it is best in the sense that of all linear 
functions of y that are unbiased for Xp this one has minimum variance. 

The numerous details that can attend these estimators are discussed in varying 
degrees of generality in a multitude of books, e.g., Rao (1973) and Searle ( 1987), 
and there is a vast array of research papers on these topics. Clearly, for V 
nonsingular, GLSE(Xp) equals OLSE(Xp) when V = a’1. However, when V 
is singular (symmetric and positive semi-definite) derivation of GLSE( Xfl) is 
more difficult: under certain conditions it consists of the preceding expression 
with V- ’  replaced by V- ;  otherwise it has an entirely different form. Puntanen 
and Styan (1989) have an excellent review of this topic, and Searle and 
Pukelsheim (1989) have many of the details. 

These estimators are defined in terms of estimating Xp because only linear 
combinations of elements of Xfl are estimable; i.e., for 1’ being any vector, L’Xfl 
is estimable. Then 1’Xp is said to be an estimablefunction, meaning that there 
exists a linear function of the observations that is unbiased for 1’Xp. This 
implies, for flo being a solution of the normal equations X’Xpo = X’y and for 
a given 1, that l’Xpo has the same value for every flo and is the OLSE of 
1’Xp. The same is true for fl* being a solution of the GLSE equations 
X‘V- ’ Xfl* = X‘V- y; for given A the expression 5‘Xb* has the same value for 
every p* and is the GLSE of 1‘Xfl. 

S.3. NORMAL AND X~-DISTRIBUTIONS 

The scalar random variable x is said to be normally distributed with mean p 
and variance c2 when it has probability density function 

- t c x  -Id*/u2 

We often represent this by the notation x - N(p,  c2) .  
x2 ... x,] is said to have a 

multivariate normal distribution with mean vector p and non-singular dispersion 
The vector of n random variables x’ = [xl 
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matrix V when i t  has probability density function 
- j c x  - pI'V-'cx - p t 

( 2 K ) f "  VIf ' 

This is represented as x - Mn(p,V),  often with the subscript n omitted when 
it is evident from the context. Searle (1971, 1987) and many other texts have 
numerous details about these distributions. Certain properties useful to the 
purposes of this book are as follows. 

For x - N(p,  V )  

( i )  
( i i )  Kx - N(Kp,  KVK'). 

E(x) = p and var(x) = V; 

On writing 

(iii) the marginal distribution of x1 is 

x1 - J- (p l*v l l ) ;  

( i v )  the conditional distribution of x1 given x2 is 

Properties of quadratic forms x' Ax when x - N ( p ,  V )  are given in Appendix S.5. 

a. Central ,y2 
The simplest variable having a X2-distribution is the sum of sqvares of n 

independently normally distributed variables having zero mean and unit 
variance: when 

n 

x - N(0, In), u = x'x = C x: - x,", with E ( u )  = n and var(u) = 2n . 
i =  1 

This is the central X2-distribution; n is known as the degrees of freedom of the 
distribution 

A well-known result of special interest is that 

x - J r ( p I ,  a21n) implies C ( x i  - j212/a2 - Xi- , 
i =  1 

b. Mean squares 
Suppose SS is a sum of squares onfdegrees of freedom, and MS is the 

corresponding mean square. Then MS = S S / f .  Therefore for expected values 
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E (  SS) = f E(  MS). There are many situations where 

Hence 

var(SS) 2[E(MS)I2 
var(S.3) = 2j[E(MS)l2,  and so var(MS) = = 

f f 
Furthermore, by the definition of variance, 

var(MS) = E[MS - E(MS)I2 = E[(MS)’] - [E(MS)I2 

Equating these two expressions for var( MS) gives 

E[(MS)2] = [E(MS)I2 1 + - , ( 2 
so that 

“Ms)21 - - CE(MS)12 
f + 2  f 

Therefore 

CE(MS)I2 (Ms)2 is an unbiased estimator of 
f + 2  f 

This is used in deriving an unbiased estimator of a variance of an estimated 
variance (e.g., Sections 4.5f and 5.2e). 

c. Non-central x 2  
More general is the non-central x 2  distribution, definable through the sum 

of squares of independently distributed normal variables having a non-zero 
mean: 

n 

i= 1 
x - Jv(p,I,) defines u = 1 x: - X2’(n,1),  

with, for I. = ip’p, 

E ( u )  = n + 21 and var(u) = 2n + 8 2 .  

n is the degrees of freedom and L is called the non-centrality parameter. Having 
A. = o causes ~ ” ( n ,  1) to simplify to x,”. 

S.4. F-DISTRIBUTIONS 

Ratios of two independent x2-variables, each divided by its degrees of freedom, 
have F-distributions. They come in three forms, of which we consider but two. 
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First is the central F-distribution for 

u - x:, and, independently, v - x i  

where n and m are called the numerator and denominator degrees of freedom 
of the F-distribution. Similarly, for 

u’ - x 2 ’ ( n ,  A), and, independently, u - xmr 2 

F’ = - - .V 9 ’ ( n ,  m, A )  
n m  ” 

characterizes the non-central F-distribution. 
Means and variances for the central 9-distribution are 

m 
m - 2  

2m2(n + m - 2 )  
n ( m  - 2 ) ’ ( m  - 4) 

E ( F )  = ~ and var(F) = 

and those for the non-central F are 

E ( F ’ )  = 2.- ( 1  + ;) 
m - 2  

and 

var(F‘) = 

Having 1 = 0 reduces the non-central 9 to the central 9. This is the basis 
of using an F-statistic to test a hypothesis. If F’ that has an 9’-distribution 
is such that when some hypothesis is true the A of that distribution is zero, then 
F’ has an $-distribution under that hypothesis, and comparing the computed 
F’ with tabulated values of the central 9-distribution provides a test of the 
hypothesis. 

s.5. QUADRATIC FORMS 

A quadratic form is y‘Ay, where A can always be taken as symmetric. It is 
useful in statistics because every sum of squares of data represented as y can 
be written as y’Ay for some A; and because there are theorems about quadratic 
forms that provide useful statistical properties of sums of squares. We quote 
four such theorems, confining ourselves to var(y) = V being nonsingular. 
(Singular V can be handled, but it is considerably more complicated.) 

Theorem S1. 

For y - (p, V), meaning that E(y) = p and var(y) = V, 

E(y’Ay) = tr(AV) + p‘Ap . 
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Theorem S2. 

If y - N ( p ,  V)  then y‘Ay - x2’(rA, )p’Ap) if and only if AV is idempotent . 

Theorem S3. 

If y - N(p,  V)  then y‘Ay and y’By are independent if and only if AVB = 0 , 

Theorem S4. 

If y - N(p,  V) then var(y’Ay) = 2 tr[(AV)’] + 4p‘AVAp . 

Theorem S4 is a special case of the more general result that the kth cumulant 
of y’Ay is 2 k - ’ ( k  - l)![tr(AV)k + k~’A(vA)~-’p] .  Through consideration of 
var[y’(A + B)y], this theorem readily yields the covariance result 

cov(y‘Ay, y’By) = 2 tr(AVBV) . 

Details and proofs of these widely known theorems can be found in Searle 
(1971, Chap. 2). The sufficient condition in each of Theorems S2 and S3 is easily 
proven, whereas the necessity conditions are not so easy to prove. Driscoll and 
Gundberg ( 1986) have an interesting history of these necessity conditions, and 
the first straightforward proof of that for Theorem S3 is given by Reid and 
Driscoll (1989). 

Calculating the trace terms of Theorems S1 and S4 is often simplified by the 
results derived in Appendix M.6: 

tr(MM’) = sesq(M), which is tr(M2) = sesq(M) for M = M’ . 

S.6. BAYES ESTIMATION 

A brief introduction to the ideas of Bayes estimation is given here, including 
an elementary example. We begin with some definitions of density functions. 

a. Density functions 
The cumulative density function of a random variable X is 

F , ( x )  = Pr(X < x), 

and the joint cumulative density function of two random variables X and Y is 

F X , J x ,  y )  = Pr(X < x, Y < y )  . 
From this comes the joint density function of X and Y: 
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The marginal density function of X is the joint density function of X and Y 
after integrating out y (or summing over y for discrete densities): 

fx(x) = S,, fx,r(x, Y )  d y ,  ( 1 )  

where R,  represents the range of y-values that Y can take. The conditional 
densityfunction of X ,  given y ,  is 

For notational simplicity the subscripts X and Y can be dropped from the 
preceding representations; their presence emphasizes that, for example, f x (  x )  
is not necessarily the same function of x as fr(y) is of y. However, if in dropping 
the X and Y subscripts we adopt a convention that thef of f ( .)always represents 
a density function then we accept the fact that f(x) and f ( y )  are not necessarily 
the same functions of their respective arguments and we have a less cumbersome 
notation : 

This is a particularly simpler notation when, for example, the random variable 
X is to be an estimated variance component such as 8:. 

b. Bayes Theorem 
Just as f ( x  I y )  is as defined above, so is 

This is Bayes Theorem. It is used in estimation in the context of a density 
function f ( y )  being a function of a parameter 8, so that the density function 
can be represented as f ( y  1 % ) .  Bayes estimation is based on assuming that we 
can specify a range of values within which 8 lies, and over the range we have 
some feeling for the probabilities of B taking those possible values. Thus we 
treat 8 as a random variable, with a density to be denoted n(@, which is called 
the prior density of 8. Then Bayes estimation is based on y representing data 
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and on using Bayes Theorem to derive what is the conditional density n( 0 I y), 
which in this context is called the posterior density of 0: from (6)  it is 

- S(Y I W ( 0 )  - 
f f ( Y  I e ) n ( e )  do . 

Thiscan bethoughtofasn(0)updated by thedata through theuseoff(y 10). 

(7 )  

c. Bayes estimation 
Once the posterior density n ( 0 l y )  has been derived, it can be used for 

estimating 0 in any way one wishes; e.g., the mean E(O I y) = lR, d n ( 0  I y )  d0 
will be a function only of y and can be used as an estimator of 0; so can the 
median or mode of n(O I y). 

d. Example 
Our example involves the beta distribution, for which the density function is 

where 

T ( a )  is the gamma function of a, namely 

T ( a )  = s," xs-le-x dx, 

with r ( a )  = ( a  - l ) ( a  - 2 )  ... 2(1)  = ( a  - l ) !  when a is a positive integer 
greater than unity. The mean and variance of this density are 

a ab 
(10) E ( x )  = - and var(x) = 

a + b  ( a + b ) 2 ( a + b +  1 ) '  

Our example of Bayes estimation does not explicitly concern variance 
components, but it is related to the variance components model of Section 10.3. 
However, the distribution functions involved provide easy illustration of Bayes 
methodology. The example is that of estimating p from n independent Bernoulli 
trials yielding realized values of the random variables X , ,  X , ,  . . . , X ,  where 
Pr(Xi = 1 )  = p and Pr(Xi = 0) = 1 - p for i = 1, ..., n. Define the random 
variable 

Y =  1 x i .  
i= 1 
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Then 

Maximum likelihood estimation (see Section S.7) would use ( 1 2 )  as the 
likelihood, relabeling it L ( p  1 y ) ,  and would take as the estimator of p the value 
of p that maximizes 

log U P 1  Y )  = log(;) + Y lOf3P + ( f l  - Y ) l O f % ( l  - P )  . 

Equating 

a l o g L ( P l Y )  =-- -  Y n - y  
d P  P I - P '  

to zero and denoting the solution for p by p gives the estimator as 

p = y / n  = 2 .  

To illustrate Bayes estimation, we use for n ( p )  the beta density ( 4 )  with a = 2 

( 1 3 )  

and b = 2. Then (9) is B(a,  b) = 1/3! = 3 ,  and so from (8)  

N P )  = 6/41 - P )  * 

Then from ( 7 )  

and on using ( 12)  and (13) this is 

p Y + ' ( l  - p y - Y + l  
- - 4 P  I Y )  = 

{ o ' p y + ' ( l  - ~ ) " - ~ + ' d p  

Applying (9) to the denominator gives 

( 1 4 )  

This is the posterior density of p .  It is, by comparison with (8), a beta density 
with a = y + 2 and b = n - y + 2. Hence from (10) its mean is 

- Y + 2  -- Y + 2  
y + 2 + n - y + 2  n + 4 '  

U P  I Y )  = 
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This is now available as a possible estimator of p. It is a Bayes estimator: 

Note in passing that limn-+m fi  -+ y / n  = 2 = d ;  i.e., as n becomes large, the Bayes 
estimator tends to the ML (maximum likelihood) estimator. Note too that 

1 4 f i= -  f + - (+) 
1 +'4 /n  rr + 4  

1 -- - p + * E ( p ) ,  
1 + 4 / n  1 + 4 / n  

where, from (13) [or from ( lo ) ,  for a = 2 = b ]  the mean of the prior density 
a ( p )  of p in (13) is E ( p )  = 4. We see that (17) shows f i ,  the Bayes estimator, 
as being a weighted mean of d,  the ML estimator, and of E ( p ) ,  the mean of 
the prior density n(p )  in (13). 

The preceding results are special cases of the more general result when in 
place of (13) we take a ( p )  as the general beta density with parameters a and b, 
similar to (8): 

Then n(p I y) becomes the beta density with parameters y + a and n - y + b:  

p y + a - l ( l  - p ~ - y + b - l  

4 P  I Y )  = 
B ( y  + a, n - y + b )  

Thus on taking fi  = E ( p  I y )  as the Bayes estimator, it is, from (10) 

where, from (10) and (18), E ( p )  = a / ( a  + b ) .  

e. Empirical Bayes estimation 
Suppose in (18) and (19) that a and b are unknown. Then, because 

f ( Y ,  P) = Z(P I Y ) f ( Y )  = f(Y I p)n(P)l (21) 

after substitution from (12), (18) and (19). If (22) is used to provide estimates 
d! and b of a and b, which are then used in (20) in place of a and b, the resulting 
expression p = (y + h ) / ( n  + d + 6 )  is an empirical Bayes estimator of p. 
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An analogy of the preceding example with estimating variance components 
is as follows. In the example we have 

Xi I p i  - Binomial( 1, p i )  and pi - Beta(a, f l )  , 
In the 1-way classification, variance components model we have yi,  1 ( p  + a i )  - 
N ( p  + ai, 0 2 )  and p + ai - N ( p ,  a:). 

s.7. MAXIMUM LIKELIHOOD 

a. The likelihood function 
Suppose a vector of random variables, x, has density function f(x). Let 8 

be the vector of parameters involved in f(x). Then f(x) is a function of both 
x and 8. As a result, it can be thought of in at least two different contexts. The 
first is as above, as a density function, in which case 8 is usually assumed to 
be known. With this in mind we use the symbol f (x  18) in place of f (x )  to 
explicitly emphasize that 8 is being taken as known. 

A second context is where x represents a known vector of data and where 8 
is unknown. Then f(x) will be a function of just 8. It is called the likelihood 
function for the data x; and because in this context 8 is unknown and x is 
known, we use the symbol L(8 I x). Thus although f ( x  18) and L(8 1 x )  represent 
the same thing mathematically, i.e., 

f (x  I e) = u e  I x), 
it is convenient to use each in its appropriate context. 

b. Maximum likelihood estimation 
The likelihood function L(8 1 x )  is the foundation of the widely used method 

of estimation known as maximum likelihood estimation. It yields estimators 
that have many good properties. ML is used as abbreviation for maximum 
likelihood and MLE for maximum likelihood estimate-with whatever suffix 
is appropriate to the context: estimate, estimator (and their plurals) or 
estimation. 

The essence of the ML method is to view L(81x)  as a function of the 
mathematical variable 8 and to derive 6 as that value of 8 which maximizes 
L(8 1 x). The only proviso is that this maximization must be carried out within 
the range of permissible values for 8. For example, if one element of 8 is a 
variance then permissible values for that variance are non-negative values. This 
aspect of ML estimation is very important in estimating variance components. 

Under widely existing regularity conditions on f ( x  1 O), a general method of 
establishing equations that yield MLEs is to differentiate L with respect to 8 and 
equate the derivative to 0. But maximizing L is equivalent to maximizing the 
natural logarithm of L, which we denote by I, and it is often easier to use 1 
rather than L. Thus for 

1 = log L(8 1 x )  the equations 
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are known as the ML equations, with 8 their solution being called an ML 
solution. When there is only one value of b satisfying equations (23) then, 
provided it is within the permissible range of 8, the ML estimator of 8, to be 
denoted 6, is 6; i.e., 6 = 8. When 6 is not within the permissible range of 8 then 
adjustments have to be made to 8 and the nature of these adjustments depends 
upon the context and form of f ( x  I 8). 

c. Asymptotic dispersion matrix 
A useful property of the ML estimator 0 is that its large-sample, or asymptotic 

(as N --t a), dispersion matrix is known. For 1(8), known as the information 
matrix, and defined as 

the asymptotic dispersion matrix is 

var(6) 2: [r(e)l . 
Note that this is always available without even needing the ML estimator 6 
itself, or its density function. An alternative form of the information matrix that 
is valid in many situations is 

i(e) = - E ( - )  azi = - E  {. -1 a 2 1  

ae aw aei ae, i,j 

Proof of this is as follows. The (i,j)th element of I(8) is 

by the product rule of differentiation, 

by the definition of expectation 

by interchanging, in the second term, 
the derivative and integral operations, 
which is permissible under regularity 
conditions. 
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On recognizing that 1 f ( x ,  0) d x  = 1, this gives 

d log L d log L a 2 ( 1 )  ar ai 
ae, aej ae, aej ao, aej E - =  - f(X,e)dx+-= - E - - .  

Thus the two forms of I(@) are equivalent. 

d. Transforming parameters 

to the vector A. Then the matrix 
Suppose parameters represented by 8 are transformed in a one-to-one manner 

is the Jacobian matrix of the transformation 8 A. 

Theorem. After the one-to-one transformation 8 -+ A, 

I ( A )  = ( J e + A ) ’ 1 ( e ) J e - + A .  

Proof. For notational convenience denote Je+A by H. From the preceding 
section 

But 

ai ai 

Therefore 

Q.E.D. 
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