
R Package Validation Framework

1 | PHUSE Deliverables

R Package Validation
Framework

phuse.global

R Package Validation Framework

2 | PHUSE Deliverables

Table of Contents

1: Introduction. 1

2: Definitions. 1

3: Background . 1
	 Validation – When and Why. 1
	 About R and R Packages. 1

4: Package Validation. 2
	 The Validation Framework. 2
	 Requirements. 3
	 Package Development. .3
	 Test Cases . 4
		 Test Case Considerations. 4
	 Test Code . 4
	 Validation Report. 5
		 Authoring the Validation Report. 5
		 Generating the Validation Report . 5
		 Validation Types. 5
		 Other Considerations. 6
	 Future Releases. 6
	 References. 6

5: Disclaimer. 7

6: Appendices. 7
	 1. R Package Good Programming Practices. 7
	 2. Package Documentation Types. 8

7: Project Contact Information . 9

8: Acknowledgements. 9

R Package Validation Framework

R Package Validation Framework

1 | PHUSE Deliverables

Doc ID: WP-059 Version: 1.0 Working Group: Data Visualisation & Open Source Technology Date: 15-Dec-2021

1: Introduction

In this white paper, we describe a framework to support the
validation of user-contributed software extensions for the R
programming language. This framework turns the process of
validation into a part of the software development life cycle
(SDLC), making validation an efficient and user-friendly process
where the generation of proof that the software can consistently
meet the requirements of the users can be done at the click of
a button.

Validation is made user-friendly by breaking the foundations
of validation into easy-to-follow steps and modular files that
allow for easy updates and modifications without having to
redo the entire process. At the end of the process, all the files
produced by following this framework get combined into a final
report document. By taking this modular approach, the massive
amount of rework across multiple files to create the validation
packet becomes a thing of the past, increasing flexibility and
consistency, without compromising integrity. Storing these
elements in a clear and consistent location allows for portability
across projects and reduced cognitive load in traversing
the validation landscape. Finally, automating the validation
report generation creates an environment where iteration and
development are encouraged.

This white paper describes the approach specifically for
internally developed R packages. However, these same
concepts are generally applicable to other works that require
validation including external R packages, packages or modules
in languages other than R, and entire software development
environments.

3: Background

Validation – When and Why

The purpose of this document is to describe a development
process to follow when creating and validating an R package.
However, what validation is and when to be concerned with
validation are two critical pieces to consider prior to embarking
on this venture.

Validation is generating objective proof that the specifications
(a set of requirements) meet users’ needs and the software can
consistently satisfy those requirements.1 To this end, validation is
not simply a box to tick, but a process to be followed to ensure
that the software is doing what it set out to do, and that the
users’ needs are being met. For the purposes of the framework,
objective proof is considered to be a document containing:

• detailed requirements
• �test cases showing how to prove the requirements have

been met
• �records of the successful execution of the test code that

implements the test cases
• �signatures of the individuals involved and key stakeholders

approved of this documentation.

Another factor to consider is when to perform validation as not
all software nor its inherent risks and impacts are created equal.
A prudent approach to validation is that efforts for validation
are based on assessed risk of the software.1,2,3 For example,
the word processing software used to write the report does
not require validation, but the software calculating the values or
generating the tables used in decision-making should.

About R and R Packages

R is a free and open-source programming language and
software environment for statistical computing and graphics
that is supported by the R Foundation for Statistical Computing.
Gaining popularity in recent years for analysis and data science,
R compiles and runs on a wide variety of UNIX platforms,
Windows and MacOS.

The base R source code and its recommended packages can be
considered highly trustworthy. With a small set of programmers
approved to make additions or changes to the core language,
development through a standardised SDLC that includes
thorough unit testing, and millions of programmers across
the world using R, risks are assumed to be minimal. The R
Foundation has previously released a white paper defining their
views on regulatory compliance with the FDA for R core and
providing more details around R’s SDLC.4

One of the most powerful features of R is its extensibility
through shared code. This allows users to quickly add new
statistical methods or abilities to the R language with minimal
barriers or having to write their own code to solve the same
problem. Similar to many other programming languages, the
fundamental unit of shareable code in R is the “package”. A
package bundles together code, data, tests, examples and
documentation into a single location, making it easy to share
with others. Any user can write a package and share it with their

2: Definitions

R: A free and open-source extensible programming language
used to perform statistical computation, data manipulation and
generation of figures.
R package: A structured collection of files used to share
collections of functions, manuals and instructions between
programmers.
CRAN: Comprehensive R Archive Network – a controlled
online repository for R packages where users can install R
packages that were approved by CRAN maintainers for general
consumption.
SDLC: Software Development Life Cycle – the process by which
software is updated, tested and released for use.
Working directory: The directory in a file system that the code
is executed in and where file paths are referenced from.
Requirements: A clearly defined goal or expectation of
behaviour the software is to achieve to be considered complete.
Any contextual knowledge for understanding the requirement is
either included or a reference is identified.
Specifications: A collection of approved, documented
requirements.

R Package Validation Framework

2 | PHUSE Deliverables

R community. Additionally, users can install packages easily from
within R using a few commands. Once the package is installed, it
can be easily accessed and used.

This makes R an ideal language for use in the pharmaceutical
industry. Consistency across different groups can be assured
by creating and sharing internal packages that provide
organisation-specific information to how processes are
performed. Versioning of packages allows for a historical
reference, and updates can be tracked using technology such as
version control software.

To this point, there has not been a well-described process
for developers to follow when creating packages to capture
the information necessary for validation. This is where the R
Package Validation Framework comes in, offering a portable
framework to allow organisations and developers to create
a validation infrastructure. This framework can be integrated
into packages or be applied generally to environments and is
shareable with the R community.

4: Package Validation

The Validation Framework

This framework has been applied to the development of internal
packages at the Statistical Center for HIV/AIDS Research and
Prevention (SCHARP) and public packages developed by Atorus
Research. The process described here is the refinement of the
original idea into the critical elements necessary to apply the
framework successfully. In total, there are five steps within the
validation framework whose outputs are combined to produce a
validated package: Requirements, Package Development, Test
Cases, Test Code and the Validation Report.

Figure 1 Flow Diagram of the R Package Validation Framework

GOALS OF PROJECT

RISK ASSESSMENT

FUNCTIONS

DOCUMENTATION

TEST CASES
IMPLEMENTED AS

R SCRIPTS

HOW PACKAGES
MEET REQUIREMENTS

REQUIREMENTS
PACKAGE

DEVELOPMENT

TEST CODETEST CASES

roxygen2
rmarkdown

roxygen2
devtools
usethis

roxygen2
testthat

roxygen2
rmarkdown

VALIDATIONS
ENVIRONMENT

AUTHORSHIP AND
ROLES

REQUIREMENTS

TEST CASES

TEST CODE AND
RESULTS

VALIDATION
REPORT

rmarkdown
testthat
roxygen2

execute code

R Package Validation Framework

3 | PHUSE Deliverables

The value of this framework not only comes in providing a series
of clear steps to follow for validation, but a clean and consistent
file structure to organise all the files necessary for validation.
Below is an example of an R package folder structure with the
validation framework applied to it.

changes occurring to the file. Now, any future users who review
the requirements and have questions can identify the editor
without having to use an external tool. Additionally, the header
information will be read by the validation report to assign credit
and track roles in validation.

As part of writing the requirements, risk assessments are
performed. Risk assessments determine the likelihood of a
defect in the software based on requirements, and the impact if
it occurs. Record the assessment within the requirement header
with the editor and edit date so it too can be read by the code
that generates the validation report. These assessments drive
later testing as the riskier the requirement, the more thorough
the mitigations need to be to reduce risk.

Save all the requirements in the same folder under the working
directory for validation. The name of this folder is suggested to
be called “requirements” for clarity and distinction from the rest
of the validation elements. In an R package, the parent directory
of the validation working directory should be the “vignettes”
folder, with the working directory being a folder called
“validation”. (See Figure 1.) When validation is performed outside
of an R package, the working directory is the folder designated
to hold the validation contents.

Package Development

This step is only applicable when there is software to write. If
there is existing software written by a third party that meets the
requirements, this step can be skipped.

During development of an R package that is to be validated,
who last edited and when the last edit was made to the function
needs to be captured. The purpose of this is to track ownership
and roles of the package across time for appropriate attribution
of responsibility.

A requirement may be fully met by a single function or by the
sum of many modular functions. When writing the software
package, it may be best to have a combination of both
approaches to support the nature of requirements and writing
clean reusable code. Carefully review the requirements and
make sure all requirements have been met.

A method for capturing this information is to add headers and
comments around each function to document the ownership
and any other information about the package. This aligns with
self-documentation tools that are common in programming. For
R, self-documentation through comments is supported through
the package {roxygen2}.

Documenting who edited and when the function was edited
next to the function itself has many different layers of benefit.
The header is easy to update at the time of editing the function
and is documentation that does not require advanced tools
such as version control systems. Next, any other programmers
who run into difficulties when extending this function have
the documentation within the package of who to contact with
questions. Finally, it is useful for validation to track the roles of
the individuals across the project, and this is another way to
make sure people who are involved with writing code are not
involved with testing the same code. The actual implementation
of ownership in this model assumes that when an edit is made,
the owner is responsible for the entire function.

Figure 2 Example R package folder structure with the R Package
Validation Framework infrastructure added

Requirements

A requirement is any need or expectation for a system or
software.1 Through requirements, the goals and expected
outputs of the software are shaped and are then able to be
validated. Without requirements, there is no clearly defined
scope to test against or programming to verify, which prevents
an effective validation and reduces the quality of the package.

To write requirements, collaborate with subject matter experts
(SMEs) and end users to yield clear requirements that capture
as much contextual information as possible to convey any
nuance. If the information cannot be explained concisely,
pointing to external resources to provide additional guidance
is an acceptable solution. Before considering a requirement
complete, gain approval from the SME and stakeholders to
ensure that they meet user needs, and are of consistent quality
across the requirements.

Requirements are saved in a file format that is both human- and
machine-readable, such as markdown.5 Choosing a file format
that can be opened without special or proprietary software
democratises the involvement of the project members. Making
the files machine-readable allows the code that generates the
validation report to source these files into the output document,
allowing it to represent the latest iteration of the requirements
without duplication of effort.

Record when each requirement was first written or edited and
who performed the editing within the header of the requirements
file. By capturing this information within the file, updates to
ownership and edit dates can happen at the same time as the

R Package Validation Framework

4 | PHUSE Deliverables

There are many opinions and approaches that can be followed
during R package development, each with their own benefits
and drawbacks. The purpose of this white paper is not to define
good programming practices, but rather how to integrate the
validation framework into package development. For resources
on good package development and suggestions from these
authors, refer to Appendix 1: R Package GPP.

Documentation in both long form (vignettes) and short form
(function manuals) that are important to support validation
efforts but fall outside the scope of this white paper. Refer to
Appendix 2: Package Documentation Types for more information
on package documentation.

Test Cases

Once the software has been developed, it now must undergo
thorough testing to ensure that software executes correctly
outside the developer’s environment. This testing is known by
the term “User Site Testing”1 and is essential to validation to
prove that the software meets the requirements with the actual
hardware and external software on the intended system.

To support the testing, a pre-defined plan describing the testing
to be performed may need to be written. The plan is comprised
of test cases that demonstrate the software meets the
requirements by defining input data, processing steps to follow
and exact outputs expected.

Every requirement must have evidence that it has been met,
which means every requirement needs to have support from at
least one test case. The number of test cases that are written
for each requirement are based on the identified risks. The
higher the risk, the more test cases may be created to mitigate
the risk by showing the ways that the code could go wrong.
A well-written test case can support multiple requirements,
adding to overall coverage and ensuring the software works well
together while reducing overall effort.

A well-written test case confirms the understanding of the
software and how its functionality meets the requirements.
The test case should be written in such a way that a person
with reasonable knowledge of the programming language
can implement the test case without internal knowledge of
the system being tested. Be specific and write cases that are
representative of how a user may utilise the program since that
will be the most helpful to uncovering defects and supporting
test automation. To ensure that the requirements are met,
explicitly indicate the expected output and tests to be performed
to show that the test case passes.

Suppose we have a function, 'hello_world()', that has a single
argument called 'name'. When the function is called, it will
return text stating 'Hello, {name}!', where 'name' matches the
argument provided by the user. An example of a test case may
be 'Say hello to the user 'Sam' using the function 'hello_world()'
by setting the argument 'name' to be 'Sam'.' The value that is
returned from this function is a character string of the value
'Hello, Sam!' Note how there is no code provided, but the steps
for the programmer to follow to implement the test are provided
and the exact expected output is defined.

The successful execution of the collection of test cases proves
that every requirement is being met by the code. This collection

is reviewed by the key stakeholders and SME to ensure the
collection is both representative and complies with their
understanding of the requirements to show their needs are met.

Test cases are saved in a human- and machine-readable file
format, and it is suggested to use the same file format as was
used in the requirements. The editor of the test case, when the
last update to the test case was made, and which requirements
are being met by which test case are all recorded in the header
of the file.

Save all the test cases in the same folder under the working
directory for validation, in a separate folder from the
requirements. The name of this folder is suggested to be called
“test_cases” for clarity and distinction from the rest of the
validation elements.

Test Case Considerations

Writing test cases is as much an art as it is a science, when
aiming to ensure full coverage and being informative without
being prescriptive. It is not feasible to test the complete set of
possible inputs for a function, so it is not reasonable to attempt
to test every possible set of inputs and test cases. Writing
test cases relies on creating representative conditions or
explicitly checking for known edge cases that can be used to
provide coverage for a set of possible inputs. Good test cases
would subtract from the set of assumptions made about the
functionality and expand the set of known behaviours.

Test cases cannot prove a package is faultless, rather they are
to confirm that the requirements laid out have been satisfied.
A suite of tests that fails is often more valuable than one
that passes. Test cases contribute to the quality of a system
by uncovering problems with documentation, assumptions,
underlying dependencies and the code itself. Test cases that are
failing can help any developers and testers find where issues are
happening and fix them in a timely manner.

Test Code

The test code is the written implementation of the test cases.
By writing the test cases out as reproducible snippets of code,
unbiased and automated evaluation of the tests and capturing
of the results can occur. The code is written as digestible code
chunks that demonstrate the functionality of the software and
prove the requirements have been met. Well-written test code
should have three main goals in mind: simplicity, clarity and
repeatability.

Simple test code means only the code necessary based on the
test cases is recorded. The goal of the test code is to implement
the test case and reliably capture the results. Keeping to using
simple functions that may not be efficient but are verbose and
clean makes the process of debugging test code failures much
easier and faster.

Writing code that makes it clear how the test case maps
to the code simplifies review and updates when test cases
change. Format the test code into easily digestible chunks
that correspond to a test case so that users looking at the
documentation can easily follow the process. Add comments in
the test code to describe what is happening in the code and how
that matches the test case.

R Package Validation Framework

5 | PHUSE Deliverables

The purpose of writing the test code in reproducible scripts
allows for user site testing to become automated. The code
should be able to be rerun to check that any changes made
from version to version did not have any unintended effect on
the functionality of the package. There should be no permanent
changes to the environment outside of the test being run.
Changes may occur within a test, but the environment must
revert to the original state at the completion of the test.

An important part of user site testing is the evaluation of the
ability of the users to understand and interact with the software.1

The test code writer was not involved with writing any of the
package code or the test cases, and as such is a valuable
resource for reviewing the quality of the package. Because
they do not have in-depth knowledge of the workings of the
package, they can give feedback as a new user to the package
documentation and check that assumptions made by the
developers hold as true, as they write the test code.

For each test case that the test code writer turns into code, the
author of the test code and the date it was written is captured,
with the code as a header to each test section. Every time the
code is updated, the author and date are updated in the file. This
information will be captured by the validation report.

Each test code file is saved as an executable script in the same
folder under the working directory for validation, in a separate
folder from the requirements or test cases. The name of this
folder is suggested to be called “test_code” for clarity and
distinction from the rest of the validation elements.

Validation Report

Authoring the Validation Report

The validation report is the objective evidence that the package
can consistently meet the requirements, and thus the needs of
the users. It is done by compiling all the different files that have
been written across this process into a file that can be signed off
by the individuals involved.

To create the validation report, we take advantage of the code-
executing and document-generating abilities of R Markdown and
write the validation report source code. Using basic commands,
each file that was created through the prior steps is parsed to
extract editor information and evaluate the test code to gather
results, combining the raw text from the requirement and test
case files to produce a final report.

Because the validation report source code is written in R
Markdown, it is infinitely customisable to the organisation’s
requirements. For example, the report can be modified to include
a description of the testing system, the operating system and
version of any dependencies, a table of the validation team
and their responsibilities, or record the change history of the
validation. Additionally, the template that the rendered document
is based on can be customised to include the organisation’s
letterhead and logos.

This validation report R Markdown document serves as the
scaffold for the final validation report, and validation is not
complete until this is compiled into the validation report for the
release of the code.

Generating the Validation Report

Once the validation report source code has been written and
approved, the next step is the compilation of this document
into the final validation report for this version of the package.
Each time the software is updated and is up for validation, the
version number of the package is incremented, and the report
is recompiled and circulated for approval. This ensures that the
validation aligns with the version of the software being used.

The preferred method for storing the validation source code
is as a vignette. A vignette is an implementation of long-form
documentation, in which R Markdown files are placed in the
“vignettes” directory of the R package. Files in this directory may
be rendered as part of a package release and/or at installation
using native R installation tools.

On a system with this R package installed, the user can access
the rendered document from within the active workspace. This
makes “vignettes/” an ideal location for files that make up the
validation report source, capturing requirements, test cases,
test code and test code results while rendering everything into a
human-readable document.

If the validation files have been copied to “inst” after generating
the validation report, the elements as they were to generate the
original report are preserved on package build in the bundled
package file or binary file. Now, validation of the installed
package can be done by executing the validation report source
code within the package, with paths updated to reflect the new
location.

Validation Types

Here, we consider three different approaches for when an
organisation might want to compile the validation report source
code to generate the validation report: version release, install,
and for re-validation of an installed or binary package.

An important piece to understanding these validation types is to
understand the state that a package may be in during or after
release and how files and information move within a package
as it moves from a source to a bundled, binary, and eventually,
installed package.6

On Version Release

This is the case where developers generate the validation
report and circulate the document for approval as the last step
of releasing a particular version of that package. Validation at
this level does not consider the details of a user’s environment;
however, it does demonstrate proof-of-concept that the
validation test cases execute in the developer-specified
environment. This approach is closest to current practices for
packages distributed via CRAN repositories and means that
the vignette is pre-rendered. The user may run the validation on
the source code and leave it as is or compile it into a bundle to
ensure source code changed pre-installation not post-validation
of the code.

On Install

This validation is for cases when the proof of validation needs to
be generated within the environment the package is intended to

R Package Validation Framework

6 | PHUSE Deliverables

be used in, and the team performing the installation has access
to the source code. For cases where validation is performed “on
install”, whomever is running the validation can get the compiled
vignette to acquire the necessary signatures or documentation
to meet the organisation’s regulatory requirements.

After Installation

The final validation mode is for cases where the package has
been installed in the environment it is being used in, but access
to the source code is not available or restricted. This may be the
case where proof needs to be regenerated because the state of
the environment has changed, but the package to be validated
has not.

In these cases, once the validation report has been rendered
from the vignettes folder, inside the “inst” folder of the R
package, create a new “validation” folder, and copy all the
elements required for validation into this new folder. If the folder
already exists, overwrite the existing contents with the new files.
This includes the specification files, test case files, test code
files, the roxygen headers of functions, and the source code that
generates the validation vignette.

Once all the contents exist inside the “inst”/“validation” folder,
the package can be built and installed as with the other
packages. The unique case here is that contents within the “inst”
folder of an R package are kept with the package but move up
a folder level. Now, the contents of “validation” can be accessed
from within the installed package directory and rerun to ensure
the validated package maintains its behaviour even when the
environment changes.

Other Considerations

Expectations Imposed by Distribution Platform

When preparing the R package for release via an official
repository, e.g. CRAN, the expectation is that the package
passes the R’s built-in command line package testing suite
with no errors. One of the checks is that all vignette code runs
using the code in this release. Note that for CRAN specifically,
the rendered vignette document is expected to be provided
by the developer, and during testing only the R code chunks in
the vignettes are executed to ensure the vignette runs but the
document is not regenerated.19

A R package can be released in one of several formats: source,
bundled or binary. When users install from source or bundled,
there is the option of rendering vignettes at the point of
installation. If starting with a binary, the vignette is not built at
installation and relies on the instance uploaded by the developer.

Future Releases

The process described thus far is a linear start to end. However,
no software projects avoid bugs or have zero new feature
requests after the initial release.

The framework readily supports this because of the independent
structuring of the requirements, test cases and test code. As
new features are requested, requirements are updated or added,
test cases are written to ensure full coverage still, and testers
update the test code.

As requirements are no longer necessary and become
deprecated, there can be two choices depending on the
organisation. One method is that the requirements, test cases
and test code are removed or updated as necessary, and it is
recorded in the report that the original requirement has been
removed. The other method is to simply mark the requirement
as deprecated in the file and mark the test cases and code
accordingly to preserve the record.

When the elements have all been updated, the validation report
can be recompiled according to the organisation’s validation
practices and the package continues in its newly validated state.

References

1.	� https://www.fda.gov/regulatory-information/search-fda-
guidance-documents/general-principles-software-validation

2.	� https://www.fda.gov/regulatory-information/search-fda-
guidance-documents/part-11-electronic-records-electronic-
signatures-scope-and-application

3.	� https://www.pharmar.org/presentations/r_packages-white_
paper.pdf

4.	 https://www.r-project.org/doc/R-FDA.pdf

5.	� https://rmarkdown.rstudio.com/authoring_pandoc_markdown.
html

6.	 https://r-pkgs.org/package-structure-state.html

7.	� https://stat.ethz.ch/R-manual/R-devel/library/base/html/
Round.html

8.	� https://stat.ethz.ch/R-manual/R-devel/library/stats/html/
quantile.html

9.	 https://r-pkgs.org/r-cmd-check.html

10.	https://docs.python.org/3/library/doctest.html

11.	 https://r-pkgs.org/vignettes.html#vignettes

12.	https://devtools.r-lib.org/

13.	https://roxygen2.r-lib.org/

14.	https://pkgdown.r-lib.org/

15.	https://xml2.r-lib.org/

16.	https://usethis.r-lib.org/

17.	 https://www.tidyverse.org/

18.	https://www.sphinx-doc.org/en/master/index.html

19.	https://r-pkgs.org/vignettes.html#vignette-cran

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-software-validation
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-software-validation
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/part-11-electronic-records-electronic-signatures-scope-and-application
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/part-11-electronic-records-electronic-signatures-scope-and-application
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/part-11-electronic-records-electronic-signatures-scope-and-application
https://www.pharmar.org/presentations/r_packages-white_paper.pdf
https://www.pharmar.org/presentations/r_packages-white_paper.pdf
https://www.r-project.org/doc/R-FDA.pdf
https://rmarkdown.rstudio.com/authoring_pandoc_markdown.html
https://rmarkdown.rstudio.com/authoring_pandoc_markdown.html
https://r-pkgs.org/package-structure-state.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Round.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Round.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
https://r-pkgs.org/r-cmd-check.html
https://docs.python.org/3/library/doctest.html
https://r-pkgs.org/vignettes.html#vignettes
https://devtools.r-lib.org/
https://roxygen2.r-lib.org/
https://pkgdown.r-lib.org/
https://xml2.r-lib.org/
https://usethis.r-lib.org/
https://www.tidyverse.org/
https://www.sphinx-doc.org/en/master/index.html
https://r-pkgs.org/vignettes.html#vignette-cran

R Package Validation Framework

7 | PHUSE Deliverables

5: Disclaimer

The opinions expressed in this document are those of the
authors and should not be construed to represent the opinions
of PHUSE members, respective companies/organisations or
regulators’ views or policies. The content in this document
should not be interpreted as a data standard and/or information
required by regulatory authorities.

Development
Documentation

The {roxygen2} package presents an interface to manage
documentation and package exports along with code in the R/
directory instead of the manual pages and NAMESPACE file.
This process of documentation provides documentation, along
with the context of the code itself, and removes the issues of
coordinating markdown, namespace and R code.

Tests

Part of package development includes developing a testing suite
to prove the contents of the package are behaving as expected
from the perspective of the developer. The testing suite is built
out of a combination of unit tests and regression tests.

Unit tests are individual tests that check functionality on the
smallest “unit” possible. This is typically at the function level. A
variety of inputs and checks should be performed, confirming
behaviour for both correct and invalid inputs. Regression tests
combine multiple units to confirm that changes in one function
are reflected in the expectations of any inputs. This wide and
deep testing provides the best possible coverage of the package
code and is the first line of defence to protect from unintended
bugs being added into the system.

Test scripts are found in the “tests/” directory of the R package
and can be run a few different ways. The most basic way is to
load all the package functions and execute the tests manually.
However, R comes with a native package testing suite – R
CMD CHECK – which runs all tests in addition to reviewing
package contents for conformity with standard package-building
conventions.

The testthat package is a popular interface for designing
tests with intuitive functions for labelling tests and defining
expectations. It has a clear syntax for modularising tests,
declaring expectations, and helps automate the testing cycle.

Although both unit tests and test cases/code are used to test
the functionality of the software package and its contents,
they have distinctly different goals. Unit or regression tests
are built to test if specific pieces are working as intended from
a programming standpoint. Unit tests may also test that any
expected errors and warnings are happening in the intended
manner. Test cases on the other hand test that the code meets
the requirements of the software in the end user environment
and inform the test code that is written by a third party. Test
cases should also include tests that include multiple pieces
working at the same time if that is the intended functionality.

Integration

The R language download comes with utilities for installing,
building and checking packages. During submission to CRAN,
a package is reviewed initially using a native R package
testing suite to check the package for consistency, complete
documentation and tests. However, running these checks
frequently during development is an easy way to improve the
success of any R package. The 'devtools::check()' function
offers an easy R interface without having to work with the CLI
directly and returns a non-zero code to allow for any continuous
integration system.

6: Appendices

1. R Package Good Programming Practices:

Here, the authors of this white paper document some opinions
for how to approach developing a well-designed, well-tested
package that will serve your organisation well. In addition to this
appendix, read “R Packages” by Hadley Wickham for an in-depth
review of state-of-the-art package development philosophies
and tools.

Design

As with any software project, a design phase is a critical part
of deploying an R project. Extensibility and life cycles are
built into the R ecosystem and can be taken advantage of if
the development stage is thought through. Like all software
projects, general advice about designing functions and
objects is appropriate. R packages rely on several methods for
implementing object-oriented principles and can be written in a
functional style.

It is rare for R packages to operate on their own. Most will
extend or rely on other packages, or users will use packages
together to pursue a solution. The first step in designing an R
package is to map out what will work with other packages, allow
its own methods and objects to be operated on, and when to
encapsulate logic that is intended to be internal.

An important design consideration is the management of
NAMESPACE conflicts – packages that load functions with
identical names. The order in which packages are loaded into
a script matters a great deal in how an R script will run. When
packages are loaded, their NAMESPACE is inserted into the
environment, meaning if two packages have overlapping function
names, the function loaded second will override the behaviour of
the package loaded first. This can cause unexpected behaviour,
especially when NAMESPACEs include functions such as 'sort'
and 'sum'. A common solution for NAMESPACE conflicts is
function prefixes, which is prefixing all functions with something
relating to the package. Most user functions in the XML2
package are prefixed with 'xml_'; similarly, most functions in the
usethis package are prefixed with 'use_'.15,16

Life cycles are separate from any functionality in the package,
but signal your intentions to maintain and improve a package or
your intentions of keeping certain function interfaces stable. As
it is important to inform your potential users of your intentions,
it is advisable to not rely on any package that is experimental or
depreciated.

R Package Validation Framework

8 | PHUSE Deliverables

Operating
System

R version 4.0.3 R version 4.0.0 R version 3.6.3

MacOS MacOS
running 4.0.3

MacOS
running 4.0.0

MacOS
running 3.6.3

Ubuntu 18.04 Bionic running
4.0.3

Bionic running
4.0.0

Bionic running
3.6.3

Windows 10 Windows 10
running 4.0.3

Windows 10
running 4.0.0

Windows 10
running 3.6.3

Nearly every R package is built on a network of other packages,
called dependencies. It may not be feasible to test every
possible permutation of every package and every R version, and
it may not be necessary. The most straightforward way to test
a package is to test the package with the latest version of any
dependencies your package has. This may not be realistic on a
local computer; however, since this can cause issues with other
versions of packages a user is using, a solution for this is to
test the package with set dates to test releases by. Containers
made by the Rocker organisation make this easy by providing
dockerfiles that are frozen to the date of release of R versions.
You can pair frozen package states with testing different OS
versions. This would result in every specified frozen date being
tested on every OS distribution. An example is shown below.

a package to CRAN for submission. The {golem} package has
multiple functions that create the necessary files for deploying a
shiny application to several hosting solutions.

2. Package Documentation Types

The process and documentation of validation during validation is
extremely important, but equally important is the documentation
of the package itself. While validation documentation such as
requirements specify what the package should do, the package
documentation explains to the user how those requirements
are implemented and how the package should be used. Overall,
package documentation can be broken down into two general
levels, applicable to most programming languages: function
documentation and long-form documentation.

Function Documentation

Function documentation provides usage information applicable
to a single function or a group of related functions. Similar
functions can be grouped into the same set of documentation
when they are closely related. For example, a group of functions
may share the same parameters and may be used in very similar
contexts. Instead of duplicating this information in multiple
locations, it may make sense to group that documentation
together in one place.

Function documentation should answer specific questions about
the use and functionality of a function, such as what the function
is called, what the inputs should be and what the function will
return. Function documentation can be broken down into a few
different sections.

Summary

A summary of the function should be provided to give a high-
level overview of a function’s purpose, intended usage and
intended result. This information should be concise as this is
the first place a user should look to see if a function fulfils their
needs. Keep this section to a short paragraph with a maximum
of no more than three or four sentences.

Parameters

One of the most crucial aspects of function documentation is
the documentation of parameters. Every parameter available in
a function should be documented. The documentation should
explain the expected input to that parameter and the purpose
of the parameter. If the parameter is optional, this should
be specified and explain the impact of using that optional
parameter.

Details

When a function or group of functions warrants further
explanation, a details section may be necessary. The details
section allows the documentation to elaborate further on
information that would not fit within the summary or within
the parameter documentation. This could be information on
specifics of the implementation of the function or references to
relevant literature. For example, the 'round()' function in R details
that the IEE 60559 standard was used for rounding off a 5.7
This is critically important information to understand but is too
detailed for a summary section. Similarly, the 'quantile()' function

Integration can also include the building and deployment of
documentation artifacts. The pkgdown package is designed to
turn existing documentation, vignettes, news and readme files
into a website that can host these files in an easily digestible and
navigable format.

These tools are generally combined and automated into a
process called “continuous integration”. The checking of
compatibility with other packages, R versions and operating
systems is combined with the rendering of documentation to
shorten the time it takes from development to deployment.
Discussion of specific tools to achieve this is out of scope for
this paper; however, there are many functions that integrate
these tools into an existing development process.

Deployment

Deployment from a local or development environment can
be an unexpected source of issues when the production
environment differs in unexpected ways. This can be an
especially acute problem for R, where package versions change
frequently. R packages can be thought of as a discrete unit
during deployment and validation. Deployment for our purposes
could be a deployment of an R package to CRAN for public
use, deployment to internal users on a private repository, or
deployment of an analysis product.

Documentation is a necessary requirement for a validated
package. A package that lacks context and functional
specifications would be difficult to validate. Consistency
between function documentation and function inputs is
checked with R CMD CHECK, as is the building of vignettes.
The rendering of documentation is a key component of the
deployment process. This is generally done by rendering the
manual comments from the roxygen tags.

While the release of a package or analysis product was difficult
to automate in the past, improvements in R infrastructure as of
late have made this a straightforward process in many situations.
The devtools package has a 'release' function that can transmit

R Package Validation Framework

9 | PHUSE Deliverables

details equations of each of the 9 quantile algorithm types
available within the function.8

Examples

Lastly, great function documentation includes example usage of
the function in different scenarios. This is highly advantageous
to the user as it gives practical examples of what to call the
function, contextual usage of the function, and even code
that can be used as a starting point for the user. Furthermore,
example code is testable and can be used in automated
frameworks like the R CMD Check,9 or the Python doctest10
library. Examples also clearly communicate expectations to a
validator. This section is an opportunity for a developer to show
a validator what the function was intended to be called and can
help reduce back and forth communication.

Long-form Documentation

A sometimes overlooked, but equally important, section of
package documentation is the long-form documentation. The R
programming language has a special framework for this, called
vignettes.11 With tools like R Markdown, creating vignettes is quite
simple, allowing you to put text, code and styled output such as
tables and graphs all within the same document.

While function documentation is critical for a user to know
what to call a function, packages are usually made up of many
functions – and these functions will typically work together in
some way. Long-form documentation ties together the bigger
picture to explain to a user how functions should be used
together contextually and can serve several purposes, from
giving basic information to getting a user started on a package
to explaining advanced usage scenarios in detail.

While long-form documentation offers more space to provide
information, this space should still be used responsibly. It is
quite easy for these documents to get long and unruly, which
makes specific usage information or particular scenarios being
explained difficult to find. Long-form documentation is still best
served when the information is concise. When a document
is getting too detailed and long, it may be best to split it into
multiple documents of sub-topics or consider regrouping the
information into smaller related sets. Long-form documentation
should still be a reference rather than training, so keep in mind
that a user will likely be using this documentation with a specific
question in mind. Therefore, build the document to be navigable
and intuitive.

Additional Tools

The open-source landscape has a number of tools available to
aid in the production of documentation. With the R language,
packages like devtools12 and roxygen213 help with package
development and documentation. Furthermore, packages
like pkgdown14 are available to take function references and
vignettes and build a website out of that content. Resources like
this are helpful as it offers a richer user interface than the base
R language. All of the tidyverse15 and many other R packages are
produced using these package development and documentation
tools. Similarly, Python has tools such as Sphinx, which is a tool
originally developed for Python that creates rich documentation
and has since expanded into multiple languages.18 While
many of these tools aim to produce websites or contribute

documentation to open-source forums, these resources
could just as easily be leveraged within internal systems and
provide internal users with rich references beyond simple PDF
documents.

7: Project Contact Information

• Ellis Hughes
• ellishughes@live.com

8: Acknowledgements

This white paper was developed with the assistance,
contributions and feedback from the members of the R Package
Validation Framework Working Group Project: Aiming Yang,
Chris Battiston, Eli Miller, Katherine Ostbye, Marie Vendettuoli,
Mike Stackhouse, Nathan Kosiba, Paul Stutzman,
Peyman Eshghi, Phil Bowsher, Rafael Kuttner, Shrishaila Patil,
Srinivasa Pilarisetty, Stella Guo and Ting Zhang. Without these
individuals’ diligence, input and imagination, this framework
would not be where it is today.

mailto:ellishughes%40live.com?subject=

