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 and 3 University of Southern California

 PSYCHOLOGICAL SCIENCE

 Research Article

 ABSTRACT- This article considers the problem of comparing two
 independent groups in terms of some measure of location. It is
 well known that with Student's two-independent-sample t test,
 the actual level of significance can be well above or below the
 nominal level, confidence intervals can have inaccurate prob-
 ability coverage, and power can be low relative to other meth-
 ods. A solution to deal with heterogeneity is Welch's (1938) test.
 Welch's test deals with heteroscedasticity but can have poor
 power under arbitrarily small departures from normality. Yuen
 (1974) generalized Welch's test to trimmed means; her method
 provides improved control over the probability of a Type I error,
 but problems remain. Transformations for skewness improve
 matters, but the probability of a Type I error remains unsatis-
 factory in some situations. We find that a transformation for
 skewness combined with a bootstrap method improves Type I
 error control and probability coverage even if sample sizes are
 small.

 An issue that has received considerable attention is whether any
 method for comparing measures of location, corresponding to two

 independent groups, can provide reasonably accurate control over the

 probability of a Type I error when distributions are nonnormal and
 there is heteroscedasticity. The literature pertaining to the effects of

 variance heterogeneity and nonnormality is extensive, beginning well

 over 50 years ago (see, e.g., Aspin, 1949; Behrens, 1929; Brown &
 Forsythe, 1974; Fisher, 1935; James, 1951; Satterthwaite, 1941; To-
 marken & Serlin, 1986; Welch, 1938; Wilcox, 1990). It is well known

 that Student's two-independent-sample t test can be highly un-
 satisfactory in this regard and that it can have poor power under ar-

 bitrarily small departures from normality. In fact, under general
 conditions, it is not even asymptotically correct (Cressie & Whitford,

 1986). Heteroscedastic methods for means improve the control over

 the probability of a Type I error and are asymptotically correct, but

 problems remain (see Wilcox, 1997), and any method based on means
 can have relatively low power (e.g., Staudte & Sheather, 1990). As
 Marazzi and Ruffieux (1999) noted, "the (usual) mean is a difficult

 parameter to estimate well: the sample mean, which is the natural
 estimate, is very nonrobust" (p. 79). Yuen (1974) derived a general-
 ization of Welch's (1938) heteroscedastic method for means to trimmed

 means. Asymptotic results, plus simulations, indicate that this method

 improves control over the probability of a Type I error (Wilcox, 1997,

 2003), but problems remain.

 Another development in this area was to apply a transformation to a

 heteroscedastic statistic to eliminate the biasing effects of skewness.
 Indeed, Luh and Guo (1999) and Guo and Luh (2000) demonstrated
 that better Type I error control was possible when transformations
 (Hall's, 1992, or Johnson's, 1978, method) were applied to the Welch
 (1938) statistic with trimmed means.

 In this article, we consider combining transformations with trimmed

 means and a bootstrap method to assess significance and illustrate
 that good control over the Type I error probability is possible with
 small sample sizes.

 THE TWO-SAMPLE TEST

 To test Ho: fitl = fit2 (equality of population trimmed means), let

 dj = hJ7h _ty, where b\,^ is the gamma- Winsorized variance and hj is

 the effective sample size, that is, the size after trimming (j = 1, 2)
 (Appendix A defines the Winsorization process). Yuen's (1974)
 test is

 where fitj is the y-trimmed mean for the yth group (see Appendix A)
 and the estimated degrees of freedom are

 y {d^d2f
 y d\i{hx-\) + di/{h2-\y {)

 TRANSFORMATIONS FOR YUEN'S STATISTIC

 Guo and Luh (2000) and Luh and Guo (1999) found that Johnson's
 (1978) and Hall's (1992) transformations improved the performance of

 several heteroscedastic test statistics when they were used with
 trimmed means in the presence of heavy-tailed and skewed dis-
 tributions. Johnson (1978) used the Cornish-Fisher expansion (e.g.,

 Address correspondence to H.J. Keselman, Department of Psy-
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 see Balkin & Mallows, 2001) to modify the one-sample t test in order

 to achieve robustness to skewness, whereas Hall (1992) provided a
 general transformation for removing skewness.

 Let Yy = (Yy, Yij, . . . , Ynjj) be a random sample from the yth

 distribution (i = 1 ,..., n/, j= 1, 2). Let (itj, fiwj, and c2wj be, re-
 spectively, the trimmed mean, Winsorized mean, and Winsorized
 variance of group j (see Appendix A). Define the Winsorized third
 central moment of group j as

 where the X^s are the Winsorized scores (see Appendix A). Let

 . _ rij .

 ai = d\ +d2,

 and

 7, -hi -hi

 Guo and Luh (2000) generalized Yuen's (1974) test statistic via
 Johnson's (1978) transformation, yielding

 (^-^)+fe+fe(^-^2
 ^(Johnson) =

 whereas Yuen's statistic with Hall's (1992) transformation would be

 ^-Aa) + ^ + ^(ft,-fa)2+^(A,,-Afl)8
 ^(Hall) =

 Each of these statistics is distributed approximately as a t variable
 with degrees of freedom given in Equation 1.

 BOOTSTRAPPING

 Now we consider how extensions of the method just outlined might be

 improved. Investigations have indicated that when using a y-trimmed

 mean, the most successful method, in terms of probability coverage

 and controlling the probability of a Type I error, is some type of
 bootstrap method.

 Following Westfall and Young (1993), and as enumerated by Wilcox

 (1997), let Cy = Yij - fitj\ thus, the Cty values are the empirical
 distribution of the yth group, centered so that the sample trimmed
 mean is zero. That is, the empirical distributions are shifted so that the

 null hypothesis of equal trimmed means is true in the sample. The
 strategy behind the bootstrap is to use the shifted empirical dis-
 tributions to estimate an appropriate critical value. For eachy, obtain a

 bootstrap sample by randomly sampling with replacement nj ob-
 servations from the Cy values, yielding Y\ , . . . , Y* . Let, for example,

 t* be the value of Yuen's (1974) test based on the bootstrap sample.

 Now we randomly sample (with replacement) B bootstrap samples
 from the shifted distributions, each time calculating the statistic t*.

 The B values of /* are put in ascending order, that is,
 t*yn\ < * • * < C(B)- If we set ^ = a^/2, rounding to the nearest integer,
 and u = B - /, then we would reject the null hypothesis of location

 equality (i.e., Ho: Ha = /^2) when ty < /*(/)or when ty > f*(u), where ty

 is the value of Yuen's statistic based on the original nonbootstrapped
 data.

 BOOTSTRAP INTERVALS FOR ptl - /il2

 The 100(1 - a)% bootstrap percentile interval for fitl - \ia based on

 the Yuen procedure would be

 [(A/i - A/2) - ^(W)^w, (A/i - A/2) - ^(/+i)*wj •

 If Johnson's (1978) transformation is applied to the Yuen approach,
 then according to Johnson (p. 538), a 100(1 - a)% bootstrap per-
 centile interval would be

 n (A/1 - A/2) + ^2~ r - ^(Johnson) (m)^vi',

 \ (A/1 - A/2) + ^2~ r ~^(Johnson)(/+l)^ '

 Finally, based on Guo and Luh (2000), a 100(1 - a)% bootstrap
 percentile interval for Hall's (1992) approach would be

 [(A/i - A/2) " a*B[uy (A/i " A/2) " ^v£(/+i)] ,

 where

 3 r / * \ vi i/3 3
 B\m) = p [J + p(^Hall)(/+1)J / * ~6] ~P'

 and

 3 r ^ v] 1/3 3
 BU = p [l + P(C(HaIl)(«)) ^ " 6j " p '

 where v = fxwld\,.

 THE SIMULATION

 We examined Yuen's (1974) procedure with and without a transfor-
 mation for skewness and with and without bootstrapping. In particular,

 the procedures were compared for (a) three nonnormal distributions (a

 chi-squared distribution with 3 degrees of freedom and two g-and-/i

 distributions; see Hoaglin, 1985); (b) unequal group variances that
 were in a 36:1 ratio; (c) variances and group sizes that were both
 positively and negatively paired for two cases of sample size, /V = 30

 (10, 20) and N = 40 (15, 25); and (d) three percentages of trimming
 (20%, 15%, and 10%). The recommended amount of symmetric
 trimming varies in the literature. Rosenberger and Gasko (1983) rec-

 ommended 25% trimming when sample sizes are small, though they

 indicated that generally 20% suffices. Wilcox (1997) also rec-
 ommended 20%, whereas Mudholkar, Mudholkar, and Srivastava

 (1991) suggested 15%. Ten percent has been suggested by Hill and
 Dixon (1982), Huber (1977), Stigler (1977), and Staudte and Sheather
 (1990). Details of the simulation are presented in Appendix B.

 RESULTS

 Table 1 contains summary statistics for the 18 versions of ty that were

 examined. In particular, the table contains the range of empirical Type
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 TABLE 1

 Summary Statistics

 Procedure

 ReSUlt ty ty] tyH tyB tyjB tyHB

 20% symmetric trimming

 Range of Type I errors .042-.075 .043-.071 .043-.071 .044-.061 .042-.06 .045-.059
 No. of values not in the interval 9 8 8 2 3 2

 Average Type I error .058 .056 .056 .052 .053 .053

 15% symmetric trimming

 Range of Type I errors .038-.07 .044^.063 .044-.064 .038-.058 .045-.059 .044-.056
 No. of values not in the interval 7 5 5 2 2 0

 Average Type I error .054 .055 .055 .05 .053 .052

 10% symmetric trimming
 Range of Type I errors .042-.077 .051-.068 .051-.069 .043-.06 .05-.06 .049-.061
 No. of values not in the interval 8 5 6 4 3 1

 Average Type I error .056 .056 .057 .051 .054 .054

 Note. Nonrobust values are those not contained in the interval .044-056. ty = Yuen's two-sample test; J = Johnson's (1978) transformation;
 H = Hall's (1992) transformation; B = bootstrapping.

 I error values for the 12 conditions examined (3 distributions x 2
 sample-size cases x 2 pairings of variances and sample sizes); the
 number of values, out of 12, that were not contained in the interval

 .044^.056 (± 2(7a for a = .05); and the average error rate over the
 conditions examined. We consider empirical values not contained in
 the interval .044-.056 to be nonrobust.

 As we indicated in our introduction, applying a transformation to a

 heteroscedastic statistic and assessing significance through a boot-
 strap method improves rates of Type I error over the rates obtained
 with methods that do not use these modifications. Also noteworthy is

 that the "best" procedure is one that relies on a moderate amount of

 trimming (i.e., 15% from each tail). That is, Yuen's (1974) method with

 Hall's (1992) transformation with bootstrapping methodology resulted

 in no empirical values outside the .044-.056 interval. It is important
 to note that this level of accuracy in Type I error control has not been

 reported in the literature for any other method related to the problem

 we investigated. Moreover, the range of empirical values for this test

 (range = .012) was the lowest among the procedures that resulted in
 no more than two deviant values. The same procedure with 10%
 trimming might be regarded as best, however, even though it resulted

 in one deviant value (range = .012), if discarding the least amount of

 the data is primary to an applied researcher.

 SUMMARY AND CONCLUSIONS

 It is well known to statisticians that variance heterogeneity can distort

 rates of Type I error for Student's two-independent-sample t test.
 Hence, numerous solutions to the problem of assessing mean equality

 in the presence of variance heterogeneity have appeared over the
 decades since this problem was first identified. Also fairly well known

 is that nonnormality, typically in the form of heavy tailedness, can

 depress the power to detect effects when the usual mean and variance

 are used to assess treatment-group equality with Student's two-in-

 dependent-sample t test or with Welch's (1938) test. Thus, Yuen
 (1974) suggested that in order to counter the effects of nonnormality

 and variance heterogeneity, applied researchers should apply trimmed

 means and Winsorized variances with Welch's two-sample test. In-
 deed, Yuen found that one can achieve better Type I error control with

 her procedure, and many other statisticians have indicated that the

 power to detect effects is better with her procedure than it would be

 using either Student's t test or Welch's test based on least squares
 means and variances (e.g., see Wilcox, 1997).

 Recent research has indicated that applied researchers can achieve

 even better Type I error control if Yuen's (1974) test is modified by
 applying to her statistic a transformation that eliminates the effects of

 skewness and if statistical significance is assessed with a bootstrap
 method. Accordingly, we have outlined the mechanics of this ap-
 proach and presented the results from a Monte Carlo investigation that

 demonstrated its effectiveness. We have also demonstrated that very
 tight Type I error control can be achieved with only modest amounts of

 trimming - namely, 15% or 10% from each tail of the distribution.
 This last finding we consider noteworthy because most applied re-
 searchers are generally uncomfortable about discarding data.

 We want to remind the reader that we examined 18 test statistics

 under conditions of extreme heterogeneity and nonnormality. Thus, we

 believe we have identified procedures that maintain the actual a level

 in cases of heterogeneity and nonnormality likely to be encountered

 by applied researchers, and therefore we are very comfortable with our
 recommendation.

 To conclude, we wish to reiterate that though the Yuen (1974)
 statistic tests a null hypothesis stipulating that the population trimmed

 means are equal, we believe this is a reasonable hypothesis to ex-
 amine because in distributions that either contain outliers or are

 skewed, trimmed means provide better estimates of the typical in-
 dividual than the usual (least squares) means do. That is, when dis-
 tributions are skewed, trimmed means do not estimate \i but rather

 some value (i.e., fit) that is typically closer to the bulk of the ob-
 servations. (Another way of conceptualizing the unknown parameter

 \it is that it is simply the population counterpart of fit; see Huber,
 1972, and Hogg, 1974.) Finally, as Zhou, Gao, and Hui (1997) pointed
 out, distributions are typically skewed, and our results indicate that a
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 heteroscedastic statistic utilizing trimmed means and Winsorized
 variances will provide very good control over the Type I error prob-

 ability for a broader range of situations when applied with a trans-
 formation to eliminate skewness and a bootstrap method.

 Acknowledgments - Work on this project was supported by the
 Natural Sciences and Engineering Research Council of Canada.
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 APPENDIX A: TRIMMING AND ESTIMATORS

 Let Y(iy < Y(2)j < • • < Y{nj)j represent the ordered observations
 associated with theyth group. Let gj = [ynj\ indicate that yrij is rounded

 down to the nearest integer and y represents the proportion of ob-
 servations that are to be trimmed in each tail of the distribution. The

 effective sample size for theyth group becomes hj = rij - 2gy. They'th
 sample trimmed mean is

 1 nj-gj
 N = tY1 r(0/-

 J i=gj+*

 The sample Winsorized mean is necessary to compute the Winsorized

 variance and is computed as

 1 nj

 J i=\

 where

 xu = Y(gj+iy if Yu ^ Y(gj+iy

 = Yu if Y(gj+iy < Yu < Y("j-gjV

 = Y("j-gj)J if YV ^ Y("j-gj)J'

 The sample Winsorized variance, which is required to get a theoret-
 ically valid estimate of the standard error of a trimmed mean, is then

 given by

 J /=1

 The standard error of the trimmed mean is estimated with

 ^{nj-l)^/[hj(hj-l)].
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 APPENDIX B: THE SIMULATION STUDY

 Eighteen tests for treatment-group equality were compared for their

 rates of Type I error under conditions of nonnormality and variance

 heterogeneity in an independent-groups design with two treatments.

 The procedures we investigated were Yuen's (1974) two-sample test,
 Yuen's two-sample test with bootstrapping, Yuen's two-sample test
 with Johnson's (1978) transformation, Yuen's two-sample test with
 Johnson's transformation and bootstrapping, Yuen's two-sample test

 with Hall's (1992) transformation, and Yuen's two-sample test with

 Hall's transformation and bootstrapping. Each of these procedures was

 implemented with 10%, 15%, and 20% trimming.
 We examined (a) the percentage of symmetric trimming (10%, 15%,

 or 20%), (b) the utility of transforming the Yuen (1974) statistic with

 either Johnson's (1978) or Hall's (1992) transformation, and (c) the
 utility of bootstrapping the data. Three additional variables were
 manipulated in the study: (a) sample size, (b) pairing of variances and

 group sizes, and (c) population distribution.
 The two cases of total sample size and the group sizes were TV = 30

 (10, 20) and N = 40 (15, 25). We selected these values, in part, be-
 cause other researchers have found them to be generally sufficient to

 provide reasonably effective Type I error control (e.g., see Wilcox,
 1994). The unequal variances were in a 36:1 ratio. Though a ratio of

 36:1 may seem extreme, similar ratios, and larger ones, have been
 reported in the literature. For example, Keselman et al. (1998), after

 reviewing articles published in prominent education and psychology

 journals, noted that they found ratios as large as 24:1 in one-way
 completely randomized designs. Wilcox (2003) cited data sets in
 which the ratio was 17,977:1! Variances and group sizes were both
 positively and negatively paired. In positive pairs, the largest rc, was
 associated with the population having the largest variance; in negative

 pairs, the largest nj was associated with the population having the
 smallest variance. These conditions were chosen because they typi-

 cally produce conservative and liberal results, respectively.

 With respect to the effects of distributional shape on Type I error,

 we chose to investigate nonnormal distributions in which the data
 were obtained from a variety of skewed distributions. In addition to

 generating data from a xl distribution, we used the method described
 in Hoaglin (1985) to generate distributions with more extreme degrees

 of skewness and kurtosis. For the y\ distribution, skewness and kur-
 tosis values are 7i = 1.63 and y2 = 4.00, respectively. The other
 nonnormal distributions were generated from the g-and-h distribution

 (Hoaglin, 1985). Specifically, we chose to investigate two g-and-h
 distributions: (a) g = .5 and h = 0 and (b) g = .5 and h = .5, where g

 and h are parameters that determine the third and fourth moments of a

 distribution. When g = 0, a distribution is symmetric, and the tails of
 a distribution will become heavier as h increases in value. It should be

 noted that for the standard normal distribution, g = h = 0. Values of

 skewness and kurtosis corresponding to the investigated values of
 g and h are (a) j\ = 1.75 and y2 = 8.9, respectively, and (b)
 yY = y2 = undefined. These values of skewness and kurtosis are the-

 oretical values; Wilcox (1997, p. 73) reported computer-generated
 values, based on 100,000 observations, for these statistics - y^ =
 1.81 and y2 = 9.7 for g = .5 and h = 0, and yx = 120.10 and y2 =
 18,393.6 for g = .5 and h = .5. Thus, the conditions we chose to in-

 vestigate could be described as extreme. That is, they were intended
 to indicate the operating characteristics of the procedures under
 substantial departures from homogeneity and normality, with the
 premise being that if a procedure works under the most extreme
 conditions, it will probably work under most conditions likely to be
 encountered by researchers.

 To obtain pseudorandom normal variates, we used the SAS gen-
 erator RANNOR (SAS Institute, 1989). If ZLj is a standard-unit normal

 variate, then Yy = \ij + oy x Zy is a normal variate with mean equal

 to \ij and variance equal to (jj. Pseudorandom variates having a chi-
 squared distribution with three degrees of freedom were generated by

 squaring and summing three standard normal variates.

 To generate data from a g-and-h distribution, we converted stan-
 dard-unit normal variables to random variables via

 _exp(gZ,)-l M\
 Yu- g exp^J,

 according to the values of g and h selected for investigation. We then

 subtracted \iti from the generated variates under every generated
 distribution. In particular, we generated one million observations from

 each of the distributions investigated and applied each possible
 trimming strategy (10%, 15%, or 20%), calculating the mean of the

 remaining values. We then used these mean values to standardize the
 data so that the null hypothesis of trimmed-mean equality was true in

 every null case investigated.

 To obtain a distribution with standard deviation Oy, we then mul-

 tiplied each Yij by a value of <r,. It should be noted that the standard
 deviation of a g-and-h distribution is not equal to 1, and thus the
 values reflect only the amount that each random variable is multiplied

 by and not the actual values of the standard deviations (see Wilcox,
 1994, p. 298). As Wilcox noted, the values for the variances (standard
 deviations) more aptly reflect the ratio of the variances (standard
 deviations) between the groups.

 Five thousand replications of each condition were performed using

 a .05 statistical significance level. B was set at 599 because the results

 of Wilcox (1997) and Hall (1986) suggest that it may be advantageous
 to choose B such that 1 - a is a multiple of (B+ 1)"1.
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