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Abstract

This paper presents a Bayesian approach to multiple-output quantile regression.
The prior can be elicited as ex-ante knowledge of the distance of the τ -Tukey depth
contour to the Tukey median, the first prior of its kind. The parametric model is
proven to be consistent and a procedure to obtain confidence intervals is proposed.
A proposal for nonparametric multiple-output regression is also presented. These
results add to the literature of misspecified Bayesian modeling, consistency, and prior
elicitation of nonparametric multivariate modeling. The model is applied to the
Tennessee Project Steps to Achieving Resilience (STAR) experiment and finds a
joint increase in τ -quantile subpopulations for mathematics and reading scores given
a decrease in the number of students per teacher.
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1 Introduction

Single-output (i.e., univariate) quantile regression, originally proposed by Koenker and

Bassett (1978), is a popular method of inference among empirical researchers (see Yu et al.

(2003) for a survey). Yu and Moyeed (2001) formulated a Bayesian framework for quantile

regression. This advance opened the doors for Bayesian inference of quantiles and generated

a series of applied and methodological research.1

A multiple-output (i.e., multivariate) quantile can be defined in many different ways

and there has been little consensus on which is the most appropriate (Small, 1990; Chaud-

huri, 1996; Serfling, 2002; Wei, 2008; Serfling and Zuo, 2010; Hallin et al., 2010; Kong and

Mizera, 2012; Carlier et al., 2016). Advancements for Bayesian multiple-output quantiles

are sparse. A recent paper uses a geometric definition for a multiple-output quantile loca-

tion (Bhattacharya and Ghosal, 2020). Two other previous approaches exist, but neither

used a commonly accepted definition for a multiple-output quantile (Drovandi and Pettitt,

2011; Waldmann and Kneib, 2014).

This paper presents a Bayesian framework for multiple-output quantiles defined para-

metrically in Laine (2001) and Hallin et al. (2010) and nonparametrically in Hallin et al.

(2015). Their directional quantiles coincide with Tukey halfspace depth contours and can be

computed with standard single-output quantile regression techniques (Hallin et al., 2010).

See McKeague et al. (2011) for a frequentist application to growth trajectories and San-

tos and Kneib (2020) for a Bayesian extension and application to student scores on the

Brazilian High School National Exam.

Both the parametric and nonparametric models can be extended to include regression

1For example, see Taddy and Kottas (2010); Thompson et al. (2010); Alhamzawi et al. (2012); Kozumi

and Kobayashi (2011); Benoit and Van den Poel (2012); Benoit and Van den Poel (2017); Feng et al.

(2015); Kottas and Krnjajić (2009); Lancaster and Jae Jun (2010); Rahman (2016); Sriram et al. (2016).
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with covariates. However, the τ -quantile contours in the parametric regression model re-

quire severe restrictions to be depth contours of the conditional distribution due to an

issue analogous to quantile crossing in the single-output case (Hallin et al., 2015; Koenker

et al., 2018). In which case the nonparametric model can provide the correct depth con-

tours. However, the nonparametric model has a curse of dimensionality and can have large

parameter spaces with long computation times.

Validity of the proposed approach leverages an idea similar to Chernozhukov and Hong

(2003) using a likelihood that is not necessarily representative of the Data Generating

Process (DGP). Despite misspecification, the posterior of the parametric model is proven

to converge almost surely to the population parameters. The posterior of the nonparametric

model is shown via simulation to converge to the population parameters as well. Frequentist

confidence intervals can be obtained for the location case of the parametric model and are

shown through simulation to have proper coverage. These results further motivate the use

of misspecified Bayesian models for real world data analysis.

By performing inference in this framework, one gains many advantages of a Bayesian

analysis. The Bayesian machinery provides a principled way of combining prior knowledge

with data to arrive at conclusions. This machinery can be used in a data-rich world,

where data is continuously collected, to make inferences and update them in real time.

The proposed approach can take more computational time than the frequentist approach,

since the proposed posterior sampling algorithm recommends initializing the Markov Chain

Monte Carlo (MCMC) sequence at the frequentist estimate. Thus, if the researcher does not

desire to provide prior information or perform online learning, the frequentist approach may

be more desirable than the proposed approach. An anonymous reviewer pointed out that

directional quantiles can be used to infer boundaries of arbitrarily bounded multivariate

distributions.
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The prior is a required component in Bayesian analysis where the researcher elicits their

pre-analysis beliefs for the population parameters. The prior for the parametric model is

closely related to the Tukey depth of a distribution, a notion of multiple-output centrality

of a data point (Tukey, 1975). The prior can be elicited as the Euclidean distance of the

Tukey median from a (spherical) τ -Tukey depth contour. This is the first Bayesian prior

for Tukey depth and motivates further research for nonparametric prior elicitation.

Once a prior is chosen, estimates can be computed using MCMC draws from the poste-

rior. A Gibbs MCMC sampler can be used if the researcher is willing to accept prior joint

normality of the model parameters. Gibbs samplers have many computational advantages

over other MCMC algorithms such as easy implementation, efficient convergence to the

stationary distribution, and little to no parameter tuning. Consistency of the posterior

and a Bernstein-Von Mises result are verified via a simulation study.

The models are applied to the Tennessee Project Steps to Achieving Resilience (STAR)

experiment (Finn and Achilles, 1990). The goal of the experiment was to determine if

classroom size has an effect on learning outcomes. The effect of decreasing classroom size is

shown to improve test scores by comparing τ -quantile contours for mathematics and reading

test scores of first grade students. Further it is found that τ -quantile subpopulations of

mathematics and reading scores improve for both central and outlying students in smaller

classrooms compared to larger classrooms. This result is consistent with, and much stronger

than the result one would find with multiple-output linear regression. An analysis by

multiple-output linear regression finds mathematics and reading scores improve on average;

however, there could still be subpopulations where the score declines. The multiple-output

quantile regression approach confirms there are no quantile subpopulations where the score

declines (of the inspected subpopulations).
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2 Bayesian multiple-output quantile regression

This section presents the parametric Bayesian approach to quantile regression. Notation

common to both parametric and nonparametric approaches is presented, followed by the

definition of the parametric model and a theorem of consistency for the Bayesian estima-

tor (section 2.1). Parameter interpretations related to τ -Tukey depth contours are shown

(subsection 2.1.1). Then a method to construct asymptotic frequentist confidence intervals

is shown (section 2.2). The prior is then discussed (section 2.3). Expectations and proba-

bilities in sections 2.1 and 2.2 are conditional on parameters. Expectations in section 2.3

are with respect to prior parameters. Appendix E presents the nonparametric approach

and Appendix A reviews additional details on multiple-output quantiles.

Let [Y1, Y2, ..., Yk]
′ = Y be a k-dimension random vector. The direction and magnitude

of the directional quantile is defined by τ ∈ Bk = {v ∈ <k : 0 < ||v||2 < 1}. Where Bk is a

k-dimension unit ball centered at 0 (with center removed). Define || · ||2 to be the l2 norm.

The vector τ= τu can be broken down into direction, [u1, u2, ..., uk]
′ = u ∈ Sk−1 = {v ∈

<k : ||v||2 = 1} and magnitude, τ ∈ (0, 1).

Let Γu be a k× (k− 1) matrix such that [u
... Γu] is an orthonormal basis of <k. Define

Yu = u′Y and Y⊥u = Γ′uY. Let X ∈ <p to be random covariates. Define the ith observation

of the jth component of Y to be Yij and the ith observation of the lth covariate of X to

be Xil where i ∈ {1, 2, ..., n} and l ∈ {1, 2, ..., p}.

2.1 Parametric model

Define Ψu(a,b) = E[ρτ (Yu − b′yY⊥u − b′xX − a)] to be the objective function of inter-

est. Hallin et al. (2015) refers to this model as the “unconditional” model because the

expectation in the objective function does not condition on the covariates. In this paper
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it is referred to as the parametric model. The τ th quantile regression of Y on X (and an

intercept) is λτ = {y ∈ <k : u′y = β′τyΓ′uy + β′τxX + ατ} where

(ατ , βτ ) = (ατ , βτy, βτx) ∈ argmin
a,by,bx

Ψu(a,b). (1)

The definition of the location case is embedded in definition (1), where bx and X are

of null dimension. A τ -quantile contour is produced by obtaining the boundary of the

intersection of the closed upper halfspaces of λτ for all u and a fixed τ (rigorously defined

in Appendix A equation (9)). The location specific τ -quantile contours can be interpreted

as τ -Tukey depth contours. However, without severe restrictions, the interpretation is lost

if covariates are included (Hallin et al., 2015; Koenker et al., 2018). In which case more

flexible parametric modeling (e.g., polynomial) or a nonparametric approach can be used

to obtain proper contours.

Note that βτy is a function of Γu. This relationship is of little importance; the unique-

ness of β′τyΓ′u, which is guaranteed under Assumption 2 (presented in the next section), is

of greater interest. Thus, the choice of Γu is unimportant as long as [u
... Γu] is orthonormal.2

The population parameters satisfy two subgradient conditions

∂Ψu(a,b)

∂a

∣∣∣∣
ατ ,βτ

= Pr(Yu − β′τyY⊥u − β′τxX− ατ ≤ 0)− τ = 0 (2)

and

∂Ψu(a,b)

∂b

∣∣∣∣
ατ ,βτ

= E[[Y⊥u
′
,X′]′1(Yu−β′τyY

⊥
u−β′τxX−ατ≤0)]− τE[[Y⊥u

′
,X′]′] = 0k+p−1. (3)

The expectations need not exist if observations are in general position (Hallin et al., 2010).

2The choice of Γu could possibly affect the efficiency of MCMC sampling and convergence speed of the

MCMC algorithm to the stationary distribution.
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Interpretations of the subgradient conditions are presented in Appendix A, one of which

is new to the literature and will be restated here. The second subgradient condition can

be rewritten as

E[Y⊥ui|Yu − β′τyY⊥u − β′τxX− ατ ≤ 0] = E[Y⊥ui] for all i ∈ {1, ..., k − 1}

E[Xi|Yu − β′τyY⊥u − β′τxX− ατ ≤ 0] = E[Xi] for all i ∈ {1, ..., p}

This shows the probability mass center in the lower halfspace for the orthogonal response

is equal to that of the probability mass center in the entire orthogonal response space.

Likewise for the covariates, the probability mass center of being in the lower halfspace is

equal to the probability mass center in the entire covariate space.

The Bayesian approach assumes

Yu|Y⊥u ,X, ατ , βτ ∼ ALD(β′τyY⊥u + β′τxX + ατ , στ , τ)

whose density is

fτ (Y|X, ατ , βτ , στ ) =
τ(1− τ)

στ
exp(− 1

στ
ρτ (Y − β′τyY⊥u − β′τxX− ατ )).

The nuisance scale parameter, στ , is fixed at 1.3 The likelihood is

Lτ (ατ , βτ ) =
n∏
i=1

fτ (Yi|Xi, ατ , βτ , 1). (4)

The ALD distributional assumption likely does not represent the DGP, and is thus

a misspecified distribution. However, as more observations are obtained, the posterior

3The nuisance parameter is sometimes taken to be a free parameter in single-output Bayesian quantile

regression (Kozumi and Kobayashi, 2011). The posterior has been shown to still be consistent with a free

nuisance scale parameter in the single-output model (Sriram et al., 2013). This paper does not attempt to

prove consistency with a free nuisance scale parameter.
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probability mass concentrates around neighborhoods of (ατ0, βτ0), where (ατ0, βτ0) satisfies

(2) and (3). Theorem 1 shows this posterior consistency.

The assumptions for Theorem 1 are below.

Assumption 1. The observations (Yi,Xi) are independent and identically distributed

(i.i.d.) with true measure P0 for i ∈ {1, 2, ..., n, ...}.

The density of P0 is denoted p0. Assumption 1 states the observations are independent.

This still allows for dependence among the components within a given observation (e.g.,

heteroskedasticity that is a function of Xi). The i.i.d. assumption is required for the

subgradient conditions to be well defined.

The next assumption causes the subgradient conditions to exist and be unique, ensuring

the population parameters,(ατ0, βτ0), are well defined.

Assumption 2. The measure of (Yi,Xi) is continuous with respect to Lebesgue measure,

has connected support, and admits finite first moments for all i ∈ {1, 2, ..., n, ...}.

Serfling and Zuo (2010) show this assumption can be weakened to not require that

moments exist. The next assumption describes the prior.

Assumption 3. The prior, Πτ (·), has positive measure for every open neighborhood of

(ατ0, βτ0) and is

a) proper, or

b) improper but admits a proper posterior.

Case b includes the Lebesgue measure on <k+p (i.e., flat prior) as a special case (Yu

and Moyeed, 2001, Theorem 1). Assumption 3 is satisfied using the joint normal prior

suggested in section 2.3.

The next assumption bounds the covariates and response variables to ensure the expec-

tation of the likelihood is finite.
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Assumption 4. There exists a cx > 0 such that |Xi,l| < cx for all l ∈ {1, 2, ..., p} and all

i ∈ {1, 2, ...., n, ...}. There exists a cy > 0 such that |Yi,j| < cy for all j ∈ {1, 2, ..., k} and

all i ∈ {1, 2, ...., n, ...}. There exists a cΓ > 0 such that sup
i,j
|[Γu]i,j| < cΓ.

The restriction on X is fairly mild in application; any given dataset will satisfy these

restrictions. Further, X can be controlled by the researcher in some situations (e.g., exper-

imental environments). The restriction on Y is more contentious since it is less common.

However, like X, any given dataset will satisfy this restriction (and is satisfied in this pa-

per’s application). A simulation in section 4 shows that this assumption can be violated.

The assumption on Γu is innocuous since Γu is chosen by the researcher.

The next assumption ensures the Kullback-Leibler minimizer is well defined.

Assumption 5. E log
(

p0(Yi,Xi)
fτ (Yi|Xi,α,β,1)

)
<∞ for all i ∈ {1, 2, ..., n, ...}.

The next assumption is to ensure the orthogonal response and covariate vectors are not

degenerate.

Assumption 6. There exist vectors εY > 0k−1 and εX > 0p such that

Pr(Y⊥uij > εY j,Xil > εXl, ∀j ∈ {1, ..., k − 1}, ∀l ∈ {1, ..., p}) = cp 6∈ {0, 1}.

This assumption can always be satisfied with a simple location shift as long as each

variable takes on at least two different values with positive joint probability. Let U ⊆ Θ,

define the posterior probability of U to be

Πτ (U |(Y1,X1), (Y2,X2), ..., (Yn,Xn)) =

∫
U

∏n
i=1

fτ (Yi|Xi,ατ ,βτ ,στ )
fτ (Yi|Xi,ατ0,βτ0,στ0)

dΠτ (ατ , βτ )∫
Θ

∏n
i=1

fτ (Yi|Xiατ ,βτ ,στ )
fτ (Yi|Xi,ατ0,βτ0,στ0)

dΠτ (ατ , βτ )
.

The main theorem of the paper can now be stated.
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Theorem 1. Suppose assumptions 1, 2, 3a, 4 and 6 hold or assumptions 1, 2, 3b, 4, 5 and

6. Let U = {(ατ , βτ ) : |ατ−ατ0| < ∆, |βτ−βτ0| < ∆1k−1}. Then lim
n→∞

Πτ (U c|(Y1,X1), ..., (Yn,Xn)) =

0 a.s. [P0].

The proof is presented in Appendix B. The strategy of the proof follows very closely

to the strategy used in the single-output model (Sriram et al., 2013). First, construct

an open set Un containing (ατ0, βτ0) for all n that converges to (ατ0, βτ0), the population

parameters. Define Bn = Πτ (U c
n|(Y1,X1), ..., (Yn,Xn)). The Markov inequality and Borel-

Cantelli lemma are used to prove convergence of Bn to B = 0 almost surely by showing that

lim
n→∞

∑n
i=1E[|Bn − B|d] <∞ for some d > 0. The Markov inequality states if Bn − B ≥ 0

then for any d > 0

Pr(|Bn −B| > ε) ≤ E[|Bn −B|d]
εd

for any ε > 0. The Borel-Cantelli lemma states

if lim
n→∞

n∑
i=1

Pr(|Bn −B| > ε) <∞ then Pr(lim sup
n→∞

|Bn −B| > ε) = 0.

Thus by Markov inequality

n∑
i=1

Pr(|Bn −B| > ε) ≤
n∑
i=1

E[|Bn −B|d]
εd

.

Since lim
n→∞

∑n
i=1E[|Bn−B|d] <∞ then lim

n→∞

∑n
i=1 Pr(|Bn−B| > ε) <∞. By Borel-Cantelli

Pr(lim sup
n→∞

|Bn −B| > ε) = 0.

To show lim
n→∞

∑n
i=1E[|Bn − B|d] < ∞, a set Gn is created where (ατ0, βτ0) 6∈ Gn. Within

this set the expectation of the posterior numerator is less than e−2nδ and the expectation

of the posterior denominator is greater than e−nδ for some δ > 0. Thus the expected value

of the posterior is less than e−nδ, which is summable.

10



2.1.1 Relation to τ-Tukey depth contours

Let µ be the Tukey median of Y, where the Tukey median is the point with maximal Tukey

depth. See Appendix A for a discussion of Tukey depth and Tukey median. Define Z =

Y − µ to be the Tukey median centered transformation of Y. Let ατ and βτ = (βτz, βτx)

be the parameters of the λτ = {z ∈ <k : u′z = β′τzΓ
′
uz + β′τxX + ατ} hyperplane for Z.

Under the condition that

ατ = ατ , βτz = 0k−1 and βτx = βτx for all τ , (5)

Y has spherical Tukey contours with a Euclidean distance of |ατ + βτxX| to the Tukey

median. This result is obtained using Theorem 2 (presented below) and the fact that τ -

quantile contours correspond to τ -Tukey depth contours (see equation (9) and the following

text in Appendix A).

Theorem 2. Suppose i) ατ = ατ , βτz = 0k−1 and βτx = βτx for all τ with τ fixed and ii)

Z has spherical τ -Tukey depth contours (possibly traveling through X) denoted by Tτ with

Tukey median at 0k. Then 1) the radius of the τ -Tukey depth contour is dτ = |ατ + βτxX|,

2) for any point Z̃ on the τ -Tukey depth contour the hyperplane λτ̃ with ũ = Z̃/
√

Z̃′Z̃ and

τ̃ = τ ũ is tangent to the contour at Z̃ and 3) the hyperplane λτ for any u is tangent to the

τ -Tukey depth contour.

The proof for Theorem 2 is presented in Appendix C. A corollary follows if βτx = 0p or

X has null dimension, then the radius of the spherical τ -Tukey depth contour is |ατ |.

2.2 Confidence Intervals

Asymptotic frequentist confidence intervals for the location case can be obtained using

Theorem 4 from Chernozhukov and Hong (2003) and asymptotic results from Hallin et al.
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(2010). Frequentist confidence intervals based off a sandwich estimator are a common form

of uncertainty quantification in the Bayesian single-output quantile model and for Bayesian

misspecified models in general (Kleijn and van der Vaart, 2012; Müller, 2013; Yang et al.,

2015; Sriram, 2015). In which case the sandwich estimator can be interpreted as an adjusted

posterior estimate of frequentist uncertainty. An alternative approach not pursued in this

paper is to use a score based approach (Wu and Narisetty, 2021).

Let Vτ = V mcmc
τ J ′uV

c
τ JuV

mcmc
τ where Ju is a k by k + 1 block diagonal matrix with

blocks 1 and Γu,

V c
τ =

 τ(1− τ) τ(1− τ)E[Y′]

τ(1− τ)E[Y] V ar[(τ − 1(Y∈H−τ ))Y]

 ,
and V mcmc

τ be the covariance matrix of MCMC draws times n. The values of E[Y] and

V ar[(τ−1(Y∈H−τ ))Y] are estimated with standard moment estimators where the parameters

ofH−τ are estimated with the Bayesian estimate plugged in. Then θ̂τ i±Φ−1(1−α/2)
√
Vτ ii/n

has a 1 − α coverage probability where Φ−1 is the inverse standard normal CDF. Section

4 verifies this in simulation. The sandwich estimator in one dimension is equivalent to

estimators derived for the single-output location case (Sriram, 2015; Yang et al., 2015).

2.3 Choice of prior

A distinct set of population parameters are associated with each unique τ . Generally

one is not interested in one unique τ but some collection {τ1, ..., τm}. This results in

m× p× k parameters to be estimated. Eliciting informative priors for such a large number

of parameters can be a daunting task.

One can elicit prior beliefs for the parameters of each λτ hyperplane individually. This

approach is an onerous task and is thus discussed in Appendix D. However, the elicita-

tion can be simplified if the researcher is simply interested in the τ -quantile (regression)

12



contours.

If the prior is centered over (5) (e.g., E[ατ ] = ατ , E[βτz] = 0k−1 and E[βτx] = βτx)

then the implied ex-ante belief is Z has spherical Tukey contours with a Euclidean distance

of |ατ + βτxX| to the Tukey median. In which case there are only 1 + k parameters to be

elicited for each τ -quantile (regression) contour. If there are no regressors then there is only

one parameter per τ -quantile contour, |ατ |, representing the distance of the spherical τ -

Tukey depth contour from the Tukey median. Additionally, if p = 2 then for any u ∈ Sk−1

the population parameter ατ0 is negative when τ < 0.5 and positive when τ > 0.5.

Many basic statistical distributions have spherical Tukey contours such as the standard

normal and t distributions. Thus one can elicit prior beliefs for τ -contour distances by

adopting a prior belief that the data is distributed multivariate normal and standardizing

the data to be mean zero with an identity covariance matrix. In which case the τ -contour

distances are simply the quantiles of the univariate standard normal distribution (i.e.,

E[ατ ] = Φ−1(τ)). The prior variance then represents the strength of the researcher’s belief.

See Dutta et al. (2011) and Rousseeuw and Ruts (1999) for a more detailed discussion of

distributions with and without spherical Tukey contours.

If one is willing to accept joint normality of (ατ , βτ ) then a Gibbs sampler can be used

for estimation. The sampler is presented in Section 3. Further, if data is being collected

and analyzed in real time, then the prior of the current analysis can be centered over

the estimates from the previous analysis and the variance of the prior is how willing the

researcher is to allow for departures from the previous estimates.
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3 MCMC estimation

This section presents a Gibbs sampler to obtain draws from the posterior distribution of

the parametric model. The MCMC sampler for the nonparametric model is presented in

Appendix E.2.

Assuming joint normality of the prior distribution, estimation can be performed using

Gibbs sampler draws from the posterior distribution developed in Kozumi and Kobayashi

(2011). The approach assumes Yui = β′τyY⊥ui + β′τxXi + ατ + εi where εi
iid∼ ALD(0, 1).

The random component, εi, can be written as a mixture of a normal distribution and

an exponential distribution, εi = ηWi + γ
√
WiUi where η = 1−2τ

τ(1−τ)
, γ =

√
2

τ(1−τ)
, Wi

iid∼

exp(1) and Ui
iid∼ N(0, 1) are mutually independent (Kotz et al., 2001). This mixture

representation allows for efficient simulation using data augmentation (Tanner and Wong,

1987). It follows that Yui|Y⊥ui,Xi,Wi, βτ , ατ is normally distributed. Further, if the prior

is θτ = (ατ , βτ ) ∼ N(µθτ ,Σθτ ) then θτ |Yu,Y
⊥
u ,X,W is normally distributed. Thus the

m+ 1th MCMC draw is given by the following algorithm

1. Draw W
(m+1)
i ∼ W |Yui,Y

⊥
ui,Xi, θ

(m)
τ ∼ GIG(1

2
, δ̂i, φ̂) for i ∈ {1, ..., n}

2. Draw θ
(m+1)
τ ∼ θτ |~Yu, ~Y

⊥
u ,
~X, ~W (m+1) ∼ N(θ̂τ , B̂τ ).

Where

δ̂2
i =

1

γ2
(Yui − β′(m)

τy Y⊥ui − β′
(m)
τx Xi − α(m)

τ )2

φ̂2 = 2 +
η2

γ2

B̂−1
τ = Σ−1

θτ
+

n∑
i=1

[Y⊥′ui ,X
′
i][Y

⊥′
ui ,X

′
i]
′

γ2W
(m+1)
i

θ̂τ = B̂τ

(
Σ−1
θτ
µθτ +

n∑
i=1

[Y⊥′ui ,X
′
i]
′(Yui − ηW (m+1)

i )

γ2W
(m+1)
i

)

14



and GIG(ν, a, b) is the Generalized Inverse Gamma distribution whose density is

f(x|ν, a, b) =
(b/a)ν

2Kν(ab)
xν−1exp(−1

2
(a2x−1 + b2x)), x > 0,−∞ < ν <∞, a, b ≥ 0

and Kν(·) is the modified Bessel function of the third kind. An efficient sampler of the

Generalized Inverse Gamma distribution was developed in Dagpunar (1989). Convergence

speed can be improved by initializing the MCMC sequence at the frequentist estimate. The

R package quantreg can provide such estimates (Koenker, 2018).

The Gibbs sampler is geometrically ergodic and thus the MCMC standard error is finite

and the MCMC central limit theorem applies (Khare and Hobert, 2012). This guarantees

that draws from this sampler are equivalent to random draws from the posterior after a

long enough burn-in.

Numerous other algorithms can be used if the prior is not normally distributed. How-

ever, the researcher should take caution when using alternative MCMC algorithms because

they could exhibit poor performance. Kozumi and Kobayashi (2011) provides a Gibbs sam-

pler for when the prior is double exponential. Li et al. (2010) and Alhamzawi et al. (2012)

provide algorithms for when regularization is desired. General purpose sampling schemes

can also be used with arbitrary priors, such as the Metropolis-Hastings, slice sampling, or

other algorithms (Hastings, 1970; Neal, 2003; Liu, 2008).

The Metropolis-Hastings algorithm can be implemented as follows. Define the likelihood

to be Lτ (θτ ) =
∏n

i=1 fτ (Yi|Xi, ατ , βτ , 1). Let the prior for θτ have the density πτ (θτ ).

Define g(θ†|θ) to be a proposal density. The m+1th MCMC draw is given by the following

algorithm

1. Draw θ†τ from g(θ†τ |θ
(m)
τ )

2. Compute A(θ†τ , θ
(m)
τ ) = min

(
1, L(θ†τ )πτ (θ†τ )g(θ

(m)
τ |θ†τ )

L(θ
(m)
τ )πτ (θ

(m)
τ )g(θ†τ |θ

(m)
τ )

)
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3. Draw u from Uniform(0, 1)

4. If u ≤ A(θ†τ , θ
(m)
τ ) set θ

(m+1)
τ = θ†τ , else set θ

(m+1)
τ = θ

(m)
τ

Estimation of τ -quantile contours (see Appendix A) requires the simultaneous estima-

tion of several different λτ . Simultaneous estimation of multiple λτm (m ∈ {1, 2, ...,M}) can

be performed by creating an aggregate likelihood. The aggregate likelihood is the product of

the likelihoods for eachm, Lτ1,τ2,...,τM (ατ1 , βτ1 , ατ2 , βτ2 , ..., ατM , βτM ) =
∏M

m=1 Lτm(ατm , βτm).

The prior is then defined for the vector (ατ1 , βτ1 , ατ2 , βτ2 , ..., ατM , βτM ). The Gibbs algo-

rithm can easily be modified for fixed τ to accommodate simultaneous estimation. To

estimate the parameters from various τ , the values of η and γ need to be adjusted appro-

priately.

4 Simulation

This section verifies pointwise consistency of the parametric model by checking for estimator

convergence to the population parameters. Asymptotic coverage probability using the

results from Section 2.2 is also verified. Four DGPs are considered.

1. Y ∼ Uniform Square

2. Y ∼ Uniform Triangle

3. Y ∼ N(µ,Σ), where µ = 02 and Σ =

 1 1.5

1.5 9



4. Y = Z +

 0

X

 where

X
Z

 ∼ N

µX
µZ

 ,
ΣXX ΣXZ

Σ′XZ ΣZZ

,

16



ΣXX = 4, ΣXZ =

0

2

, ΣZZ =

 1 1.5

1.5 9

, µX = 0 and µZ = 02

The first DGP has corners at (−1
2
,−1

2
), (−1

2
, 1

2
), (1

2
,−1

2
), (1

2
, 1

2
). The second DGP has

corners at (−1
2
,− 1

2
√

3
), (1

2
,− 1

2
√

3
), (0, 1√

3
). DGPs 1,2, and 3 are location models. DGP

4 is a regression model. DGPs 1 and 2 satisfy Assumptions 1-6. DGPs 3 and 4 are

cases when Assumption 4 is violated. In DGP 4, the unconditional distribution of Y is

Y ∼ N

0

0

 ,
 1 1.5

1.5 17

. Note the population parameters of the parametric model

for DGP 4 might not correspond to τ -Tukey depth contours (Hallin et al., 2015; Koenker

et al., 2018).

Two directions are considered, u = ( 1√
2
, 1√

2
) and u = (0, 1). The orthogonal directions

are Γu = (1, 0) and Γu = (1/
√

2,−1/
√

2). The first vector is a 45o line between Y2 and Y1 in

the positive quadrant and the second vector points vertically in the Y2 direction. The depth

is τ = 0.2. The sample sample sizes are n ∈ {102, 103, 104}. The prior is θτ ∼ N(µθτ ,Σθτ )

where µθτ = 0k+p−1 and Σθτ = 1000Ik+p−1. The number of Monte Carlo simulations is 100

and for each Monte Carlo simulation 1,000 MCMC draws are used. The initial values are

set to the frequentist estimate.

Checking for consistency or coverage probability requires knowledge of the population

parameter. The population parameters are found by numerically minimizing the population

objective function. The expectation in the objective function is calculated with a Monte

Carlo simulation sample of 106.

4.1 Pointwise consistency

Consistency for the parametric model is verified by checking convergence of the Bayesian

estimator to the population parameters, presented in Table 1.
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Data Generating Process

u θ 1 2 3 4

ατ -0.26 -0.20 -1.17 -1.16

(1/
√

2, 1/
√

2) βτy 0.00 0.44 -1.14 -1.17

βτx -0.18

ατ -0.30 -0.20 -2.19 -2.02

(0, 1) βτy 0.00 0.00 1.50 1.50

βτx 1.50

Table 1: Parametric model population parameters

The Root Mean Square Error (RMSE) of the parameter estimates are presented in

Tables 2, 3, and 4. The results show the Bayesian estimators are converging to the popu-

lation parameters. Frequentist bias was also investigated and the bias showed convergence

towards zero as sample size increased (no table presented).

Data Generating Process

θ n 1 2 3 4

102 5.70e-02 4.41e-02 2.20e-01 1.83e-01

ατ 103 1.49e-02 1.19e-02 6.80e-02 5.39e-02

104 4.30e-03 3.66e-03 1.97e-02 1.85e-02

102 9.63e-02 2.79e-01 9.61e-02 1.08e-01

βτy 103 3.63e-02 6.58e-02 3.15e-02 3.15e-02

104 1.19e-02 1.78e-02 1.07e-02 1.06e-02

Table 2: RMSE of parameter estimates (u = (1/
√

2, 1/
√

2))
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Data Generating Process

θ n 1 2 3 4

102 3.57e-02 2.23e-02 3.47e-01 2.94e-01

ατ 103 1.25e-02 5.59e-03 1.15e-01 1.13e-01

104 4.23e-03 2.10e-03 3.27e-02 3.36e-02

102 1.16e-01 7.03e-02 3.94e-01 2.78e-01

βτy 103 3.96e-02 1.61e-02 1.18e-01 1.17e-01

104 1.37e-02 6.73e-03 4.20e-02 3.13e-02

Table 3: RMSE of parameter estimates (u = (0, 1))

4.2 Coverage probability

Coverage probabilities for the parametric location model using the procedure in Section

2.2 are presented in Table 5. A correct coverage probability is 0.95. The number of Monte

Carlo simulations is 300. The results show that the coverage probability tends to improve

with sample size but has a slight undercoverage with sample size of 105. A naive interval

constructed from the 0.025 and 0.975 quantiles of the MCMC draws produces coverage

probabilities ranging from 0.980 to 1.000, with a majority at 1 (no table presented). This

is clearly a strong overcoverage and thus the proposed procedure is preferred.

5 Application

The models are applied to educational data collected from the Project STAR public ac-

cess database. Project STAR was an experiment conducted on 11,600 students in 300

classrooms from 1985-1989 to determine if reduced classroom size improved academic per-
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Data Generating Process

u n 4

102 1.58e-01

(1/
√

2, 1/
√

2) 103 4.86e-02

104 1.48e-02

102 1.49e-01

(0, 1) 103 5.82e-02

104 1.83e-02

Table 4: RMSE of βτx estimates

formance.4 Students and teachers were randomly selected in kindergarten to be in small

(13-17 students) or large (22-26 students) classrooms. The students then stayed in their

assigned classroom size through the fourth grade. The outcome measures were Stanford

Achievement Test (SAT) scores for mathematics and reading tests observed each year.

This dataset has been analyzed many times before (see Finn and Achilles (1990); Folger

and Breda (1989); Krueger (1999); Mosteller (1995); Word et al. (1990)). The previous

analyses investigated either single-output test score measures or a single-output function

(e.g., average) of mathematics and reading scores. Single-output analysis ignores important

information about the relationship the mathematics and reading test scores might have with

each other. Analysis on the average of scores better accommodates joint effects but obscures

the source of effected subpopulations. Multiple-output quantiles provide information on

the joint relationship between scores for the entire multivariate distribution (or several

specified quantile subpopulations).

The treatment effect of classroom size is determined by inspecting the location τ -

4The data is publicly available at http://fmwww.bc.edu/ec-p/data/stockwatson.
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Data Generating Process

1 2 3 1 2 3

θ n u = (1/
√

2, 1/
√

2) u = (0, 1)

102 .960 .950 .967 1.00 1.00 .937

ατ 103 .963 .950 .940 .960 .963 .953

104 .910 .947 .967 .930 .963 .957

102 .810 1.00 .953 1.00 .987 .937

βτy 103 .907 .967 .960 .978 .970 .933

104 .933 .953 .937 .927 .960 .950

Table 5: Location model coverage probabilities

quantile contour estimates from the parametric model for small and large classrooms. The

impact of teacher experience on child outcomes is also investigated by regressing test scores

on teacher experience. The data is subset to first grade students (sample size of n = 4, 247,

after removal of missing data). The results for other grades were similar. Appendix F

presents a fixed-u analysis and a sensitivity analysis.

Define the vector u = (u1, u2), where u1 is the mathematics score dimension and u2

is the reading score dimension. The u directions have an interpretation of relating how

much relative importance the researcher wants to give to mathematics or reading. Define

u⊥ = (u⊥1 , u
⊥
2 ), where u⊥ is orthogonal to u. The components (u⊥1 , u

⊥
2 ) have no meaningful

interpretation. Define mathematicsi to be the mathematics score of student i and readingi

to be the reading score of student i.
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5.1 Classroom size results

The (location) parametric model is

Yui = mathematicsiu1 + readingiu2

Y⊥ui = mathematicsiu
⊥
1 + readingiu

⊥
2

Yui = ατ + βτY⊥ui + εi

εi
iid∼ ALD(0, 1, τ)

θτ = (ατ , βτ ) ∼ N(µθτ ,Σθτ ).

(6)

Unless otherwise noted, µθτ = 02 and Σθτ = 1000I2. This is interpreted as a weak ex-

ante belief that the joint distribution of mathematics and reading has spherical τ -Tukey

depth contours. The number of MCMC draws is 3,000 with a burn in of 1,000. The Gibbs

algorithm is initialized at the frequentist estimate.

Figure 1 shows the τ -quantile contours for τ = 0.05, 0.20 and 0.40. The data is strati-

fied into smaller classrooms (blue) and larger classrooms (black) and separate models are

estimated for each. The innermost contour is the τ = 0.40 region, the middle contour is

the τ = 0.20 region, and the outermost contour is the τ = 0.05 region. The τ -quantile

contours for larger τ will always be contained in regions of smaller τ (if no numerical error

and priors are not contradictory). All the points that lie on the contour have an estimated

Tukey depth of τ . The contours for smaller τ capture the effects for the more outlying

students (e.g., students who perform exceptionally well on mathematics or reading). The

contours for larger τ capture the effects for the more central student (e.g., students who

do not stand out from their peers).

The results show that all the τ -quantile contours shift up and to the right for the smaller

classroom compared to the larger classroom. Thus a smaller classroom results in better

test scores than a larger classroom for all inspected quantile subpopulations. Further, since
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the effect is present for a wide range of τ , it suggests that the entire distribution of scores

might perform better in a smaller classroom.
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Figure 1: τ -quantile contours. Blue represents small and black represents large classrooms.

5.2 Teacher experience results

Teacher experience can be treated as exogenous due to random assignment of teachers which

allows the impact of teacher experience on student outcomes to be estimated. Regression

with continuous covariates, such as teacher experience, causes the τ -quantile contours to
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become tubes that travel through the covariate space. See Appendix F for a detailed

specification of the models in this section.

Teacher experience can be modeled either parametrically or nonparametrically. As pre-

viously mentioned simply including experience as a linear term in the regression matrix

(X) of the parametric model will likely not lead to valid τ -quantile contours of the con-

ditional distribution. However, including polynomial terms can improve the parametric

model’s approximation of the τ -quantile contours for the conditional distribution. Since

both the data set and parameter space sizes are modest and only three slices of the regres-

sion tube are being inspected, the nonparametric model can suitably be used as well due

to computational feasibility.

The Bayesian parametric linear and quadratic approaches are compared with the Bayesian

nonparametric local constant and bilinear approaches in Figure 2 for τ = 0.05 and Fig-

ure 3 for τ = 0.20. The parametric linear model fails to uncover a strong impact or any

non-linearities. However, the parametric quadratic and the nonparametric local constant

models find that the marginal effect of teacher experience tends to be much larger for

teachers that are at the beginning of their career than mid-career or late-career teachers,

aligning with the results from other research (Rice, 2010). The nonparametric bilinear

model is not the appropriate model for inspecting and comparing slices of the regression

tube, but is still included for comparison.

Inspecting the τ -quantile regression contours more closely shows a heterogeneous treat-

ment effect with respect to teacher experience. The reading and mathematics scores jointly

increase with teacher experience for most student τ -quantile subpopulations except for the

outlying students that perform poorly in both mathematics and reading (bottom left corner

of τ = 0.05). Those students showed no change with increasing teacher experience.
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Figure 2: Regression tube slices for τ = 0.05. Top left is parametric with linear experience.

Top right is parametric with quadratic polynomial experience. Bottom left is nonparametric

local constant. Bottom right is nonparametric local bilinear. Red, orange and yellow lines

are one, ten, and twenty years of teacher experience respectively.
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Figure 3: Regression tube slices for τ = 0.20. Top left is parametric with linear experience.

Top right is parametric with quadratic polynomial experience. Bottom left is nonparametric

local constant. Bottom right is nonparametric local bilinear. Red, orange and yellow lines

are one, ten, and twenty years of teacher experience respectively.

The Bayesian parametric quadratic polynomial and nonparametric local constant mod-
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els are compared to their frequentist counterparts in Figure 4. Overall the Bayesian and

frequentist estimates are similar (Hallin et al., 2010, 2015).
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Figure 4: Regression tube slices for τ = 0.05. Top plots are Bayesian and bottom plots are

frequentist. The left plots are parametric with quadratic polynomial and right plots are

nonparametric local constant. Red, orange and yellow lines are one, ten, and twenty years

of teacher experience respectively.
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6 Conclusion

A Bayesian framework for estimation of multiple-output quantiles was presented. Despite

having a misspecified likelihood, the resulting posterior of the parametric model is con-

sistent for the parameters of interest. The population parameters and prior are closely

related to the τ -Tukey contours, the first prior of its kind. By performing inferences as

a Bayesian, one inherits many of the strengths of a Bayesian approach. The models are

applied to the Tennessee Project STAR experiment and it concludes that students in a

smaller classroom perform better for every inspected quantile subpopulation than students

in a larger classroom.
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