551 Lecture Notes

Nick Sun

Lecture 1

- Experimental/Observational Units: smallest division of experimental elements under study. They usually receive different treatments.
- Variables: measured for each observational unit. Quantitative or Qualitative.
- Predictor/Independent/Covariate Variables are all used to classify experimental units and may be associated with the outcome variable of interest.
- Extending inference from sample to larger population involves sampling from those exact populations in some representative way.
- Inferences to populations can be drawn from random sampling studies, but not otherwise.
- Observational study (subjects choose to sit somewhere) vs. randomized experiment (subjects assigned to be in certain group)
- Statistical inferences of cause-and-effect relationship can be drawn from randomized experiments but not from observational studies
- Confounding variables; be sure to watch for the ecological fallacy! Relationships at the aggregated level may not exist at the individual level

Lecture 2

- Arithmetic mean, geometric mean, harmonic mean
- Population of interest, variable of interest, parameter
- Population distribution describes the range and relative likelihood of the set of possible values that Y can take on
- If Z has a Normal(0, 1) distribution, then $X = \sigma Z + \mu$ has a Normal(μ, σ^2)
- $Z = \frac{X-\mu}{\sigma}$ has a Normal(0, 1) distribution
- If X and Y are both normally distributed, the distribution of their sum is just adding their means and variances together
- The distribution of a statistics like \bar{x} is referred to as the sampling distribution

Lecture 3

- $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$. This holds for any sample of size n from any population.
- We cannot obtain a sampling distribution of a statistics if we don't know the population distribution
- If we don't know pop distribution, we can do the following:
 - Work out certain properties (parameters) for example, the mean and variance of sampling distribution
 - Simulate
 - Approximate (using something like CLT)
- Remember that the mean is a linear operator E(X + Y) = E(X) + E(Y), don't have to be iid
- $\operatorname{Var}(\mathbf{Y}) = E[(X E(X))^2] = E[X^2] + E[X]^2$

- Cov(X, Y) = E[(X E(X))(Y E(Y))]
 If X and Y are independent, then Cov(X, Y) = 0, but the converse does not hold
 Cov(X, X) = Var(X)
- For any two random variables X and Y, the variance of the sum is Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y). A minus will just make the last term negative.
- Weak Law of Large Numbers
 - As sample size goes to infinity, the sample mean converges in probability to mean μ

$$-X \rightarrow_p$$

- The ecdf of a function $\hat{F} = \frac{count \ obs \ less}{n}$
 - Can also be written $\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} n \mathbf{1}_{x_i \le x}$
 - Notice that its just a sample mean, so the weak law of large numbers applies
 - The eddf converges to the true cumulative distribution function

- Central Limit Theorem
 - If pop distribution of a variable X has population mean μ and a finite variance, then the sampling distribution of the sample mean goes closer to the Normal $(\mu, \frac{\sigma^2}{n})$ as n increases
 - Equivalent statement: $\frac{\sqrt{n}(\bar{X}_n \mu)}{\sigma} \rightarrow_d N(0, 1)$
- $P(\bar{X} < 19.5) = P(\bar{X} 20 < 19.5 20) = P\left(\frac{\bar{X} 20}{\sqrt{\frac{1}{4}}} < \frac{19.5 20}{\sqrt{\frac{1}{4}}}\right)$
 - Notice that the above LHS is now standardized and is distributed by N(0, 1)
- Good to know these R functions
 - dnorm(x, mu, sd) gives us the value of the density curve at x
 - pnorm(x, mu, sd) gives us the cumulative probability at x (basically our CDF in R)
 - qnorm(p, mu, sd) gives us the pth percentile (useful for finding critical values)

Lecture 5

- Example of sample size calculation such that if we know that $\mu = 20$ and $\sigma^2 = 4$, P(19.5 < $\bar{X} < 20.5$) =.9
 - This can be found by knowing that we can restandardize all the values in the inequality
 - We know that 1.645 cuts off 5% in the tail for a normal distribution
 - So we just need to set both sides of the inequality to 1.645 and solve for $n \approx 44$
- The process of using a sample to learn something about a population parameter is called inference
- What makes a good estimate?
 - Unbiased
 - Small mean squared error
 - Converges to true value as sample size increases (consistency)
- Null hypothesis: a specified value or range of values for the parameter of interest
- Alternative hypothesis: A different specified value of range of values for the parameter of interest
- We fail to reject the null hypothesis, we cannot prove that it is true

Lecture 6

- The rejection region of a hypothesis test is defined by the rejection distribution. It is the distribution to which the test statistic is compared and is considered under the null hypothesis being true
- Type I error is rejecting the null when the null is true
- Type II error is failing to reject the null when the null is false

- The significance level of a test is the probability of a type I error
- The power of a test at a specific value θ_A is the probability of rejecting the null knowing that the true value of the population parameter is θ_A .
 - This is equal to 1 P(type II error)
- Rejection region is the values for which the null hypothesis will be rejected
- Using R, we don't have to standardize since we can just use qnorm() to get our critical values
- Usually though, we will just standardize the sample mean using the null hypothesis value of μ
- The Z-test is used to test hypotheses about a population mean when the population variance is known Data setting is one sample, iid, with sample mean \bar{X}
 - the Null hypothesis is $H_0: \mu = \mu_0$
 - Test statistic is $Z(\mu_0) = \frac{\bar{X} \mu}{\sqrt{\frac{\sigma^2}{n}}}$
 - $Z(\mu_0) \sim N(0,1)$
- Exactness: under any setting for which the null hypothesis is true, is the actual rejection probability equal to the desired significance level α
 - Finite-sample exactness: For finite sample sizes n, is probability of rejecting the null = α where the null is true?
 - Asymptotic exactness: As the sample size goes to infinity, does probability of rejecting the null = α where the null is true?
- A test is finite sample exact if the reference distribution is the true distribution of the test statistic when the null hypothesis is true
- A test will be asymptotically exact if the reference distribution is asymptotic distribution of the test statistic when the null hypothesis is true
- Consistency: under any fixed setting for which the alternative hypothesis is true, does the rejection probability tend to 1 as the sample size goes to infinity
- The Z-test is finite sample exact if the data sampled is iid normal
- The Z-statistic is also asymptotically exact when the data sampled is iid (μ , σ^2), doesn't have to be normal

• The power of the test if $\mu = \mu_A \neq \mu_0$ is given as

$$P\left(\frac{\bar{X}-\mu_A}{\sqrt{\frac{\sigma^2}{n}}} > z_{1-\alpha} + \frac{\mu_0-\mu_A}{\sqrt{\frac{\sigma^2}{n}}}\right)$$

Notice that we restandardized the LHS. It is distributed according to the N(0, 1)

- A p-value is the probability under the null hypothesis of observing a result at least as extreme as the statistic you observed
- A procedure for obtaining p-values is exact if the resulting value actually reflects the probability of obtaining results at least as extreme as the observed value under the null hypothesis
- Exact p-values under the null hypothesis should have a U(0, 1) distribution!
- Exactness of confidence intervals, p-values, and hypothesis tests are all dependent on the validity of the reference/null distribution
- Equivalent definition of a p-value: the lowest value of α for which the hypothesis test would be rejected
- The duality between hypothesis tests and confidence intervals:
 - A $(1 \alpha)100$ confidence interval is the set of all null hypotheses that would not be rejected at level α
 - A two-sided confidence interval corresponds to a two-sided alternative hypothesis test
- The formula for a confidence interval for a z-test is:

$$\bar{X} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma^2}{n}}$$

- For a z-test, what do we do when we don't know σ^2 ? We can estimate it using the sample variance
- As the sample size n gets larger, the sample variance gets closer to the true population variance
- Replacing σ^2 for s^2 , we get the t-test
- the null distribution of the t-statistic is the t-distribution, a family of distribution that are defined by a parameter called degrees of freedom
- The t-value $\frac{\bar{X}-\mu}{\sqrt{\frac{s^2}{n}}}$ has exactly a t_{n-1} distribution if the population distribution is exactly normal
- Otherwise, the t-statistic is asymptotically exact ٠
- The R function for a t-distribution are: qt, pt, dt and they all take a df input
- Many of the formulas are similar to the z-distribution, but replace σ^2 with s^2
- Do not confused the sample variance, which estimates the population variance, with the $Var(\bar{X})$ which is often called standard error. We often estimate standard error by using s^2
- It is important to distinguish between statistical significance and practical significance when communiating results of an analysis
 - Statistical significance stems just from having a small enough p-value
 - Practical significance deals with effect size; does it have meaningful implications in real life?
 - It is possible to have practical significance without statistical significance (small n)
- When testing a binomial proportion, we have two options: use exact null distribution or use a normal approximation with a z-test

Lecture 9

Exact binomial test

- + one sided test where $H_{A} \approx p > p_{0}$
- + Given a binomial distribution, find the value c where P(X \$\geq\$ c) \$\leq\$.05
- + This value c wont cut off .05 exactly unless you are very lucky
- + Specifying the lower tail alternative is very similar process
 - For a two tailed exact binomial test, it's a bit different
 - what values do we reject for? Values that are far from expected value, or values that are least probable under the null hypothesis?
 - The former is the logic behind the z-test. The latter is the logic behind the binomial exact test
 - Look at the tails of the binomial distribution. Reject H_0 for X such that $p_0 \leq$ some value that is less than α
 - It may happen that we may be way below α but adding the next lower probability puts us over. We dont want our type I error probability to exceed α

 - * Define our rejection region by $\sum_{k:p_0(k) \leq c} P_{H_0}(X = k) \leq \alpha$ * Our p-value would be found by adding all the probabilities that are less likely or as likely as the observed x under the $H_0 \# \# \#$ Z-test approximation for binomial response data

 - $X = \sum_{i=1}^{n} Y_i N(np, np(1-p))$ for large n This gives us $\frac{X-np_0}{\sqrt{np_0(1-p_0)}} N(0,1)$ And a z-statistic that is $\frac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}} N(0,1)$
 - Pretty much the same as the z-statistic that we already covered ### T-test for binomial test when we don't know the variance and estimate it using the s^2

 $\frac{\hat{p}-p_0}{\sqrt{\hat{p}(1-\hat{p})/(n-1)}}$

- The t-statistic converges to the z-statistic as $n \to \infty$
- The t-statistic here is basically the Wald statistic, just with an n-1 instead of an n
- The score test statistic $(z(p_0))$ performs slightly better than the Wald statistic $(z_W(p_0))$ in exactness and power
- For some reason, it is common to use a CI based on the Wald calculation of variance, even if the hypothesis test was done with the score test
- Use normal approximation when $np_0 > 5$ AND $n(1-p_0) > 5$

Lecture 10

- Sometimes folks will suggest using a randomized test with a binomial proportion so that P Type I error equals α exactly. It basically involves rejecting the borderline value only some probability γ of the time. You can find this using algebra, but we don't use randomized tests much ### Sign Test
 - Parameter of interest is the population median M
 - The sign test is basically just a binomial test where $H_0: p_0 = .5$ where we are considering each observation a Bernoulli variable that is 1 if it is \leq the median – Our test statistic is $z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$ – Keep in mind that our $p_0 = 0.5$ under the null

 - Recall that a $(1 \alpha)100$ confidence interval for a parameter θ is the set of all values for θ_0 for which a level α two sided test would not reject the null hypothesis
 - The way to find a CI for the population median is to find it iteratively using $\frac{\frac{X}{n}-0.5}{\sqrt{.5^2/n}} < z_{1-\frac{\alpha}{2}}$ where X is the number of observations less than M_0 - Solving this, we get the interval $\frac{n \pm z_{1-\frac{\alpha}{2}}\sqrt{n}}{2}$. These indicate the ith observation which would fall

 - into the confidence interval The smallest observation is $\frac{n-z_{1-\frac{\alpha}{2}}\sqrt{n}}{2}$ and the largest is $\frac{n+z_{1-\frac{\alpha}{2}}\sqrt{n}}{2}+1$

 - we round to the nearest integer if the above are not integers
 - The CI bounds will always be values of the observed sample

Lecture 11

- The sign test for M is not finite sample exact because of the discrete nature of the data and we also use a normal approximation if we're using a z-test
 - The sign test will only be asymptotically normal
- The sign test is consistent. The test for binomial proportions is consistent as n approaches infinity, so the sign test follows similarly ### Wilcoxon Signed Rank test
 - Comes with a lot of caveats; be careful not to ignore assumptions for symmetric underlying distributions!
 - Definition as per lecture: The wilcoxon signed-rank test applies to the case of symmetric continuous distributions. Under this assumption, the mean equals the median. The null hypothesis is $H_0: \mu = \mu_0$
 - Procedure
 - * Calculate the distance of each observation from some proposed c_0
 - * Rank the observations by the absolute value of their distance
 - * Sum the ranks that correspond to observations larger than c_0
 - As before, we have a few options for a reference distribution: we an use an exact p-value by assuming each rank has the same chance of being above or below c_0 or we can use a normal approximation
 - If we use a normal approximation, we have sum S ~ $N(\frac{n(n+1)}{4}, \frac{n(n+1)(2n+1)}{24})$

- And our z-statistic will be $Z = \frac{S \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{2}}}$
- The wilcox.test() function in R has options for using exact reference distribution and to use a continuity correction
- Only assumption for the Wilcoxon Signed Rank test is that the observations are independent of each other
- Does not tell us anything about the mean or median (actually tests the pseudomedian)

- If we assume the underlying population is symmetric, the signed-rank test is a test of the population mean μ which is equal to median M which is also equal to the pseudomedian
- Consistent test of mean = median = pseudomedian under the symmetry assumption
- Not finite sample exact, but is asymptotically exact under the symmetry assumption
- For asymmetric distributions, not an exact test of the pseudomedian (but very close)
- For asymmetric distributions, test is still consistent for pseudomedian

One sample Chi-squared test for pop variance

- + Test statistic: $X(\sum_{0}) = \frac{(n-1)s^{2}}{\sum_{0}}$
- + The reference distribution for this test statistic is $\cite{(n-1)}^{2}$
- + p-values are found using:
 - + 1 pchisq(X, n-1) for upper tail test
 - + pchisq(X, n-1) for a lower tail test
 - + 2*min(1 pchisq(X, n-1), pchisq(X, n-1))
- + Confidence interval given as $\frac{(n-1(s^{2}))}{(n-1), \alpha/2}, \frac{(n-1(s^{2}))}{(n-1), \alpha/2}$
- + If the underlying population distribution is not normal, this test is prettyyyy bad
 - We can also do an *asymptotic t-test* for population variance

$$- t(\sigma_0^2) = \frac{Y - \frac{n-1}{n}\sigma^2}{\sqrt{\frac{s_y^2}{n}}} \to_d N(0, 1)$$

- We are essentially using a t-test to see if the population mean of Y_i is $\frac{n-1}{n}\sigma_0$

Lecture 13

Kolomogorov-Smirnov Test

- Say we want to test whether a population is distributed with a certain function F_X
- Our hypotheses are $H_0: F = F_0$ and $H_A: F \neq F_0$
- Our test statistic is $D(F_0) = \sup_x |\hat{F}(x) F_0(x)|$ where $\hat{F}(x)$ is our empirical cumulative distribution function
- Our reference distribution is that under $H_0, \sqrt{n}D(F_0) \rightarrow_d K$ where K is the Kolmogorov distribution
- We are going to reject the null for high values of our test statistic $D(F_0)$
- $H_A: F > F_0$ implies that F is stochastically smaller than the null hypothesis F_0
- The one-sided test statistics are:
 - For $H_A: F > F_0, D(F_0) = \sup_x \left(\hat{F}(x) F_0(x) \right)$
 - For $H_A: F < F_0, D(F_0) = \sup_x \left(F_0(x) \hat{F}(x) \right)$
 - Be careful though! The interpretation of these tests is challenging. The two one-sided alternative hypotheses do not cover the full range of possibilities that could be going on here.
- The standard KS test should *not* be used if you are estimating parameters from the sample

• The KS test applies only to continuous distributions

Chi-squared Goodness of Fit test

- The discrete analogue of the Kolmogorov-Smirnov Test
- The test statistic is $X(p_0) = \sum_x \frac{n(\hat{p}(x) p_0(x))^2}{p_0(x)}$
- The above is equivalent to how we usually see the test statistic written: $X(p_0) = \sum_{j=1}^k \frac{(O_j E_j)^2}{E_j}$ where k is the discrete categories that the variable X_i can take on
- Suppose that we aren't specifying a distribution, but rather a family of distributions
 - We will have to estimate the parameters from the data, which we can do!
 - let's say that we are estimating d of these parameters
 - We use the null hypothesis with the estimated parameters and computer Pearsons χ^2 as usual
 - We compare the resulting statistic to a χ^2_{k-d-1} distribution where k is the number of categories and d is the number of estimated parameters
- The critical values for these tests can be found using qchisq function in R
 - For example, the critical value for a $\alpha = .05$ upper tail test with df = 5 is qchisq(.95, 5)

Lecture 14

- If we are given a discrete distribution with k-possible values and we want to test that $P(X = x) = p_0$, we can use Pearson's χ^2 test. • For binary data, the χ^2 statistic is equal to the square of the z-statistic for testing a hypothesis for a
- binary proportion.
- Just like the case for binary data, the χ^2 distribution has an asymptotic χ^2 distribution. •
 - This test is therefore asymptotically exact, but generally good when all expected values are over 5 (though this rule of thumb gets bent a lot)

Two-sample inference: The two sample z-test for population means

- Suppose we have two independent samples that may be from two different populations (different sample sizes too!)
- Always important to note the sampling context (are the sample sizes from each population fixed or are we doing an SRS from the combined population?)
 - When we analyze data that was gathered using an SRS, we can consider the proportion we get in our sample to estimate the true population proportion
- We can use a two sample z-statistic to test that the population means are different:
 - $-H_0: \mu_X = \mu_Y$ or alternatively but equivalently, $H_0: \delta = 0$

$$- z(\delta_0) = \frac{X - Y}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}$$

- Under the null, $z(\delta_0) \sim N(0,1)$

Lecture 15

Slight detour into bootstrapping

- This a method to estimate a **nuisance parameter** which is something we aren't directly interested in but we need it to test the thing we are interested in
 - Classic example is something like population variance or sampling variance of a statistic
 - Basic idea is that the empirical distribution function converges to the true distribution function

- Let's say we want to investigate medians for example. We have an initial sample. How do we get the distribution of the median in this population?
- If we resample from our original sample (i.e. where we got our original empirical distribution) many times, we should get an idea of how this test statistic behaves
- Recall the important idea that as sample size increases, $\tilde{F} \to F$
- Once we have our (probably thousands) bootstrap resamples with the associated test statistic of interest, we can calculate a boostrap confidence interval
- Suppose we have 1000 samples
 - The 95% CI is the 25th largest resample statistic and the 975th largest resampled statistic
 - Note that for some statistics, we might have a lot of duplicate values; this is alright

Continuing with the two sample z-test for population means

- The rejection region for the z-test is similar to the standard z-test
- The confidence interval for δ₀ is (X
 − Y
) ± z_{1-∞/2} √ σ_X²/m + σ_Y²/n
 But what if we do not know the population variances? Common situation, glad you asked.
- Similar to the one sample case, we can just use the sample variance as estimates
 - However, we must consider two cases: when the population variances are equal and when they are unequal

T-test with an equal variance assumption

- Our best estimate of the population variance (and since the population variances are equal $\sigma_X^2 = \sigma_X^2 = \sigma^2$ is s_p
- Our pooled variance estimate is $s_p^2 = \frac{(m-1)s_X^2 + (n-1)s_Y^2}{m+n-2}$ Essentially we are finding a weighted average of the two sample variances; samples with more observations give better information about σ^2
- Our actual test statistic will look familiar:

$$t_E(\delta_0) = \frac{(\bar{X} - \bar{Y}) - \delta_0}{\sqrt{s_p^2 \left(\frac{1}{m} + \frac{1}{n}\right)}}$$

- Under H_0 for normal populations, this t-statistic follows an exact distribution t_{m+n-2}
- As in the one-sample case, we still use the t-test even when we know that the data comes from non-normal populations - the t-test is pretty robust!
- And also for large sample sizes, deviations from normality don't make too much of a difference $m+n-2 \to \infty$ then $t_{m+n-2}(p) \to z(p)$
- The confidence interval for this test, as you can imagine is just

$$(\bar{X} - \bar{Y}) \pm t_{m+n-2}(1 - \frac{\alpha}{2})\sqrt{s_p^2\left(\frac{1}{m} + \frac{1}{n}\right)}$$

- What happens when you use this test and the variances are actually not equal?
 - We see that the expected value of the estimated variance is **larger** than it should be when the smaller sample has the smaller variance
 - This makes sense; essentially we are not downweighting the variance estimate enough. We will reject less (less power)

- Conversely, we see that the expected value of the estimated variance is **smaller** than it should be when the **smaller** sample has the **larger** variance
- Here, we are not downweighting the variance estimate too much! We will reject more (more power)

T-test with an unequal variance assumption

• If we make the unequal variance assumption, we find that the test statistic is actually not too bad looking, in fact its a familiar friend

$$t_U(\delta_0) = \frac{(\bar{X} - barY) - \delta_0}{\sqrt{\frac{s_X^2}{m} + \frac{s_Y^2}{n}}}$$

- However, we do not get an exact distribution for this test even if the populations are Normal because the denominator is not the square root of a chi-squared r.v. divided by its df
- Therefore, we have the use either the asymptotic Normal reference distribution (not great) or the Welch-Satterthwaite approximation
 - Essentially, we are saying that $t_U(\delta_0) \sim t_{\nu}$ where ν is this ugly damn thing:

$$\nu = \frac{W^2}{M+N}$$

where $W = \left(\frac{s_X^2}{m} + \frac{s_Y^2}{n}\right)^2$, $M = \frac{s_X^4}{m^2(m-1)}$, $N = \frac{s_Y^4}{n^2(n-1)}$

• The CI is almost the same as above

$$(\bar{X} - \bar{Y}) \pm t_{\nu}(1 - \frac{\alpha}{2})\sqrt{\left(\frac{s_X^2}{m} + \frac{s_Y^2}{n}\right)}$$

- Equal-variance t-test vs Unequal-variance (Welch) t-test: when sample sizes are equal, both test statistics are the same but the (degrees of freedom for the reference distributions still differ)
- When variances are equal, the equal variance t-test has slightly better power and slightly better exactness
- For unequal sample szies with unequal population variances, equal-variance t-test does not have the correct calibration!

Lecture 17

Paired data z-test

- Here we are supposing that the data is coming in pairs (before and after perhaps, or maybe siblings? Lots of possible scenarios)
- The two samples are by necessity the same size here
- Suppose we are interested if the difference in population averages is equal to 0
- We can acutally do a few different things here; we can look at the difference between the sample averages or look at the pairwise differences. They are equivalent.
- Instinct tells us that we should use a two-sample z-test here, but note that \overline{X} and \overline{Y} are not independent here! There is a covariance factor that we need to account for
- $Var(\bar{X}, \bar{Y}) = \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{n} 2\frac{\sigma_{XY}^2}{n}$ Our z-statistic is therefore

$$z(\delta_{0}) = \frac{(\bar{X} - \bar{Y}) - \delta_{0}}{\sqrt{\frac{\sigma_{X}^{2}}{n} + \frac{\sigma_{Y}^{2}}{n} - 2\frac{\sigma_{XY}^{2}}{n}}}$$

• The CI as you can imagine is

$$(\bar{X} - \bar{Y}) \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{n} - 2\frac{\sigma_{XY}^2}{n}}$$

- But also as you know we usually do not know the population variances. Therefore, we have to estimate them from the data.
- Our test statistic in this case is

$$t_{(\delta_{0})} = \frac{(\bar{X} - \bar{Y}) - \delta_{0}}{\sqrt{\frac{s_{X}^{2}}{n} + \frac{s_{Y}^{2}}{n} - 2\frac{s_{XY}^{2}}{n}}}$$

- If the differences D_i are not mal, then the t-statistic has an exact t-distribution with n-1 degrees of freedom
- Important to note: the Normality of X and Y does not imply the normality of D unless (X, Y) are jointly multivariate normal
- To recap:
 - Take the differences $D_i = X_i Y_i$
 - Perform a one-sample hypothesis test for the population mean difference $\mu_d = \mu_X \mu_Y$

Lecture 18

For the next 2 lectures, we are looking at a 2x2 contingency table. We are going to use the following convention:

	0	1	
X_i	a	b	m = a+b
Y_i	с	d	n = c+d
	a+c	b+d	N = a+b+c+d

- If we are given a 2x2 contingency table, more often than not we are interested in seeing if the probabilities $p_x = p_y$
 - $p_x = p_y$ - We may also be interested in differences in proportion (subtracting $p_x - p_y$), relative risk $(\frac{p_x}{p_y})$, or the odds ratio (odds of x over odds of y)
 - Note that odds is calculated $\frac{p_X}{1-p_X}$
 - In the above table, odds ratio can be easily calculated by the following formula $\frac{ad}{bc}$

Two sample z-test of binomial proportion

• The z-statistic is calculated easily by

$$z = \frac{\hat{p}_x - \hat{p}_y}{\sqrt{\hat{p}_c(1 - \hat{p}_c)(\frac{1}{m} + \frac{1}{n})}}$$

Where $p_c = \frac{b+d}{N}$ and $Z \sim N(0, 1)$

• And the CI is found by

$$\hat{p_x} - \hat{p_y} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p_x}(1-\hat{p_x})}{m}} \frac{\hat{p_y}(1-\hat{p_y})}{n}$$

• Notice that this a wald interval with a score z-statistic!

Lecture 19

Chi-squared test for the homogeneity of proportions

• The chi-squared statistic is calculated as expected:

$$\chi = \sum \frac{(Obs - Exp)^2}{Exp}$$

• The expected values of the tables is found using the following calculations:

$m(\frac{a+c}{N})$	$m(\frac{b+d}{N})$	m
$n\left(\frac{a+c}{N}\right)$	$n(\frac{b+d}{N})$	n
a+c	b+d	N

• Reject H_0 if $\chi^2 > \chi_1^2(1-\alpha)$

Fisher Exact Test

- The "test statistic" here is us the probability of us getting our observed table conditioned on the margins of the table
- The p-value is the sum of the probabilities of all the tables more extreme than the observed table
- The exact calculation of the probability of the observed table models after the hypergeometric distribution:

$$\frac{\binom{a+c}{a}\binom{b+d}{b}}{\binom{N}{a+c}}$$

- The definition of more extreme depends on the alternative hypothesis:
 - If $H_A: p_x > p_y$, more extreme means bigger values of $Obs_{1,2}$
 - If $H_A: p_x < p_y$, more extreme means smaller values of $Obs_{1,2}$
 - If $H_A: p_x \neq p_y$, more extreme means less likely table than our observed
- It's obviously tedious to calculate all of the tables so we usually just let the computer do it lmao

Quick aside on sampling

- Multinomial sampling is when we get N experimental units, classify each according to a grouping variable G and response variable X
- Two-sample Binomial sampling is when we obtain fixed sizes of m and n from each group
- For rare events, it can be challenging to obtain data using multinomial or two-sample binomial sampling
 - Example: getting people who are struck by lightning might be hard because, well, not many people get struck by lightning
 - We might decide in that case to just sample from people that we know got struck by lightning as one of our groups
 - Note that we can no longer estimate P(Lightning | Golfer), but we can still estimate P(Golfer | Lightning) and the odds ratio
 - The odds ratio fact is useful because we can flip the conditionals with odd ratios (useful property) so we can still say something about P(Lightning | Golfer)

Log-odds Ratio Test

- Our test statistic here is the sample odds ratio â = ad/bc
 The log of this estimate is asymptotically normal log(â) ~ N(logω, 1/a + 1/b + 1/c + 1/d)
- To test $H_0: \omega = 1$ we can use the following test statistic:

$$Z = \frac{\log(\hat{\omega})}{\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}}$$

- $Z \sim N(0,1)$
- As you can imagine, you can also create a CI for log(w) using the following:

$$log(\hat{\omega}) \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

- You can find a CI for ω just by exponentiating everything above
- Let's say that our sample odds ratio came out to be 1.667. This tells us that odds of getting struck by lightning are 1.667 times higher if you golf.
- You can perform the log-odds ratio test no matter how the data was sampled
- Test performance will be better for large sample sizes
- You can also use Pearson's χ^2 test and Fisher's exact test no matter how the data was sampled, since all the tests assess whether there is an association between the variables.
 - Only the estimates are affected by the sampling scheme

Lecture 21

Paired Binary Data: McNemar's Test

- These are typically before and after type studies where the response is binary (ex: political opinion before and after a debate) or matched case-control sampling
- In these scenarios, we generally want to test the null hypothesis that $H_0: p_{before} = p_{after}$
- It would not be appropriate to use two-sample binomial z-test, Pearsons, Fishers exact test, or log-odds ratio test here because they ignore the pairing information
- In this case, we should treat each pair as a single entity and our contingency table will be the counts of pairs
- In this case we can use McNemar's Test which is actually equivalent to the paired t-test in the sense that the test statistics are monotone transforms of one another
- In McNemar's Test we condition on the number of discordant pairs, i.e. pairs where the values don't • match i.e. i.e. b + c
- Under the null hypothesis, half of b+c should be in $O_{1,2}$ and the other half should be in $O_{2,1}$
- Our test statistic is therefore the following:

$$z = \frac{b-c}{\sqrt{b-c}}$$

- Under the null hypothesis, $z \sim N(0, 1)$
- Equivalently, you can square this statistic and then compare it to χ_1^2 but its the same thing don't kill yourself
- Note that in this setting, the question we are still asking is "Is being struck by lightning associated with golfing?" in the case of us looking at siblings who golf

- The question of whether or not the status of the lightning struck sibling is independent of the other sibling can be answered with Pearson's, Fisher's, etc.
- For paired t-test vs McNemar's Test with large sample sizes, essentially, they are asymptotically equivalent! Their statistics tend to the same value

Wilcoxon Rank-Sum Test or the Mann-Whitney U test

- Not actually a test of population medians as you were led to believe in undergrad. This is only true under strong assumptions with the population distributions
- We calculate the U statistic by:
 - Combining the two samples
 - Ranking the observations in the combined sample from smallest to largest
 - Add up the ranks corresponding to the observations in the smaller of the two groups
- There are a few ways to get p-values:
 - One is to use a **permutation** approach i.e. if there were **no** difference between the two groups populations, then each rank between 1 and $(n_x + n_y)$ will have the same chance of being assigned to the smaller group
 - This is computationally intensive though because to get an exact p-value you have to calculate $\binom{n_x+n_y}{n_y}$ total Rank statistics. This can get out of hand quickly!
 - Once we have a reference distribution for the U statistic, we can see where our observed U statistic falls in that distribution and calculate a p-value
 - The other practical way is to use a **normal approximation**
 - $-R \sim N(E(R), Var(R)) \text{ where } E[R] = \frac{n_x(n_x + n_y + 1)}{2} \text{ and } Var[R] = \frac{n_x n_y(n_x + n_y + 1)}{12}$
 - Our test statistic in this case would be

$$Z = \frac{R - E[R]}{\sqrt{Var[R]}} \sim N(0, 1)$$

- Some issues that arise in the Wilcoxon Rank-Sum test:
 - Ties in observed values
 - * Assign ranks to observations as usual, then average the ranks assigned to tied values
 - * Permutation approach to calculate p-values still works, but tabled values will not be correct since they assume no ties
 - * If number of tires is large relative to the sample size, the normal approximation will not be very good
 - Normal approximation in small sample sizes
 - * Basically adding .5 to the observed value of R if you are computing a lower probability and subtract .5 from the observed value of R if you are computing an upper probability
 - * Slightly improves approximation for small sample sizes
 - Proper interpretation of the test results
 - * Some sources describe the Wilcoxon Rank-Sum test as a test for an additive effect (essentially a shift between distributions; shapes and scales do not change at all)
 - * If you are willing to assume that the only difference between populations is a shift, then you can use Wilcoxon Rank-Sum to test whether the shift is 0
 - * If you are **not** willing to assume that the only difference is a shift, the interpretation of the Wilcoxon Rank-Sum test is
 - The test is that $H_0: P(X > Y) = .5$ where X is a randomly chose value from population 1 and Y is a randomly chosen value from population 2
 - * If you are assuming an additive effect, then the Wilcoxon Rank-Sum test is a test in difference in medians (but also means, percentiles, maxima, minima, etc.)

- * If you are not assuming an additive effect, the Wilcoxon Rank-Sum test does not say anything about medians
- * The Wilcoxon Rank-Sum test is an exact test of $H_0: F_X = F_Y$ but is not exact in testing medians, means, or P(X > Y) = .5 unless we are assuming location shift
- * The Wilcoxon Rank-Sum test is not a consistent test for medians, means, or equality of distribution unless we are assuming a location shift, but it is a consistent test of $H_0: P(X > P(X$ Y) = .5

Two sample inference for population medians (Mood's Test)

- Here we are testing $H_0: m_X = m_Y = m$.
- \hat{m} is an unbiased and consistent estimator for the population median $(\hat{m} \sim N(m, \frac{1}{4n f(m)^2}))$
- Mood's Test procedure:
 - Find combined sample median \hat{m}
 - Test that the true population proportion of Xs greater than \hat{m} is equal to the true population proportion of Ys greater than \hat{m} .
 - Once we have a new 2x2 table, we can use a two sample binomial proportion z-test or Pearson's chi-squared test or Fisher's exact test

Permutation tests

- General procedure:
 - Select a test statistic W that measures the kind of difference you are interested in measuring between two populations
 - Permute the group labels among observations and recalcualte test statistic
 - Repeat many times to obtain a permutation distribution for the test statistic
 - Calculate p-values against this permutaion distribution
- Depending on the test statistic, the performance of the permutation test can vary
 - In most settings, the test detects **more** than the comparison indicated by the test statistic
 - Ex: the test will not reject at the correct rate if the population medians are equal but the population distributions differ
 - This stems from the assumption that the observations from the two populations are exchangeable (i.e. same population distribution, not just the individual statistic you are interested in)

Lecture 25

Two-sample inference for population variances

- We are interested in testing the equality of variances between two populations
 - Our underlying assumption here is that the populations are Normal
- Recall that sample variances are unbiased and consistent estimators for the population variance and that $\frac{(n-1)s_X^2}{\sigma_X^2} \sim \chi^2_{(n-1)}$ • Our null hypothesis is typically $H_0: \sigma_X^2 = \sigma_Y^2$ or more generally $H_0: \sigma_X^2 \sigma_Y^2 = r$
- Our test statistic is the F statistic:

$$F(r) = \frac{s_x^2 / \sigma_x^2}{s_y^2 / \sigma_y^2} = \frac{s_x^2}{s_y^2} \left(\frac{1}{r}\right)$$

- Under the null hypothesis, $F(r) \sim F_{(m-1,n-1)}$
- This test does not perform well if the underlying population distribution is not Normal
 - The test will not reject with the correct probability when the null hypothesis is true (not exact or asymptotically exact)
 - The test is consistent, but the lack of calibration means it is hard to interpret the results
 - It is important to use this only when Normality of both populations is known

Levene's Test

- We are still testing equality of population variances here $H_0: \sigma_X^2 = \sigma_Y^2$
- Test procedure
 - We can construct a new variable measuring the absolute difference of each observation from its sample median
 - $-U_i = |X_i med(X)|$ and $V_i = |Y_i med(Y)|$
 - Perform a two sample t-test to test the hypothesis that the population mean of the U_i is the same as the population mean of the V_i
 - We can also used the squared differences instead of absolute value, or take the differences from the sample mean instead of the median
 - * Option 1 is illustrated above: absolute difference with sample median
 - * Option 2 is squared difference with sample median
 - * Option 3 is the absolute difference with the sample mean
 - * Option 4 is the squared difference with the sample mean
 - Welch's t-test is more robust then the t-test with equal variances
- The interpretation of Levene's Test depends on the option used
 - If you use option 4, you can interpret this as testing a difference in population variances
 - For the other options, this test is not using familiar quantities
- Assumptions:
 - Independence between samples
 - Reasonably large sample sizes so we can get lots of Us and Vs
 - If we use the equal-variance t-test at the end, we are automatically assuming that U and V have equal population variances
- Used to answer direct questions about variance and spread
- The R package 'car' has a leveneTest() function but that function only uses absolute value options

Two sample Kolmogorov-Smirnov Test

- We might want to test equality of the entire distribution function as opposed to just specific quantities
- Our $H_0: F_X = F_Y$ is similar to the one sample case
- Our test statistic D is also pretty similar to the one sample case

$$D = \sup_{x} |\hat{F}_{x}(x) - \hat{F}_{y}(y)|$$

and our reference distribution is the Kolomogorov distribution

$$\sqrt{\frac{mn}{m+n}}D \to_d K$$

where we reject for large values of $\sqrt{\frac{mn}{m+n}}D$

- As before, the KS test applies only to continuous distributions
- If we want to test discrete distributions, we can use Pearson's Chi-squared test for r x c contingency tables

Delta method

- Used to approximate the sampling distribution of a function of a statistic whose asymptotic distribution is known
- For example, using the central limit theorem we know that $\sqrt{n}(\bar{X} \mu) \rightarrow_d N(0, \sigma^2)$
- Suppose we are interested in the distribution of \bar{X}^2 , so $g(x) = x^2$
- If we have a statistic T s.t. $\sqrt{n}(T-\theta) \rightarrow_d N(0,\tau^2)$ then for any continuous function g s.t. g' exists, we have

$$\sqrt{n}(g(T) - g(\theta)) \rightarrow_d N(0, \tau^2[g'(\theta)]^2)$$

Or in other words

$$g(T) \sim N(g(\theta), \frac{\tau^2[g(\theta)]^2}{n})$$

- This comes from the Taylor expansion
- The delta method provides estimates of the mean and variance of the function of a statistic:
 - $E[g(T)] \approx g(E[T])$
 - $Var[g(T)] = Var[T][g'(\theta)]^2$
 - These approximations can get pretty rough and in general unless g is a linear function the expectation of a function does not equal the function of the expectation
- Some sources recommend transforming data to improve the approximation of normality (reduce asymmetry) and make the Normal-based methods perform more exactly
 - Testing hypotheses regarding population means on orignal data can answer a different question than testing on transformed data
 - However, transforming inference back to the original scale is very challenging to interprety unless strong assumptions are made

Lecture 26 (Last lecture of the quarter!)

Mantel-Haenszel Test

- The setting here is k 2x2 tables under different conditions
- Our null hypothesis is that $H_0: p_{xj} = p_{yj}$ for all j from 1 to k
- Notation is $p_{xj} = P(X = 1intablej)$
- Often expressed in terms of the odds ratio:

$$-\omega_j = \frac{\frac{p_{xj}}{1-p_{xj}}}{\frac{p_{yj}}{1-p_{yj}}}$$

- $-H_0: \omega_j = 1$ for all j from 1 to k
- Example scenario: is political preference associated with level of education
 - We could collect data from each state and each state would be a 2x2 table
 - In other words, we are asking: is the probability of being a Democray the same for people with and without a college degree in each state?

- We cannot combine the tables together into one; run the risk of Simpson's paradox

- Mantel-Haenszel test procedure:
 - $-H_0: \omega_j = 1$ for all j from 1 to k

$$-E[n_{x1j}] = \frac{n_{x,j}n_{,1j}}{n_{,j}}$$

$$-Var[n_{...1}] = \frac{n_{...j}}{n_{x.j}n_{y.j}n_{...1j}n_{...1}}$$

 $- Var[n_{x1j}] = \frac{n_{..j}n_{y.j}n_{..j}n_{..j}}{n_{..j}^2(n_{..j}-1)}$ - and our test statistic C is

$$C = \frac{\sum_{j} (n_{x1j} - \mu_{x1j})^2}{\sum_{j} \sigma_{x1j}^2}$$

and under H_0 , $C \sim \chi_1^2$ and we reject H_0 for large values of C (p-value is 1 - pchisq(C, 1))

- The Mantel-Haenszel test assumes that odds-ratios are the same in all k tables
 - If this assumption is not met, it is difficult to interpret a p-value
 - The test may **fail** to reject the null if the odds ratio are different from 1 but in opposite direction