
551 Lecture Notes

Nick Sun

Lecture 1

• Experimental/Observational Units: smallest division of experimental elements under study. They
usually receive different treatments.

• Variables: measured for each observational unit. Quantitative or Qualitative.
• Predictor/Independent/Covariate Variables are all used to classify experimental units and may be

associated with the outcome variable of interest.
• Extending inference from sample to larger population involves sampling from those exact populations

in some representative way.
• Inferences to populations can be drawn from random sampling studies, but not otherwise.
• Observational study (subjects choose to sit somewhere) vs. randomized experiment (subjects assigned

to be in certain group)
• Statistical inferences of cause-and-effect relationship can be drawn from randomized experiments but

not from observational studies
• Confounding variables; be sure to watch for the ecological fallacy! Relationships at the aggregated level

may not exist at the individual level

Lecture 2

• Arithmetic mean, geometric mean, harmonic mean
• Population of interest, variable of interest, parameter
• Population distribution describes the range and relative likelihood of the set of possible values that Y

can take on
• If Z has a Normal(0, 1) distribution, then X = σZ + µ has a Normal(µ, σ2)
• Z = X−µ

σ has a Normal(0, 1) distribution
• If X and Y are both normally distributed, the distribution of their sum is just adding their means and

variances together
• The distribution of a statistics like x̄ is referred to as the sampling distribution

Lecture 3

• X̄ ∼ N(µ, σ
2

n ). This holds for any sample of size n from any population.
• We cannot obtain a sampling distribution of a statistics if we don’t know the population distribution
• If we don’t know pop distribution, we can do the following:

– Work out certain properties (parameters) for example, the mean and variance of sampling distri-
bution

– Simulate
– Approximate (using something like CLT)

• Remember that the mean is a linear operator E(X + Y) = E(X) + E(Y), don’t have to be iid
• Var(Y) = E

[
(X − E(X))2] = E[X2] + E[X]2
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• Cov(X, Y) = E
[
(X − E(X))(Y − E(Y ))

]
– If X and Y are independent, then Cov(X, Y) = 0, but the converse does not hold
– Cov(X, X) = Var(X)

• For any two random variables X and Y, the variance of the sum is $Var(X + Y) = Var(X) + Var(Y) +
2Cov(X, Y). A minus will just make the last term negative.

• Weak Law of Large Numbers
– As sample size goes to infinity, the sample mean converges in probability to mean µ
– X̄ →p µ

• The ecdf of a function F̂ = count obs less
n

– Can also be written F̂ (x) = 1
n

∑
i=1 n1xi≤x

– Notice that its just a sample mean, so the weak law of large numbers applies
– The ecdf converges to the true cumulative distribution function

Lecture 4

• Central Limit Theorem
– If pop distribution of a variable X has population mean µ and a finite variance, then the sampling

distribution of the sample mean goes closer to the Normal(µ, σ
2

n ) as n increases
– Equivalent statement:

√
n(X̄n−µ)

σ →d N(0, 1)

• P (X̄ < 19.5) = P (X̄ − 20 < 19.5− 20) = P

(
X̄−20√

1
4
< 19.5−20√

1
4

)
– Notice that the above LHS is now standardized and is distributed by N(0, 1)

• Good to know these R functions
– dnorm(x, mu, sd) gives us the value of the density curve at x
– pnorm(x, mu, sd) gives us the cumulative probability at x (basically our CDF in R)
– qnorm(p, mu, sd) gives us the pth percentile (useful for finding critical values)

Lecture 5

• Example of sample size calculation such that if we know that µ = 20 and σ2 = 4, P(19.5 < X̄ < 20.5)
=.9
– This can be found by knowing that we can restandardize all the values in the inequality
– We know that 1.645 cuts off 5% in the tail for a normal distribution
– So we just need to set both sides of the inequality to 1.645 and solve for n ≈ 44

• The process of using a sample to learn something about a population parameter is called inference
• What makes a good estimate?

– Unbiased
– Small mean squared error
– Converges to true value as sample size increases (consistency)

• Null hypothesis: a specified value or range of values for the parameter of interest
• Alternative hypothesis: A different specified value of range of values for the parameter of interest
• We fail to reject the null hypothesis, we cannot prove that it is true

Lecture 6

• The rejection region of a hypothesis test is defined by the rejection distribution. It is the distribution
to which the test statistic is compared and is considered under the null hypothesis being true

• Type I error is rejecting the null when the null is true
• Type II error is failing to reject the null when the null is false
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• The significance level of a test is the probability of a type I error
• The power of a test at a specific value θA is the probability of rejecting the null knowing that the true

value of the population parameter is θA.
– This is equal to 1 - P(type II error)

• Rejection region is the values for which the null hypothesis will be rejected
• Using R, we don’t have to standardize since we can just use qnorm() to get our critical values
• Usually though, we will just standardize the sample mean using the null hypothesis value of µ
• The Z-test is used to test hypotheses about a population mean when the population variance is known

– Data setting is one sample, iid, with sample mean X̄
– the Null hypothesis is H0 : µ = µ0
– Test statistic is Z(µ0) = X̄−µ√

σ2
n

– Z(µ0) ∼ N(0, 1)
• Exactness: under any setting for which the null hypothesis is true, is the actual rejection probability

equal to the desired significance level α
– Finite-sample exactness: For finite sample sizes n, is probability of rejecting the null = α where

the null is true?
– Asymptotic exactness: As the sample size goes to infinity, does probability of rejecting the null =
α where the null is true?

• A test is finite sample exact if the reference distribution is the true distribution of the test statistic
when the null hypothesis is true

• A test will be asymptotically exact if the reference distribution is asymptotic distribution of the test
statistic when the null hypothesis is true

• Consistency: under any fixed setting for which the alternative hypothesis is true, does the rejection
probability tend to 1 as the sample size goes to infinity

• The Z-test is finite sample exact if the data sampled is iid normal
• The Z-statistic is also asymptotically exact when the data sampled is iid (µ, σ2), doesnt have to be

normal

Lecture 7

• The power of the test if µ = µA 6= µ0 is given as

P

X̄ − µA√
σ2

n

> z1−α + µ0 − µA√
σ2

n


Notice that we restandardized the LHS. It is distributed according to the N(0, 1)

• A p-value is the probability under the null hypothesis of observing a result at least as extreme as the
statistic you observed

• A procedure for obtaining p-values is exact if the resulting value actually reflects the probability of
obtaining results at least as extreme as the observed value under the null hypothesis

• Exact p-values under the null hypothesis should have a U(0, 1) distribution!
• Exactness of confidence intervals, p-values, and hypothesis tests are all dependent on the validity of the

reference/null distribution
• Equivalent definition of a p-value: the lowest value of α for which the hypothesis test would be rejected
• The duality between hypothesis tests and confidence intervals:

– A (1 − α)100 confidence interval is the set of all null hypotheses that would not be rejected at
level α

– A two-sided confidence interval corresponds to a two-sided alternative hypothesis test
• The formula for a confidence interval for a z-test is:
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X̄ ± z1−α2

√
σ2

n

Lecture 8

• For a z-test, what do we do when we don’t know σ2? We can estimate it using the sample variance
• As the sample size n gets larger, the sample variance gets closer to the true population variance
• Replacing σ2 for s2, we get the t-test
• the null distribution of the t-statistic is the t-distribution, a family of distribution that are defined by a

parameter called degrees of freedom
• The t-value X̄−µ√

s2
n

has exactly a tn−1 distribution if the population distribution is exactly normal

• Otherwise, the t-statistic is asymptotically exact
• The R function for a t-distribution are: qt, pt, dt and they all take a df input
• Many of the formulas are similar to the z-distribution, but replace σ2 with s2

• Do not confused the sample variance, which estimates the population variance, with the Var(X̄) which
is often called standard error. We often estimate standard error by using s2

• It is important to distinguish between statistical significance and practical significance when communi-
ating results of an analysis
– Statistical significance stems just from having a small enough p-value
– Practical significance deals with effect size; does it have meaningful implications in real life?
– It is possible to have practical significance without statistical significance (small n)

• When testing a binomial proportion, we have two options: use exact null distribution or use a normal
approximation with a z-test

Lecture 9

Exact binomial test

+ one sided test where $H_{A}$ p > $p_{0}$
+ Given a binomial distribution, find the value c where P(X $\geq$ c) $\leq$ .05
+ This value c wont cut off .05 exactly unless you are very lucky
+ Specifying the lower tail alternative is very similar process

• For a two tailed exact binomial test, it’s a bit different
– what values do we reject for? Values that are far from expected value, or values that are least

probable under the null hypothesis?
– The former is the logic behind the z-test. The latter is the logic behind the binomial exact test
– Look at the tails of the binomial distribution. Reject H0 for X such that p0 ≤ some value that is

less than α
– It may happen that we may be way below α but adding the next lower probability puts us over.

We dont want our type I error probability to exceed α
∗ Define our rejection region by

∑
k:p0(k)≤c PH0(X = k) ≤ α

∗ Our p-value would be found by adding all the probabilities that are less likely or as likely as
the observed x under the H0 ### Z-test approximation for binomial response data

– X =
∑n
i=1 Yi N(np, np(1− p)) for large n

– This gives us X−np0√
np0(1−p0)

N(0, 1)

– And a z-statistic that is p̂−p0√
p0(1−p0)/n

N(0, 1)
– Pretty much the same as the z-statistic that we already covered ### T-test for binomial test

when we don’t know the variance and estimate it using the s2
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– p̂−p0√
p̂(1−p̂)/(n−1)

– The t-statistic converges to the z-statistic as n →∞
– The t-statistic here is basically the Wald statistic, just with an n-1 instead of an n
– The score test statistic (z(p0)) performs slightly better than the Wald statistic (zW (p0)) in exactness

and power
– For some reason, it is common to use a CI based on the Wald calculation of variance, even if the

hypothesis test was done with the score test
– Use normal approximation when np0 > 5 AND n(1− p0) > 5

Lecture 10

• Sometimes folks will suggest using a randomized test with a binomial proportion so that P Type I error
equals α exactly. It basically involves rejecting the borderline value only some probability γ of the time.
You can find this using algebra, but we don’t use randomized tests much ### Sign Test

– Parameter of interest is the population median M
– The sign test is basically just a binomial test where H0 : p0 = .5 where we are considering each

observation a Bernoulli variable that is 1 if it is ≤ the median
– Our test statistic is z = p̂−p0√

p0(1−p0)/n
– Keep in mind that our p0 = 0.5 under the null
– Recall that a (1 − α)100 confidence interval for a parameter θ is the set of all values for θ0 for

which a level α two sided test would not reject the null hypothesis
– The way to find a CI for the population median is to find it iteratively using

X
n −0.5√
.52/n

< z1−α2 where
X is the number of observations less than M0

– Solving this, we get the interval
n±z1−α

2

√
n

2 . These indicate the ith observation which would fall
into the confidence interval

– The smallest observation is
n−z1−α

2

√
n

2 and the largest is
n+z1−α

2

√
n

2 + 1
– we round to the nearest integer if the above are not integers
– The CI bounds will always be values of the observed sample

Lecture 11

• The sign test for M is not finite sample exact because of the discrete nature of the data and we also use
a normal approximation if we’re using a z-test
– The sign test will only be asymptotically normal

• The sign test is consistent. The test for binomial proportions is consistent as n approaches infinity, so
the sign test follows similarly ### Wilcoxon Signed Rank test
– Comes with a lot of caveats; be careful not to ignore assumptions for symmetric underlying

distributions!
– Definition as per lecture: The wilcoxon signed-rank test applies to the case of symmetric continuous

distributions. Under this assumption, the mean equals the median. The null hypothesis is
H0 : µ = µ0

– Procedure
∗ Calculate the distance of each observation from some proposed c0
∗ Rank the observations by the absolute value of their distance
∗ Sum the ranks that correspond to observations larger than c0

– As before, we have a few options for a reference distribution: we an use an exact p-value by
assuming each rank has the same chance of being above or below c0 or we can use a normal
approximation

– If we use a normal approximation, we have sum S ~ N(n(n+1)
4 , n(n+1)(2n+1)

24 )

5



– And our z-statistic will be Z = S−n(n+1)
4√

n(n+1)(2n+1)
24

– The wilcox.test() function in R has options for using exact reference distribution and to use a
continuity correction

– Only assumption for the Wilcoxon Signed Rank test is that the observations are independent of
each other

– Does not tell us anything about the mean or median (actually tests the pseudomedian)

Lecture 12

• If we assume the underlying population is symmetric, the signed-rank test is a test of the population
mean µ which is equal to median M which is also equal to the pseudomedian

• Consistent test of mean = median = pseudomedian under the symmetry assumption
• Not finite sample exact, but is asymptotically exact under the symmetry assumption
• For asymmetric distributions, not an exact test of the pseudomedian (but very close)
• For asymmetric distributions, test is still consistent for pseudomedian

One sample Chi-squared test for pop variance

+ Test statistic: $X(\sigma_{0}) = \frac{(n-1)s^{2}}{\sigma^{2}}$
+ The reference distribution for this test statistic is $\chi_{(n-1)}^{2}$
+ p-values are found using:

+ 1 - pchisq(X, n-1) for upper tail test
+ pchisq(X, n-1) for a lower tail test
+ 2*min(1 - pchisq(X, n-1), pchisq(X, n-1))

+ Confidence interval given as $\frac{(n-1(s^{2}))}{\chi^{2}_{(n-1), \alpha /2}}, \frac{(n-1(s^{2}))}{\chi^{2}_{(n-1), 1-\alpha /2}}$
+ If the underlying population distribution is not normal, this test is prettyyyy bad

• We can also do an asymptotic t-test for population variance
– t(σ2

0) = Ȳ−n−1
n σ2√
s2
y
n

→d N(0, 1)

– We are essentially using a t-test to see if the population mean of Yi is n−1
n σ0

Lecture 13

Kolomogorov-Smirnov Test

• Say we want to test whether a population is distributed with a certain function FX
• Our hypotheses are H0 : F = F0 and HA : F 6= F0
• Our test statistic is D(F0) = supx|F̂ (x)− F0(x)| where F̂ (x) is our empirical cumulative distribution

function
• Our reference distribution is that under H0,

√
nD(F0)→d K where K is the Kolmogorov distribution

• We are going to reject the null for high values of our test statistic D(F0)
• HA : F > F0 implies that F is stochastically smaller than the null hypothesis F0
• The one-sided test statistics are:

– For HA : F > F0, D(F0) = supx

(
F̂ (x)− F0(x)

)
– For HA : F < F0, D(F0) = supx

(
F0(x)− F̂ (x)

)
– Be careful though! The interpretation of these tests is challenging. The two one-sided alternative

hypotheses do not cover the full range of possibilities that could be going on here.
• The standard KS test should not be used if you are estimating parameters from the sample
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• The KS test applies only to continuous distributions

Chi-squared Goodness of Fit test

• The discrete analogue of the Kolmogorov-Smirnov Test
• The test statistic is X(p0) =

∑
x
n(p̂(x)−p0(x))2

p0(x)

• The above is equivalent to how we usually see the test statistic written: X(p0) =
∑k
j=1

(Oj−Ej)2

Ej
where

k is the discrete categories that the variable Xi can take on
• Suppose that we aren’t specifying a distribution, but rather a family of distributions

– We will have to estimate the parameters from the data, which we can do!
– let’s say that we are estimating d of these parameters
– We use the null hypothesis with the estimated parameters and computer Pearsons χ2 as usual
– We compare the resulting statistic to a χ2

k−d−1 distribution where k is the number of categories
and d is the number of estimated parameters

• The critical values for these tests can be found using qchisq function in R
– For example, the critical value for a α = .05 upper tail test with df = 5 is qchisq(.95, 5)

Lecture 14

• If we are given a discrete distribution with k-possible values and we want to test that P(X = x) = p0,
we can use Pearson’s χ2 test.

• For binary data, the χ2 statistic is equal to the square of the z-statistic for testing a hypothesis for a
binary proportion.

• Just like the case for binary data, the χ2 distribution has an asymptotic χ2 distribution.
– This test is therefore asymptotically exact, but generally good when all expected values are over 5
(though this rule of thumb gets bent a lot)

Two-sample inference: The two sample z-test for population means

• Suppose we have two independent samples that may be from two different populations (different sample
sizes too!)

• Always important to note the sampling context (are the sample sizes from each population fixed or are
we doing an SRS from the combined population?)

– When we analyze data that was gathered using an SRS, we can consider the proportion we get in
our sample to estimate the true population proportion

• We can use a two sample z-statistic to test that the population means are different:
– H0 : µX = µY or alternatively but equivalently, H0 : δ = 0
– z(δ0) = X̄−Ȳ√

σ2
X
m +

σ2
Y
n

– Under the null, z(δ0) ∼ N(0, 1)

Lecture 15

Slight detour into bootstrapping

• This a method to estimate a nuisance parameter which is something we aren’t directly interested in
but we need it to test the thing we are interested in
– Classic example is something like population variance or sampling variance of a statistic
– Basic idea is that the empirical distribution function converges to the true distribution function
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– Let’s say we want to investigate medians for example. We have an initial sample. How do we get
the distribution of the median in this population?

– If we resample from our original sample (i.e. where we got our original empirical distribution)
many times, we should get an idea of how this test statistic behaves

• Recall the important idea that as sample size increases, F̂ → F
• Once we have our (probably thousands) bootstrap resamples with the associated test statistic of interest,

we can calculate a boostrap confidence interval
• Suppose we have 1000 samples

– The 95% CI is the 25th largest resample statistic and the 975th largest resampled statistic
– Note that for some statistics, we might have a lot of duplicate values; this is alright

Lecture 16

Continuing with the two sample z-test for population means

• The rejection region for the z-test is similar to the standard z-test
• The confidence interval for δ0 is (X̄ − Ȳ )± z1−α2

√
σ2
X

m + σ2
Y

n
• But what if we do not know the population variances? Common situation, glad you asked.
• Similar to the one sample case, we can just use the sample variance as estimates

– However, we must consider two cases: when the population variances are equal and when they
are unequal

T-test with an equal variance assumption

• Our best estimate of the population variance (and since the population variances are equal σ2
X = σ2

X = σ2

is sp
• Our pooled variance estimate is s2

p = (m−1)s2
X+(n−1)s2

Y

m+n−2
– Essentially we are finding a weighted average of the two sample variances; samples with more

observations give better information about σ2

• Our actual test statistic will look familiar:

tE(δ0) = (X̄ − Ȳ )− δ0√
s2
p

( 1
m + 1

n

)
• Under H0 for normal populations, this t-statistic follows an exact distribution tm+n−2
• As in the one-sample case, we still use the t-test even when we know that the data comes from

non-normal populations - the t-test is pretty robust!
• And also for large sample sizes, deviations from normality don’t make too much of a difference
m+ n− 2→∞ then tm+n−2(p)→ z(p)

• The confidence interval for this test, as you can imagine is just

(X̄ − Ȳ )± tm+n−2(1− α

2 )

√
s2
p

(
1
m

+ 1
n

)
• What happens when you use this test and the variances are actually not equal?

– We see that the expected value of the estimated variance is larger than it should be when the
smaller sample has the smaller variance

– This makes sense; essentially we are not downweighting the variance estimate enough. We will
reject less (less power)
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– Conversely, we see that the expected value of the estimated variance is smaller than it should be
when the smaller sample has the larger variance

– Here, we are not downweighting the variance estimate too much! We will reject more (more power)

T-test with an unequal variance assumption

• If we make the unequal variance assumption, we find that the test statistic is actually not too bad
looking, in fact its a familiar friend

tU (δ0) = (X̄ − barY )− δ0√
s2
X

m + s2
Y

n

• However, we do not get an exact distribution for this test even if the populations are Normal because
the denominator is not the square root of a chi-squared r.v. divided by its df

• Therefore, we have the use either the asymptotic Normal reference distribution (not great) or the
Welch-Satterthwaite approximation

– Essentially, we are saying that tU (δ0) ∼ tν where ν is this ugly damn thing:

ν = W 2

M +N

where W =
(
s2
X

m + s2
Y

n

)2
, M = s4

X

m2(m−1) , N = s4
Y

n2(n−1)

• The CI is almost the same as above

(X̄ − Ȳ )± tν(1− α

2 )

√(
s2
X

m
+ s2

Y

n

)
• Equal-variance t-test vs Unequal-variance (Welch) t-test: when sample sizes are equal, both test

statistics are the same but the (degrees of freedom for the reference distributions still differ)
• When variances are equal, the equal variance t-test has slightly better power and slightly better exactness
• For unequal sample szies with unequal population variances, equal-variance t-test does not have the

correct calibration!

Lecture 17

Paired data z-test

• Here we are supposing that the data is coming in pairs (before and after perhaps, or maybe siblings?
Lots of possible scenarios)

• The two samples are by necessity the same size here
• Suppose we are interested if the difference in population averages is equal to 0
• We can acutally do a few different things here; we can look at the difference between the sample averages

or look at the pairwise differences. They are equivalent.
• Instinct tells us that we should use a two-sample z-test here, but note that X̄ and Ȳ are not independent

here! There is a covariance factor that we need to account for
– V ar(X̄, Ȳ ) = σ2

X

n + σ2
Y

n − 2σ
2
XY

n
• Our z-statistic is therefore
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z(δ0) = (X̄ − Ȳ )− δ0√
σ2
X

n + σ2
Y

n − 2σ
2
XY

n

• The CI as you can imagine is

(X̄ − Ȳ )± z1−α2

√
σ2
X

n
+ σ2

Y

n
− 2σ

2
XY

n

• But also as you know we usually do not know the population variances. Therefore, we have to estimate
them from the data.

• Our test statistic in this case is

t(δ0) = (X̄ − Ȳ )− δ0√
s2
X

n + s2
Y

n − 2 s
2
XY

n

• If the differences Di are notmal, then the t-statistic has an exact t-distribution with n-1 degrees of
freedom

• Important to note: the Normality of X and Y does not imply the normality of D unless (X, Y) are
jointly multivariate normal

• To recap:
– Take the differences Di = Xi − Yi
– Perform a one-sample hypothesis test for the population mean difference µd = µX − µY

Lecture 18

For the next 2 lectures, we are looking at a 2x2 contingency table. We are going to use the following
convention:

0 1
Xi a b m = a+b
Yi c d n = c+d

a+c b+d N = a+b+c+d

• If we are given a 2x2 contingency table, more often than not we are interested in seeing if the probabilities
px = py
– We may also be interested in differences in proportion (subtracting px − py), relative risk (pxpy ), or

the odds ratio (odds of x over odds of y)
– Note that odds is calculated pX

1−pX
– In the above table, odds ratio can be easily calculated by the following formula ad

bc

Two sample z-test of binomial proportion

• The z-statistic is calculated easily by

z = p̂x − p̂y√
p̂c(1− p̂c)( 1

m + 1
n )

Where pc = b+d
N and Z ∼ N(0, 1)

• And the CI is found by
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p̂x − p̂y ± z1−α2

√
p̂x(1− p̂x)

m

p̂y(1− p̂y)
n

• Notice that this a wald interval with a score z-statistic!

Lecture 19

Chi-squared test for the homogeneity of proportions

• The chi-squared statistic is calculated as expected:

χ =
∑ (Obs− Exp)2

Exp

• The expected values of the tables is found using the following calculations:

m(a+c
N ) m( b+dN ) m

n(a+c
N ) n( b+dN ) n

a+c b+d N

• Reject H0 if χ2 > χ2
1(1− α)

Fisher Exact Test

• The “test statistic” here is us the probability of us getting our observed table conditioned on the margins
of the table

• The p-value is the sum of the probabilities of all the tables more extreme than the observed table
• The exact calculation of the probability of the observed table models after the hypergeometric distribu-

tion:

(
a+c
a

)(
b+d
b

)(
N
a+c
)

• The definition of more extreme depends on the alternative hypothesis:
– If HA : px > py, more extreme means bigger values of Obs1,2
– If HA : px < py, more extreme means smaller values of Obs1,2
– If HA : px 6= py, more extreme means less likely table than our observed

• It’s obviously tedious to calculate all of the tables so we usually just let the computer do it lmao

Quick aside on sampling

• Multinomial sampling is when we get N experimental units, classify each according to a grouping
variable G and response variable X

• Two-sample Binomial sampling is when we obtain fixed sizes of m and n from each group
• For rare events, it can be challenging to obtain data using multinomial or two-sample binomial sampling

– Example: getting people who are struck by lightning might be hard because, well, not many people
get struck by lightning

– We might decide in that case to just sample from people that we know got struck by lightning as
one of our groups

– Note that we can no longer estimate P(Lightning | Golfer), but we can still estimate P(Golfer |
Lightning) and the odds ratio

– The odds ratio fact is useful because we can flip the conditionals with odd ratios (useful property)
so we can still say something about P(Lightning | Golfer)
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Lecture 20

Log-odds Ratio Test

• Our test statistic here is the sample odds ratio ω̂ = ad
bc

• The log of this estimate is asymptotically normal log(ω̂) ∼ N(logω, 1
a + 1

b + 1
c + 1

d )
• To test H0 : ω = 1 we can use the following test statistic:

Z = log(ω̂)√
1
a + 1

b + 1
c + 1

d

• Z ∼ N(0, 1)
• As you can imagine, you can also create a CI for log(w) using the following:

log(ω̂)± z1−α2

√
1
a

+ 1
b

+ 1
c

+ 1
d

• You can find a CI for ω just by exponentiating everything above
• Let’s say that our sample odds ratio came out to be 1.667. This tells us that odds of getting struck by

lightning are 1.667 times higher if you golf.
• You can perform the log-odds ratio test no matter how the data was sampled

– Test performance will be better for large sample sizes
• You can also use Pearson’s χ2 test and Fisher’s exact test no matter how the data was sampled, since

all the tests assess whether there is an association between the variables.
– Only the estimates are affected by the sampling scheme

Lecture 21

Paired Binary Data: McNemar’s Test

• These are typically before and after type studies where the response is binary (ex: political opinion
before and after a debate) or matched case-control sampling

• In these scenarios, we generally want to test the null hypothesis that H0 : pbefore = pafter
• It would not be appropriate to use two-sample binomial z-test, Pearsons, Fishers exact test, or log-odds

ratio test here because they ignore the pairing information
• In this case, we should treat each pair as a single entity and our contingency table will be the counts of

pairs
• In this case we can use McNemar’s Test which is actually equivalent to the paired t-test in the sense

that the test statistics are monotone transforms of one another
• In McNemar’s Test we condition on the number of discordant pairs, i.e. pairs where the values don’t

match i.e.i.e. b + c
• Under the null hypothesis, half of b+c should be in O1,2 and the other half should be in O2,1
• Our test statistic is therefore the following:

z = b− c√
b− c

• Under the null hypothesis, z ∼ N(0, 1)
• Equivalently, you can square this statistic and then compare it to χ2

1 but its the same thing don’t kill
yourself

• Note that in this setting, the question we are still asking is “Is being struck by lightning associated
with golfing?” in the case of us looking at siblings who golf
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– The question of whether or not the status of the lightning struck sibling is independent of the
other sibling can be answered with Pearson’s, Fisher’s, etc.

• For paired t-test vs McNemar’s Test with large sample sizes, essentially, they are asymptotically
equivalent! Their statistics tend to the same value

Lecture 23

Wilcoxon Rank-Sum Test or the Mann-Whitney U test

• Not actually a test of population medians as you were led to believe in undergrad. This is only true
under strong assumptions with the population distributions

• We calculate the U statistic by:
– Combining the two samples
– Ranking the observations in the combined sample from smallest to largest
– Add up the ranks corresponding to the observations in the smaller of the two groups

• There are a few ways to get p-values:
– One is to use a permutation approach i.e. if there were no difference between the two groups

populations, then each rank between 1 and (nx + ny) will have the same chance of being assigned
to the smaller group

– This is computationally intensive though because to get an exact p-value you have to calculate(
nx+ny
ny

)
total Rank statistics. This can get out of hand quickly!

– Once we have a reference distribution for the U statistic, we can see where our observed U statistic
falls in that distribution and calculate a p-value

– The other practical way is to use a normal approximation
– R ∼ N(E(R), V ar(R)) where E[R] = nx(nx+ny+1)

2 and V ar[R] = nxny(nx+ny+1)
12

– Our test statistic in this case would be

Z = R− E[R]√
V ar[R]

∼ N(0, 1)

• Some issues that arise in the Wilcoxon Rank-Sum test:
– Ties in observed values

∗ Assign ranks to observations as usual, then average the ranks assigned to tied values
∗ Permutation approach to calculate p-values still works, but tabled values will not be correct

since they assume no ties
∗ If number of tires is large relative to the sample size, the normal approximation will not be
very good

– Normal approximation in small sample sizes
∗ Basically adding .5 to the observed value of R if you are computing a lower probability and

subtract .5 from the observed value of R if you are computing an upper probability
∗ Slightly improves approximation for small sample sizes

– Proper interpretation of the test results
∗ Some sources describe the Wilcoxon Rank-Sum test as a test for an additive effect (essentially
a shift between distributions; shapes and scales do not change at all)

∗ If you are willing to assume that the only difference between populations is a shift, then you
can use Wilcoxon Rank-Sum to test whether the shift is 0

∗ If you are not willing to assume that the only difference is a shift, the interpretation of the
Wilcoxon Rank-Sum test is
· The test is that H0 : P (X > Y ) = .5 where X is a randomly chose value from population

1 and Y is a randomly chosen value from population 2
∗ If you are assuming an additive effect, then the Wilcoxon Rank-Sum test is a test in difference
in medians (but also means, percentiles, maxima, minima, etc.)

13



∗ If you are not assuming an additive effect, the Wilcoxon Rank-Sum test does not say anything
about medians

∗ The Wilcoxon Rank-Sum test is an exact test of H0 : FX = FY but is not exact in testing
medians, means, or P (X > Y ) = .5 unless we are assuming location shift

∗ The Wilcoxon Rank-Sum test is not a consistent test for medians, means, or equality of
distribution unless we are assuming a location shift, but it is a consistent test of H0 : P (X >
Y ) = .5

Lecture 24

Two sample inference for population medians (Mood’s Test)

• Here we are testing H0 : mX = mY = m.
• m̂ is an unbiased and consistent estimator for the population median (m̂ ∼ N(m, 1

4nf(m)2 ))
• Mood’s Test procedure:

– Find combined sample median m̂
– Test that the true population proportion of Xs greater than m̂ is equal to the true population

proportion of Ys greater than m̂.
– Once we have a new 2x2 table, we can use a two sample binomial proportion z-test or Pearson’s

chi-squared test or Fisher’s exact test

Permutation tests

• General procedure:
– Select a test statistic W that measures the kind of difference you are interested in measuring

between two populations
– Permute the group labels among observations and recalcualte test statistic
– Repeat many times to obtain a permutation distribution for the test statistic
– Calculate p-values against this permuation distribution

• Depending on the test statistic, the performance of the permutation test can vary
– In most settings, the test detects more than the comparison indicated by the test statistic
– Ex: the test will not reject at the correct rate if the population medians are equal but the

population distributions differ
– This stems from the assumption that the observations from the two populations are exchangeable
(i.e. same population distribution, not just the individual statistic you are interested in)

Lecture 25

Two-sample inference for population variances

• We are interested in testing the equality of variances between two populations
– Our underlying assumption here is that the populations are Normal
– Recall that sample variances are unbiased and consistent estimators for the population variance

and that (n−1)s2
X

σ2
X

∼ χ2
(n−1)

• Our null hypothesis is typically H0 : σ2
X = σ2

Y or more generally H0 : σ2
X σ2

Y = r
• Our test statistic is the F statistic:
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F (r) = s2
x/σ

2
x

s2
y/σ

2
y

= s2
x

s2
y

(
1
r

)
• Under the null hypothesis, F (r) ∼ F(m−1,n−1)
• This test does not perform well if the underlying population distribution is not Normal

– The test will not reject with the correct probability when the null hypothesis is true (not exact or
asymptotically exact)

– The test is consistent, but the lack of calibration means it is hard to interpret the results
– It is important to use this only when Normality of both populations is known

Levene’s Test

• We are still testing equality of popuation variances here H0 : σ2
X = σ2

Y

• Test procedure
– We can construct a new variable measuring the absolute difference of each observation from its

sample median
– Ui = |Xi −med(X)| and Vi = |Yi −med(Y )|
– Perform a two sample t-test to test the hypothesis that the population mean of the Ui is the same

as the population mean of the Vi
– We can also used the squared differences instead of absolute value, or take the differences from the

sample mean instead of the median
∗ Option 1 is illustrated above: absolute difference with sample median
∗ Option 2 is squared difference with sample median
∗ Option 3 is the absolute difference with the sample mean
∗ Option 4 is the squared difference with the sample mean

– Welch’s t-test is more robust then the t-test with equal variances
• The interpretation of Levene’s Test depends on the option used

– If you use option 4, you can interpret this as testing a difference in population variances
– For the other options, this test is not using familiar quantities

• Assumptions:
– Independence between samples
– Reasonably large sample sizes so we can get lots of Us and Vs
– If we use the equal-variance t-test at the end, we are automatically assuming that U and V have

equal population variances
• Used to answer direct questions about variance and spread
• The R package ‘car’ has a leveneTest() function but that function only uses absolute value options

Two sample Kolmogorov-Smirnov Test

• We might want to test equality of the entire distribution function as opposed to just specific quanitites
• Our H0 : FX = FY is similar to the one sample case
• Our test statistic D is also pretty similar to the one sample case

D = supx|F̂x(x)− F̂y(y)|

and our reference distribution is the Kolomogorov distribution

√
mn

m+ n
D →d K
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where we reject for large values of
√

mn
m+nD

• As before, the KS test applies only to continuous distributions
• If we want to test discrete distributions, we can use Pearson’s Chi-squared test for r x c contingency

tables

Delta method

• Used to approximate the sampling distribution of a function of a statistic whose asymptotic distribution
is known

• For example, using the central limit theorem we know that
√
n(X̄ − µ)→d N(0, σ2)

• Suppose we are interested in the distribution of X̄2, so g(x) = x2

• If we have a statistic T s.t.
√
n(T − θ)→d N(0, τ2) then for any continuous function g s.t. g’ exists,

we have

√
n(g(T )− g(θ))→d N(0, τ2[g‘(θ)]2)

Or in other words

g(T ) ∼ N(g(θ), τ
2[g(θ)]2

n
)

• This comes from the Taylor expansion
• The delta method provides estimates of the mean and variance of the function of a statistic:

– E[g(T )] ≈ g(E[T ])
– V ar[g(T )] = V ar[T ][g′(θ)]2
– These approximations can get pretty rough and in general unless g is a linear function the

expectation of a function does not equal the function of the expectation
• Some sources recommend transforming data to improve the approximation of normality (reduce

asymmetry) and make the Normal-based methods perform more exactly
– Testing hypotheses regarding population means on orignal data can answer a different question

than testing on transformed data
– However, transforming inference back to the original scale is very challenging to interprety unless

strong assumptions are made

Lecture 26 (Last lecture of the quarter!)

Mantel-Haenszel Test

• The setting here is k 2x2 tables under different conditions
• Our null hypothesis is that H0 : pxj = pyj for all j from 1 to k

– Notation is pxj = P (X = 1intablej)
• Often expressed in terms of the odds ratio:

– ωj =
pxj

1−pxj
pyj

1−pyj

– H0 : ωj = 1 for all j from 1 to k
• Example scenario: is political preference associated with level of education

– We could collect data from each state and each state would be a 2x2 table
– In other words, we are asking: is the probability of being a Democray the same for people with

and without a college degree in each state?

16



– We cannot combine the tables together into one; run the risk of Simpson’s paradox
• Mantel-Haenszel test procedure:

– H0 : ωj = 1 for all j from 1 to k
– E[nx1j ] = nx.jn.1j

n..j

– V ar[nx1j ] = nx.jny.jn.1jn.0j
n2
..j

(n..j−1)
– and our test statistic C is

C =
∑
j(nx1j − µx1j)2∑

j σ
2
x1j

and under H0, C ∼ χ2
1 and we reject H0 for large values of C (p-value is 1 - pchisq(C, 1))

• The Mantel-Haenszel test assumes that odds-ratios are the same in all k tables
– If this assumption is not met, it is difficult to interpret a p-value
– The test may fail to reject the null if the odds ratio are different from 1 but in opposite direction
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