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Abstract

Problems 1, 4, 6, 10 from chapter 3 of Bayesian Data Analysis

1 Q1

Suppose data (Y1, . . . , Yn) follows a multinomial distribution with parameters (θ1, . . . , θn).
Also, suppose that θ = (θ1, . . . , θn) has a Dirchlet prior distribution. Let α = θ1

θ1+θ2
.

1.1 part a.

Write the marginal posterior distribution for α.

answer It is known that the Dirichlet prior distribution is conjugate to the multinomial
distribution so that the posterior is also Dirichlet. We can show this using some quick
calculations.

p(θ|data) ∝ p(data|θ)π(θ) ∝ θy11 θ
y2
2 . . . θynn

n∏
i=1

θai−1i

∝ θy1+a1−11 . . . θyn+an−1n

Therefore, the posterior distribution is Dirichlet(y1 + a1, . . . , yn + an). This is very
useful since we can use the property that the marginal distributions of a Dirchlet distri-
bution are also Dirichlet. Therefore we get the following pdf for θ1, θ2:

p(θ1, θ2|data) ∝ θy1+a1−11 θy2+a2−12 (1− θ1 − θ2)
∑n

i=3(yi−ai)−1

If α = θ1
θ1+θ2

, lets define β = θ1 + θ2. This will give us θ1 = αβ, θ2 = (1 − α)β, and
1− θ1− θ2 = (1− β). Now we just need to do a bivariate transformation to get the joint
pdf for α, β.

The Jacobian for this transformation will be:

J =

( ∂α
∂θ1

∂α
∂θ2

∂β
∂θ1

∂β
∂θ2

)
=

1

β2
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Now plugging this in, we get the following joint posterior.

p(α, β|data) ∝ (αβ)y1+a1−1((1− α)β)y2+a2−1(1− β)
∑n

i=3 yi−1

∝ αy1+a1−1(1− α)y2+a2−1βy1+a1+y2+a2−2(1− β)
∑n

i=3 yi−1

Note that the joint posterior distribution is factorizable into distinct parts for α and
β. Therefore, the posterior distribution for α is Beta(y1 + a1, y2 + a2).

1.2 part b.

Show that this distribution is identical to the posterior distribution for α obtained by
treating y1 as an observation from the binomial distribution with probability α and
samples size y1 + y2, ignoring the data y3, . . . , yn.

answer In this problem, we assume that

Y1 ∼
(
y1 + y2
y1

)
αy1(1− α)y2

which is possible since α is a ratio and guaranteed to be between 0 and 1. If we use
the fact that the prior for α should be a Beta distribution with a1 and a2 as the shape
parameters, we get the following posterior.

p(α|data) ∝ p(data|α)π(α) ∝ αy1(1− α)y2αa1−1(1− α)a2−1

∝ αy1+a1−1(1− α)y2+a2−1

Therefore, the posterior is p(α|data) ∝ Beta(y1 +a1, y2 +a2) which is what we showed
above!

2 Q4

An experiment was performed to estimate the effect of beta-blockers on mortality of
cardiac patients. A group of patients were randomly assigned to treatment and control
groups:

1. 647 patients received the control, 39 died.

2. 680 patients received the treatment, 22 died.

Assume that the outcomes are independent and binomially distributed, with proba-
bilities of death p0 and p1 under the control and treatment respectively.

2.1 part a.

Set up a noninformative prior distribution for (p0, p1) and obtain posterior simulations.
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answer We know that each group should follow a binomial distribution with p0 for the
control group and p1 for the treatment group. Furthermore, we know that the groups
are independent from each other and p0 ⊥ p1. A reasonable prior for each p is known to
be Beta(1/2, 1/2) and since they are independent, a reasonable joint prior distribution is
π(p0, p1) = Beta(p0, 1/2, 1/2) ∗ Beta(p1, 1/2, 1/2).

To get the form of the posterior, we can plug in the data we obtained.

p(p0, p1|data) ∝ p(data|p0, p1)π(p0, p1)

∝ p390 (1− p0)635−1/2p22−1/21 (1− p1)658−1/2

Which again is the form of a joint Beta distribution.
We can use R to calculate some posterior simulations. Here, let’s plot the posterior

distribution for p0 and p1.

p0 <− seq (0 , 1 , . 0 1 )
p1 <− seq (0 , 1 , . 0 1 )
p0p1 <− expand . grid ( p0 , p1 )

p o s t e r i o r <− function ( p0 , p1 ) {
return ( ( p0 ˆ ( 38 . 5 ) )∗((1−p0 ) ˆ (634 . 5 ) )∗

( p1 ˆ ( 21 . 5 ) )∗((1−p1 ) ˆ (657 . 5 ) ) )
}

post s <− vector (mode = ”numeric ” , length = nrow( p0p1 ) )
for ( i in 1 :nrow( p0p1 ) ) {

post s [ i ] <− po s t e r i o r ( p0p1 [ i , ”Var1” ] , p0p1 [ i , ”Var2” ] )
}
p0p1$pos t s <− post s

ggp lot ( p0p1 ) +
geom contour (mapping = aes (x = Var1 ,

y = Var2 ,
z = post s ) ,

b ins = 20)

The resulting plot looks like this:
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We can see that the posterior distribution is centered around p0 = .06 and p1 = .03.
This is the equivalent to the MLEs p̂0, p̂1 that we would get on the control and treatment
groups.

We could also generate some random observations from the posterior distribution
using the following code.

p0 . pos t s <− rbeta (1000 , shape = 39 .5 , shape2 = 635 .5 )
p0 . pos t s <− rbeta (1000 , shape = 22 .5 , shape2 = 658 .5 )

2.2 part b.

Summarize the posterior distribution for the odds ratio p0
1−p0) and p1

1−p1 .

answer Again, we can use R to calculate this for us. Let’s use the fact that we know
the posterior distribution for both p0 and p1 with the data observed. We can use this
to draw random observations from the posterior distribution and then calculate the odds
ratio of these simulated posterior.

po s t e r i o r p0 <− rbeta (1000 , 39 . 5 , 635 . 5 )
p o s t e r i o r p1 <− rbeta (1000 , 22 . 5 , 658 . 5 )
data . frame (

p0 = po s t e r i o r p0 ,
p1 = po s t e r i o r p1

) −> p0p1

odds r a t i o <− function ( p0 , p1 ) {
return ( ( p1/(1−p1 ) )/ ( p0/(1−p0 ) ) )

}

apply ( p0p1 , 1 , function (row) odds r a t i o (row [ 1 ] , row [ 2 ] ) ) −>
po s t e r i o r odds r a t i o s

hist ( p o s t e r i o r odds r a t i o s )
summary( p o s t e r i o r odds r a t i o s )
quantile ( p o s t e r i o r odds r a t i o s , c ( . 0 2 5 , . 9 75 ) )

We get the following histogram for the posterior odds ratio.
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A basic 5 number summary of this odds ratio is provided below.

Min Q1 Median Q3 Max
.2528 .4648 .5439 .6505 1.4044

with a mean of .5666. The 95% posterior interval is (.3222, .9057) which does not
contain 1. So we are fairly confident that the odds ratio is less than 1 and therefore the
odds of death is lower in the treatment group than the control group.

2.3 part c.

Discuss the senstitivity of your inference to your choice of noninformative prior density.

answer One way that we can go about solving this is to dry other priors and see how
much the posterior changes. Since we used Jeffrey’s prior in the parts above, let’s try
the uniform distribution which was the flat prior originally used by Laplace. The “nice
thing” about the uniform distribution in this case is that it can be parameterized as a
Beta(1, 1) distribution so we actually don’t have to change our code that much.

po s t e r i o r p0 <− rbeta (1000 , 40 , 636)
p o s t e r i o r p1 <− rbeta (1000 , 23 , 659)
data . frame (

p0 = po s t e r i o r p0 ,
p1 = po s t e r i o r p1

) −> p0p1

odds r a t i o <− function ( p0 , p1 ) {
return ( ( p1/(1−p1 ) )/ ( p0/(1−p0 ) ) )

}

apply ( p0p1 , 1 , function (row) odds r a t i o (row [ 1 ] , row [ 2 ] ) ) −>
po s t e r i o r odds r a t i o s

hist ( p o s t e r i o r odds r a t i o s ,
main = ” Pos t e r i o r d i s t r i b u t i o n o f odds r a t i o with Uniform Pr io r ” )

summary( p o s t e r i o r odds r a t i o s )
quantile ( p o s t e r i o r odds r a t i o s , c ( . 0 2 5 , . 9 75 ) )
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With a uniform prior, our histogram looks like this

and our 95% confidence interval for the posterior odds ratio is (.318, .923). While
this isn’t a huge deviation from the posterior we had with the Beta(1/2, 1/2) prior, it is
potentially meaningful.

After playing around with prior Beta distributions a bit and trying different shape
parameters, I found that changing the shape parameters by 1 does have a noticeable
impact on the posterior 95% interval and also seems to make the posterior distribution
more skewed. Since this data directly deals with people’s lives, I would say that this
posterior probability is sensitive to the choice of prior and that we should probably stick
to using a noninformative prior like Jeffrey’s.

3 Q6

Consider data Y1, . . . , Yn modeled as independent Bin(N, θ) with both N and θ unknown.
Defining a convenient family of prior distributions on (N, θ) is difficult, partly because of
the discreteness of N .

A hierarchical approach based on assigning the parameters N a poisson distribution
with unknown mean µ. To define a prior distributino on (θ,N), define λ = µθ and
specifies a priro distribution on (λ, θ). The prior distribution is specified in term of
λ rather than µ because it “seems easier to formulate prior information about λ, the
unconditional expectation of the observations, than about µ, the mean of the unobserved
quantity N”.

3.1 part a.

A suggested noninformative prior distribution is p(λ, θ) ∝ λ−1. What is the motivation for
this noninformative distribution? Is the distribution improper? Transform to determine
p(N, θ).

answer I’m not quite sure what the motivation for the prior distribution being pro-
portion to λ−1 is, but it likely has to do with some assumptions about which parameters
are uniform. For example, a reasonable assumption would be to have θ be distributed
uniformly. Having the prior distribution proportional to λ−1 probably helps with that.
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I do know that this prior distribution is improper since the integral
∫∞
0

1
λ
dλ diverges.

To get p(N, θ), we can first find the joint probability of p(N, λ, θ).

p(N, λ, θ) = p(N |λ, θ)π(λ, θ) =

(
λ
θ

)N
exp

(
−λ
θ

)
N !λ

Now integrating over λ, we get

p(N, θ) =

∫ ∞
0

(
λ
θ

)N
exp

(
−λ
θ

)
N !λ

dλ

=
1

N !θN

∫ ∞
0

λN−1exp

(
−λ
θ

)
dλ

=
Γ(N)θN

N !θN
=

1

N

3.2 part b.

The Bayesian method is illustrated on counts of waterbuck obtained by remote photog-
raphy on five separate days. The counts were 53, 57, 66, 67, 72. Perform the Bayesian
analysis on these data and display a scatterplot of posterior simulations (N, θ). What is
the posterior probability that N > 100.

answer Let’s derive the posterior distribution p(N, θ|data) first. We have five data
points, assumed to have been drawn from some unknown binomial distribution.

p(N, θ|data) = P (data|N, θ)π(N, θ) =
5∏
i=1

(
N

yi

)
θyi(1− θ)N−yi 1

N

=

(
5∏
i=1

(
N

yi

))
θ
∑
yi(1− θ)

∑
N−yi 1

N

∝ θ
∑5

i=1 yi(1− θ)5N−
∑5

i=1 yi

Therefore, the posterior distribution is Beta(
(∑5

i=1 yi
)

+ 1, (5N −
∑
yi) + 1).

We will also need to marginal posterior distribution for N .

p(N |data) =
1

N

n∏
i=1

(
N

yi

)∫ 1

0

θ
∑
yi(1− θ)Nn−

∑
yi+1

=
1

N

n∏
i=1

(
N

yi

)
Beta

(∑
yi + 1, Nn−

∑
yi + 1

)
Note that we made use of the fact that the quantity underneath the integrand was the

kernel of a Beta distribution. This posterior distribution is irregular and doesn’t seem to
fit any well known distribution.

My simulation attempt at this problem isn’t perfect, but I tried to simulate this using
the following R code.
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waterbuck data <− c (53 , 57 , 66 , 67 , 72)

p .N. data <− function (N, waterbuck data ) {
return (prod ( sapply ( waterbuck data , function ( x ) choose (N,

x ) ) )∗ (beta (sum( waterbuck data ) + 1 , 5∗N −
sum( waterbuck data ) + 1) ) )

}

N <− seq (72 , 200 , by = 1)
p o s t e r i o r .N <− sapply (N, function ( x ) p .N. data (x , waterbuck data ) )
plot (N,

p o s t e r i o r .N,
main = ”Marginal p o s t e r i o r o f N” ,
pch = 19 ,
cex = . 5 )

N[which .max( p o s t e r i o r .N) ]

The plot of the marginal posterior of N produced by this code is shown below:

The maximum value of this posterior distribution is N = 146 so I used this to create
a plot of the posterior joint distribution. Again, this posterior joint is a Beta distribution
with α =

(∑5
i=1 yi

)
+ 1 and β =

(
5N −

∑5
i=1 yi

)
+ 1. So for this problem, I chose to plot

this Beta distribution with N = 146 and different values of θ.

theta <− seq ( . 0 1 , 1 , by = .01 )
p o s t e r i o r . j o i n t <− dbeta ( theta ,

shape1 = (sum( waterbuck data ) + 1) ,
shape2 = (146∗5 − sum( waterbuck data ) + 1) )

plot ( theta ,
p o s t e r i o r . j o i n t ,
main = ” Pos t e r i o r Jo int dens i ty with N = 146 and d i f f e r e n t

the ta s ” ,
pch = 19 ,
cex = . 5 )

theta [which .max( p o s t e r i o r . j o i n t ) ]

This produces the following plot

8



which has a maximum at θ = .43.
In order to calculate the probability that N > 100, I would need a function that gave

me the normalized posterior density of N . I was unsure how to code this function in
R since I did not have an idea of what the normalizing constant would be, but if I did,
running the following line should give me the answer that I want:

sum( p o s t e r i o r .N[ (N > 100) ] )

I approximate this value to be around .933 using the following rough calculation in R
where I divide that sum by the total posterior density that I was able to calculate.

sum( p o s t e r i o r .N[ (N > 100) ] ) /sum( p o s t e r i o r .N)

3.3 part c.

Why not simply use a Poisson with fixed µ as a prior distribution for N?

answer The issue with this approach is that we would probably not know which µ to
pick beforehand, unless we had some kind of pilot study done beforehand. If we were to
pick a µ value from the data, this would be a form of data snooping and invalidate our
results.

4 Q10

For i = 1, 2, suppose that

yi1, . . . , yini
|µi, σ2

i ∼ N(µi, σ
2
i )

p(µi, σ
2
i ) ∝ σ2

i

and (µ1, σ
2
1) are independent of (µ2, σ

2
2) in the prior distribution. Show that the

posterior distribution
s21 s22
σ2
1 σ2

2
is F with (n1 − 1, n2 − 1) degrees of freedom.
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answer Let’s make use of a previous fact used in the textbook on page 65. For normal
i.i.d. random variables, we have the following posterior distribution.

p(σ2|data) ∝
(
σ2
)n−1

2
−1
exp

(
−(n− 1)s2

2σ2

)
Let’s also make use of the fact that an F random variable is formed from the ratio of

two χ2 random variables divided by their respective degrees of freedom.
Using a transformation λ = 1

σ2 , we see that

p(λ|data) ∝
(

1

λ

)−n+1
2

exp

(
−λs

2(n− 1)

2

)
| 1

λ2
|

∝
(

1

σ2

)n
2
− 3

2

exp

(
−(n− 1)s2

2σ2

)
∝
(

(n− 1)s2

σ2

)n−1
2
−1

exp

(
−(n− 1)s2

2σ2

)
This is a useful result, since the pdf for a χ2 distribution with k d.f. is f(x) ∝

x
k
2
−1exp

(
−x

2

)
. Therefore, we have the familiar identity that

(n1−1)s21
σ2
1

∼ χ2
n1−1 and

(n2−1)s22
σ2
2
∼ χ2

n2−1.

Now we can derive the final bit:

(
(n1 − 1)s21

σ2
1

/(n1 − 1)

)
/

(
(n2 − 1)s22

σ2
2

/(n2 − 1)

)
=
s21
σ2
1

/
s22
σ2
2

=
s21
s22
/
σ2
1

σ2
2

∼ Fn1−1,n2−1
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