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Abstract

Answer questions 5, 7, 17, 22 from Bayesian Data Analysis and also find Jeffrey’s
Prior for X|θ ∼ Negative Binomial random variable where θ is the probability of
success.

1 Q5

Posterior distribution is a compromise between prior information and data. Let y be the
number of heads in n spins of the coin whose probability is θ.

1.1 part a.

If your prior distribution for θ is uniform on the range [0, 1] derive your prior predictive
distribution for y for each k = 0, 1, . . . , n.

Pr(y = k) =

∫ 1

0

Pr(y = k|θ)dθ

=

∫ 1

0

(
n

k

)
θk(1− θ)n−kdθ

=

(
n

k

)∫ 1

0

θk(1− θ)n−kdθ

=
n!

(n− k)!k!

(n− k)!k!

(n+ 1)!

=
1

n+ 1

We used the fact that
∫ 1

0
θk(1 − θ)n−kdθ is the kernel of a Beta distribution with

α = k + 1 and β = n− k + 1.

1.2 part b.

Suppose you assign a Beta(α, β) prior distribution for θ and then you observe y heads
out of n spins. Show algebraically that your posterior mean of θ always lies between the
prior mean α

α+β
and the observed relative frequency of heads y

n
.
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The posterior can be calculated as(
n

y

)
θy(1− θ)n−y Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 ∝ θy+α(1− θ)n−y+β−1

This posterior is equal to Beta(y+α, n−y+β). The posterior mean for this distribution
is y+α

α+n+β
.

In order to show that y+α
α+n+β

is in between y
n

and α
α+β

, we can show that the posterior
mean is a convex combination between the prior and sample means. If we consider the
weight between the means to be γ, we can calculate:

α + y

α + β + n
= γ

(
α

α + β

)
+ (1− γ)

(y
n

)
=
y

n
+ γ

(
αn− y(α + β)

(α + β)n

)
γ =

(
(α + y)n− (α + β + n)y

(α + β + n)n

)(
(α + β)n

αn− y(α + β)

)
γ =

α + β

α + β + n

The last equality shows that γ is between [0, 1], therefore the posterior mean is in
between the sample mean and the prior mean.

1.3 part c.

Show that if the prior distribution on θ is uniform, the posterior variance of θ is always
less than the prior variance.

Let’s take the standard uniform distribution to start U(0, 1). It is known the the
variance of the standard uniform distribution is 1

12
(b−a)2, so the variance of the standard

uniform is 1
12

.
We showed in part (a) that the posterior distribution with a uniform prior will be

Beta(k + 1, n− k + 1). This gives us a posterior variance of

αβ

(α + β)2(α + β + 1)
=

(k + 1)(n− k + 1)

(n+ 2)2(n+ 3)

=
k + 1

n+ 2

n− k + 1

n+ 2

1

n+ 3

The smallest possible n we can have is n = 1. We see that the first two terms in this
quantity sum to 1, so at most, both of these values can be 1

2
and their product would be

1
4
. The last term in this quantity cannot be bigger than 1

4
since n ≥ 0. Therefore, the

posterior variance will always be less than or equal to 1
12

.

1.4 part d.

Give an example of a Beta(α, β) prior distribution and data y, n in which the posterior
variance of θ is higher than the prior variance.
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After playing around with the formula for the variance of a beta distribution in R,
the following combination of n = 2, y = 2, prior α = 1 and prior β = 10, we get the
prior variance to be ≈ .00688 (variance of a Beta(1,10) distribution) and the posterior
variance to be .0126 (variance of a Beta(3,10) distribution).

2 Q7

Let’s investigate noninformative prior densities.

2.1 part a.

For the binomial likelihood y ∼ Bin(n, θ) show that p(θ) ∝ θ−1(1 − θ)−1 is the uniform
prior distribution for the natural parameter of the exponential family.

We note here that the binomial distribution can be reparameterized in terms of the
natural parameter η:(

n

k

)
θk(1− θ)n−k =

(
n

k

)(
θ

1− θ

)k
(1− θ)n

=

(
n

k

)
exp

(
klog

θ

1− θ

)
(1− θ)n

So our natural parameter is log θ
1−θ . If we use a univariate transformation, we get the

following pdf for θ in terms of the uniform distribution of η:

p(θ) = p

(
eη

1 + eη

)
‖ d
dθ
log

(
θ

1− θ

)
‖

p(θ) = p

(
eη

1 + eη

)
‖ d
dθ
logθ − log(1− θ)‖

p(θ) ∝ θ−1(1− θ)−1

2.2 part b.

Show that if y = 0 or n, the resulting posterior distribution is improper.
If y = 0, then the posterior distribution that we obtained above will be p(θ|y) ∝

θ−1(1− θ)n−1. Notice that when θ is small, this integral will not converge since there is
an infinite integral near θ = 0.

If y = n, then the posterior distribution will be p(θ|y) ∝ θn−1(1 − θ)−1 and we run
into a similar infinite integral when θ is large, around θ = 1.

3 Q17

Unlike the central posterior interval, the highest posterior interval is not invariant to
transformation. For example, suppose that given σ2 the quantity nv/σ2 is distributed as
χ2
n and that σ has the improper noninformative prior density p(σ) ∝ σ−1, σ > 0
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3.1 part a.

Prove that the corresponding prior density for σ2 is p(σ2) ∝ σ−2

Let’s define v = σ2 and note that σ =
√
v. Now we can use a univariate transforma-

tion:

p(v) = p(
√

(v))‖ d
dv

√
v‖

∝ 1√
v

1

2
√
v

∝ 1

v
=

1

σ2

3.2 part b.

Show that the 95% highest posterior density region for σ2 is not the same as the region
obtained by squaring the endpoints of a posterior interval for σ

First we need to get the posterior for p(σ|data) and p(σ2|data). Recognizing that
nv
σ2 ‖σ2 ∼ χ2

n, we can calculate the posterior probaiblities as:

p(σ|data) ∝ (σ2)1/2−n/2exp

(
−nv
2σ2

)
and p(σ2|data) ∝ (σ2)−1−n/2exp

(
−nv
2σ2

)
Now let’s suppose that we have (a, b) is the 95% highest density interval for p(σ2|data).

If the proposition is true, then we have (
√
a,
√
b) as the 95% highest density interval for

p(σ|data) as well.
For p(σ|data), we get the following relation for the densities as a and b.

a−1/2−n/2exp

(
−nv
2a

)
= b−1/2−n/2exp

(
−nv
2b

)
or equivalently

(
−1

2
− n

2

)
log(a)− nv

2a
=

(
−1

2
− n

2

)
log(b)− nv

2b

For p(σ2|data), we get the following relation for the densities a and b.

a−1/2−n/2exp

(
−nv
2a

)
= b−1/2−n/2exp

(
−nv
2b

)
(
−1− n

2

)
log(a)− nv

2a
=
(
−1− n

2

)
log(b)− nv

2b

If we solve for a in terms of b and substitute it back in, we get a = b. This is not
possible since this interval is supposed to be the 95% highest posterior interval. Therefore,
the highest posterior density of σ2 cannot be just the square of the interval of σ.
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4 Q22

A study is performed to estimate the effect of a simple training program on free throws.
A random sample of 100 college students is recruited into the study. Each student first
shootes 100 free-throws to establish a baseline success probability. Each student then
takes 50 practice shots each day for a month. At the end of that time, he or she take 100
shots for a final measurement. Let θ be the avearge improvement in success probability.

Give three prior distributions for θ, explaining each in a sentence.

A noninformative prior It is known for the Binomial distribution parameter p that
a noninformative prior would be Jeffrey’s Prior Beta(1/2, 1/2). This distribution is es-
sentially a bell curve limited to and centered on the unit interval. We can apply similar
logic to θ where we want a bell curve limited between the beforehand success probability
π with 1− π as an upper bound since we cannot have an overall success probability that
is greater than 1. Our noninformative prior would be a Beta distribution centered at the
midpoint of π and 1− π.

A subjective prior based on your best knowledge A subjective prior might be
calculated from past knowledge about this training program, for example, that most
students on average improved 10% with a standard deviation of 2%.

A weakly informative prior A weakly informative prior could be based on our sub-
jective prior. For example, if we think that the average improvement rate that we have
seen in the past is 10% with a standard deviation of 2%, a weakly informative prior might
increase the standard deviation so that there is more uncertainty in the prior.

5 Additional Question about Negative Binomial Dis-

tribution

If X|θ ∼ Negative Binomial with parameters n, θ where θ is the probability of success,
find Jeffrey’s Prior for θ.

The first thing we need to find is the Fisher information about θ given in the data.
Parameterizing the negative binomial as follows:

p(X|n, θ) =

(
x− 1

n− 1

)
θn(1− θ)x−n for x = n, n+ 1, . . .

We get the following for I(θ):

logP (X|n, θ) = log

((
x− 1

n− 1

))
nlog(θ) + (x)log(1− θ)

∂

∂θ
logP (x|n, θ) =

n

θ
− x− n

1− θ
∂2

∂2θ
logP (x|n, θ) = − n

θ2
− x− n

(1− θ)2

I(θ) =
n

θ2(1− θ)
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Note that we made use of the fact that in this parameterization, the negative binomial
distribution has Eθ[X] = n(1−θ)

θ
.

Jeffrey’s prior will be proportional to I(θ)1/2. In that case, we have that Jeffrey’s
prior of the Negative Binomial distribution will be ∝ θ−1θ−1/2. This is similar to a beta
distribution, but since the beta requires that α, β > 0, it is not exactly a beta distribution.

We can contrast this with Jeffrey’s prior for the binomial distribution which was
∝ θ−1/2(1− θ)−1/2. This is a proper Beta(1/2, 1/2) distribution.
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