ST559 Homework 3

Nick Sun

May 4, 2020

Abstract

Answer questions 5, 7, 17, 22 from *Bayesian Data Analysis* and also find Jeffrey's Prior for $X|\theta \sim$ Negative Binomial random variable where θ is the probability of success.

1 Q5

Posterior distribution is a compromise between prior information and data. Let y be the number of heads in n spins of the coin whose probability is θ .

1.1 part a.

If your prior distribution for θ is uniform on the range [0, 1] derive your prior predictive distribution for y for each k = 0, 1, ..., n.

$$Pr(y = k) = \int_0^1 Pr(y = k|\theta)d\theta$$
$$= \int_0^1 \binom{n}{k} \theta^k (1-\theta)^{n-k} d\theta$$
$$= \binom{n}{k} \int_0^1 \theta^k (1-\theta)^{n-k} d\theta$$
$$= \frac{n!}{(n-k)!k!} \frac{(n-k)!k!}{(n+1)!}$$
$$= \frac{1}{n+1}$$

We used the fact that $\int_0^1 \theta^k (1-\theta)^{n-k} d\theta$ is the kernel of a Beta distribution with $\alpha = k+1$ and $\beta = n-k+1$.

1.2 part b.

Suppose you assign a Beta (α, β) prior distribution for θ and then you observe y heads out of n spins. Show algebraically that your posterior mean of θ always lies between the prior mean $\frac{\alpha}{\alpha+\beta}$ and the observed relative frequency of heads $\frac{y}{n}$.

The posterior can be calculated as

$$\binom{n}{y}\theta^{y}(1-\theta)^{n-y}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1} \propto \theta^{y+\alpha}(1-\theta)^{n-y+\beta-1}$$

This posterior is equal to $\text{Beta}(y+\alpha, n-y+\beta)$. The posterior mean for this distribution is $\frac{y+\alpha}{\alpha+n+\beta}$.

In order to show that $\frac{y+\alpha}{\alpha+n+\beta}$ is in between $\frac{y}{n}$ and $\frac{\alpha}{\alpha+\beta}$, we can show that the posterior mean is a convex combination between the prior and sample means. If we consider the weight between the means to be γ , we can calculate:

$$\frac{\alpha + y}{\alpha + \beta + n} = \gamma \left(\frac{\alpha}{\alpha + \beta}\right) + (1 - \gamma) \left(\frac{y}{n}\right)$$
$$= \frac{y}{n} + \gamma \left(\frac{\alpha n - y(\alpha + \beta)}{(\alpha + \beta)n}\right)$$
$$\gamma = \left(\frac{(\alpha + y)n - (\alpha + \beta + n)y}{(\alpha + \beta + n)n}\right) \left(\frac{(\alpha + \beta)n}{\alpha n - y(\alpha + \beta)}\right)$$
$$\gamma = \frac{\alpha + \beta}{\alpha + \beta + n}$$

The last equality shows that γ is between [0, 1], therefore the posterior mean is in between the sample mean and the prior mean.

1.3 part c.

Show that if the prior distribution on θ is uniform, the posterior variance of θ is always less than the prior variance.

Let's take the standard uniform distribution to start U(0,1). It is known the the variance of the standard uniform distribution is $\frac{1}{12}(b-a)^2$, so the variance of the standard uniform is $\frac{1}{12}$.

We showed in part (a) that the posterior distribution with a uniform prior will be Beta(k+1, n-k+1). This gives us a posterior variance of

$$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} = \frac{(k+1)(n-k+1)}{(n+2)^2(n+3)} = \frac{k+1}{n+2}\frac{n-k+1}{n+2}\frac{1}{n+3}$$

The smallest possible n we can have is n = 1. We see that the first two terms in this quantity sum to 1, so at most, both of these values can be $\frac{1}{2}$ and their product would be $\frac{1}{4}$. The last term in this quantity cannot be bigger than $\frac{1}{4}$ since $n \ge 0$. Therefore, the posterior variance will always be less than or equal to $\frac{1}{12}$.

1.4 part d.

Give an example of a Beta (α, β) prior distribution and data y, n in which the posterior variance of θ is higher than the prior variance.

After playing around with the formula for the variance of a beta distribution in R, the following combination of n = 2, y = 2, prior $\alpha = 1$ and prior $\beta = 10$, we get the prior variance to be $\approx .00688$ (variance of a Beta(1,10) distribution) and the posterior variance to be .0126 (variance of a Beta(3,10) distribution).

2 Q7

Let's investigate noninformative prior densities.

2.1 part a.

For the binomial likelihood $y \sim Bin(n,\theta)$ show that $p(\theta) \propto \theta^{-1}(1-\theta)^{-1}$ is the uniform prior distribution for the natural parameter of the exponential family.

We note here that the binomial distribution can be reparameterized in terms of the natural parameter η :

$$\binom{n}{k}\theta^{k}(1-\theta)^{n-k} = \binom{n}{k}\left(\frac{\theta}{1-\theta}\right)^{k}(1-\theta)^{n}$$
$$= \binom{n}{k}exp\left(k\log\frac{\theta}{1-\theta}\right)(1-\theta)^{n}$$

So our natural parameter is $log \frac{\theta}{1-\theta}$. If we use a univariate transformation, we get the following pdf for θ in terms of the uniform distribution of η :

$$\begin{split} p(\theta) &= p\left(\frac{e^{\eta}}{1+e^{\eta}}\right) \|\frac{d}{d\theta} log\left(\frac{\theta}{1-\theta}\right)\|\\ p(\theta) &= p\left(\frac{e^{\eta}}{1+e^{\eta}}\right) \|\frac{d}{d\theta} log\theta - log(1-\theta)\|\\ p(\theta) &\propto \theta^{-1}(1-\theta)^{-1} \end{split}$$

2.2 part b.

Show that if y = 0 or n, the resulting posterior distribution is improper.

If y = 0, then the posterior distribution that we obtained above will be $p(\theta|y) \propto \theta^{-1}(1-\theta)^{n-1}$. Notice that when θ is small, this integral will not converge since there is an infinite integral near $\theta = 0$.

If y = n, then the posterior distribution will be $p(\theta|y) \propto \theta^{n-1}(1-\theta)^{-1}$ and we run into a similar infinite integral when θ is large, around $\theta = 1$.

3 Q17

Unlike the central posterior interval, the highest posterior interval is not invariant to transformation. For example, suppose that given σ^2 the quantity nv/σ^2 is distributed as χ_n^2 and that σ has the improper noninformative prior density $p(\sigma) \propto \sigma^{-1}, \sigma > 0$

3.1 part a.

Prove that the corresponding prior density for σ^2 is $p(\sigma^2) \propto \sigma^{-2}$

Let's define $v = \sigma^2$ and note that $\sigma = \sqrt{v}$. Now we can use a univariate transformation:

$$p(v) = p(\sqrt{v}) \| \frac{d}{dv} \sqrt{v} \|$$
$$\propto \frac{1}{\sqrt{v}} \frac{1}{2\sqrt{v}}$$
$$\propto \frac{1}{v} = \frac{1}{\sigma^2}$$

3.2 part b.

Show that the 95% highest posterior density region for σ^2 is not the same as the region obtained by squaring the endpoints of a posterior interval for σ

First we need to get the posterior for $p(\sigma|data)$ and $p(\sigma^2|data)$. Recognizing that $\frac{nv}{\sigma^2} \| \sigma^2 \sim \chi_n^2$, we can calculate the posterior probabilities as:

$$p(\sigma|data) \propto (\sigma^2)^{1/2-n/2} exp\left(\frac{-nv}{2\sigma^2}\right)$$

and $p(\sigma^2|data) \propto (\sigma^2)^{-1-n/2} exp\left(\frac{-nv}{2\sigma^2}\right)$

Now let's suppose that we have (a, b) is the 95% highest density interval for $p(\sigma^2|data)$. If the proposition is true, then we have (\sqrt{a}, \sqrt{b}) as the 95% highest density interval for $p(\sigma|data)$ as well.

For $p(\sigma|data)$, we get the following relation for the densities as a and b.

$$a^{-1/2-n/2}exp\left(\frac{-nv}{2a}\right) = b^{-1/2-n/2}exp\left(\frac{-nv}{2b}\right)$$

or equivalently $\left(-\frac{1}{2} - \frac{n}{2}\right)log(a) - \frac{nv}{2a} = \left(-\frac{1}{2} - \frac{n}{2}\right)log(b) - \frac{nv}{2b}$

For $p(\sigma^2|data)$, we get the following relation for the densities a and b.

$$a^{-1/2-n/2}exp\left(\frac{-nv}{2a}\right) = b^{-1/2-n/2}exp\left(\frac{-nv}{2b}\right)$$
$$\left(-1-\frac{n}{2}\right)log(a) - \frac{nv}{2a} = \left(-1-\frac{n}{2}\right)log(b) - \frac{nv}{2b}$$

If we solve for a in terms of b and substitute it back in, we get a = b. This is not possible since this interval is supposed to be the 95% highest posterior interval. Therefore, the highest posterior density of σ^2 cannot be just the square of the interval of σ .

4 Q22

A study is performed to estimate the effect of a simple training program on free throws. A random sample of 100 college students is recruited into the study. Each student first shootes 100 free-throws to establish a baseline success probability. Each student then takes 50 practice shots each day for a month. At the end of that time, he or she take 100 shots for a final measurement. Let θ be the average improvement in success probability.

Give three prior distributions for θ , explaining each in a sentence.

A noninformative prior It is known for the Binomial distribution parameter p that a noninformative prior would be Jeffrey's Prior Beta(1/2, 1/2). This distribution is essentially a bell curve limited to and centered on the unit interval. We can apply similar logic to θ where we want a bell curve limited between the beforehand success probability π with $1 - \pi$ as an upper bound since we cannot have an overall success probability that is greater than 1. Our noninformative prior would be a Beta distribution centered at the midpoint of π and $1 - \pi$.

A subjective prior based on your best knowledge A subjective prior might be calculated from past knowledge about this training program, for example, that most students on average improved 10% with a standard deviation of 2%.

A weakly informative prior A weakly informative prior could be based on our subjective prior. For example, if we think that the average improvement rate that we have seen in the past is 10% with a standard deviation of 2%, a weakly informative prior might increase the standard deviation so that there is more uncertainty in the prior.

5 Additional Question about Negative Binomial Distribution

If $X|\theta \sim \text{Negative Binomial with parameters } n, \theta$ where θ is the probability of success, find Jeffrey's Prior for θ .

The first thing we need to find is the Fisher information about θ given in the data. Parameterizing the negative binomial as follows:

$$p(X|n,\theta) = \binom{x-1}{n-1} \theta^n (1-\theta)^{x-n} \text{ for } x = n, n+1, \dots$$

We get the following for $I(\theta)$:

$$\log P(X|n,\theta) = \log \left(\binom{x-1}{n-1} \right) n \log(\theta) + (x) \log(1-\theta)$$
$$\frac{\partial}{\partial \theta} \log P(x|n,\theta) = \frac{n}{\theta} - \frac{x-n}{1-\theta}$$
$$\frac{\partial^2}{\partial^2 \theta} \log P(x|n,\theta) = -\frac{n}{\theta^2} - \frac{x-n}{(1-\theta)^2}$$
$$I(\theta) = \frac{n}{\theta^2(1-\theta)}$$

Note that we made use of the fact that in this parameterization, the negative binomial distribution has $E_{\theta}[X] = \frac{n(1-\theta)}{\theta}$. Jeffrey's prior will be proportional to $I(\theta)^{1/2}$. In that case, we have that Jeffrey's

Jeffrey's prior will be proportional to $I(\theta)^{1/2}$. In that case, we have that Jeffrey's prior of the Negative Binomial distribution will be $\propto \theta^{-1} \theta^{-1/2}$. This is similar to a beta distribution, but since the beta requires that $\alpha, \beta > 0$, it is not exactly a beta distribution.

We can contrast this with Jeffrey's prior for the binomial distribution which was $\propto \theta^{-1/2}(1-\theta)^{-1/2}$. This is a proper Beta(1/2, 1/2) distribution.