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Abstract

Problems 2, 8, 10, 12, 18, 19 from Bayesian Data Analysis

1 Q2

Predictive distributions: consider two coins C1 and C2 with the following characteristics:

1. P (heads|C1) = .6

2. P (heads|C2) = .4

Choose one of the coints at random and imagine spinning it repeatedly. Given that
the first two spins from the chosen coin are tails, what is the expectation of the numer
of additional spins until a head shows up?

Answer We should answer this question by first getting the posterior probability that
we flipped C1 given two tail flips. This will also give us the posterior probability that we
flipped C2 since there are only two possible coins. Here we have to express this probability
using Bayes’ rule.

P (C1|TT ) =
P (TT |C1)P (C1)

P (TT )

=
.42 (.5)

.26
≈ .307

Note that we computed P (TT ) = .5 (.42 + .62) = .26.
Then the expected number of flips N until we get heads will just be a weighted sum

of the geometric means of the two coins:

E[N |TT ] =
1

.6
(.307) +

1

.4
(1− .307)

= 2.2441
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2 Q8

Normal distribution with unknown mean: a random sample of n students is drawn from a
normal population and their weights are measured. The average weight of the n sampled
students is ȳ = 150 pounds. Assume the weights in the population are normally dis-
tributed with unknown means θ and a known standard deviation of 20 pounds. Suppose
your prior distribution for θ is normal with mean 180 and standard deviation of 40.

2.1 part a.

Give your posterior distribution for θ

Answer I will first derive a general formula where given X̄ and a known variance for
µ and Yi, the posterior probabilty will be

f(X̄|µ)f(µ) =
1√

2πσ2
0

exp

(
−(µ− µ0)2

2σ2
0

)
1√

2π(σ2/n)
exp

(
−n(X̄ − µ)2

2σ2

)
∝ exp

(
−µ2(σ2 + nσ2

0) + 2µ(nX̄σ2
0 + µ0σ

2 + (µ2
0σ

2 − nX̄σ2
0)

2σ2σ2
0

)

∝ exp

−(µ− µ0σ2+nX̄σ2
0

σ2+nσ2
0

)2

2
σ2σ2

0

σ2+nσ2
0


Note that we had to make use of completing the square. Inputting µ0 = 180, X̄ =

150, σ2 = 202, σ2
0 = 402 to the above formula, we get the final posterior probability of

N
(

180+600n
4n+1

,
(

1
402

+ n
202

)−1
)

.

2.2 part b.

A new student is sampled at random from the same population and has a weight of ỹ
pounds. Give a posterior predictive distribution for ỹ.

The posterior predictive distribution will be centered at the same value as in part (a),
but the variance will be inflated by the variance of a single new observation 202.

Answer N
(

180+600n
4n+1

,
(

1
402

+ n
202

)−1
+ 202

)
2.3 part c.

For n = 10 give a 95% posterior interval for θ and a 95% posterior predictive interval for
ỹ.

Answer Plugging in n = 10 and using z∗ = 1.96 into our estimates for the posterior
variance, we get 150.7± 1.96 ∗ (6.25) for θ and 150.7± 1.96 ∗ (20.95) the new observation.

2.4 part d.

Do the same for n = 100.
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Answer Now plugging in n = 100, we get 150.7±1.96∗(2) for θ and 150.7±1.96∗(20.1)
for the new observation.

3 Q10

Suppose there are N cable cars in San Francisco, numbered from 1, . . . , N . You see a
cable car at random and it is numbered 203. You wish to estimate N .

3.1 part a.

Assume your prior distribution on N is geometric with mean 100. What is your posterior
distribution for N?

Answer If we assume that every cable car of the N cars in San Francisco is equally
likely to be observed, then we arrive at the following posterior:

p(N |Observe 203) =

{
1
N

(.01) (.99)N−1 for N ≥ 203

0 o.w.

3.2 part b.

What are the posterior mean and standard deviation of N? Sum the infinite series
analytically or approximate them on the computer.

Answer Here is some R code showing the answer.

fn <− function (n) {
return ( (1/n)∗ ( . 0 1 )∗ ( . 9 9 ) ˆ(n−1) )

}

c <− 1/sum( sapply ( seq (203 , 5000 , by = 1) , fn ) )

fn2 <− function (n) {
return ( ( . 0 1 ) ∗ ( . 9 9 ) ˆ(n−1) )

}

c∗sum( sapply ( seq (203 , 5000 , by = 1) , fn2 ) )

fn3 <− function (n) {
return (n∗ ( . 0 1 )∗ ( . 9 9 ) ˆ(n−1) )

}

sqrt ( ( c\∗sum( sapply ( seq (203 , 5000 , by = 1) , fn3 ) ) ) −
(c\∗ (sum( sapply ( seq (203 , 5000 , by = 1) , fn2 ) ) ) ) \ˆ2)

The first function calculates a normalizing constant c and the second function calcu-
ates the expected value of N : 279.0885. The last function calculates the second moment
of N and uses this to calculate standard deviation using the formula

√
E[N2]− E[N ]2.

This function returns 79.964 as the estimated standard deviation.
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3.3 part c.

Choose a reasonable “noninformative” prior distribution for N and give the resulting
posterior distribution, mean, and standard deviation for N .

We can suppose a noninformative prior that N is equiprobable amongst all possible
values, so π(N) = 1

N
. We can also consider that f(y|N) = 1

N
as well, since we are equally

likely to observe any of the N cable cars. This gives us the following:

π(N |y) ∝ f(y|N)π(N)

∝ 1

N2

The next step is normalizing this density c = (
∑∞

i=203
1
N2 )−1. I will use R to calculate

an approximate normalizing constant.

1/sum( sapply ( seq (203 , 5000 , by =1) , function ( x ) 1/ ( xˆ2) ) )

This code gives c ≈ 211.05. Therefore, the posterior distribution with this noninfor-
mative prior is π(N |y) = 211.05

N2 . However, the first moment of this distribution diverges
to infinity and the second moment of this distribution does not exist.

4 Q12

Suppose y|θ ∼ Poisson(θ). Find Jeffrey’s prior density for θ and then find α and β for
which the Gamma(α, β) density is a close match to Jeffrey’s density.

Answer First we need to find the Fisher information for θ. This is easy enough to do:

−E
(
∂2

∂θ
ln (p(y|θ))

)
=
E[y]

θ2
=

1

θ

So Jeffrey’s prior is
1

θ1/2

This is equivalent to a Gamma distribution of p(α = 1/2, β = 0) in the parameteri-
zation p(θ|α, β) = βα

Γ(α)
θα−1e−βθ, θ > 0.

5 Q18

Derive the gamma posterior distribution for the Poisson model parameterized in term of
rate and exposure with conjugate prior distribution.A

Answer Given that yi ∼ Poisson(xiθ) and that θ ∼ Gamma(α, β), we first have to
find p(y|θ). This is given on page 45 of the textbook. Here is the derivation:
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p (y|θ) =
n∏
i=1

(xiθ)
yiexiθ

yi!

=

∏
xyii
∏
θyi
∏
exiθ∏

yi!

∝ θ
∑
yie−θ

∑
xi

Now to calculate p(θ|y), we combine p (θ) and p(y|θ):

p(θ|y) ∝ p(y|θ)p(θ)

∝ θ
∑
yie−θ

∑
xi
βα

Γ(α)
θα−1e−βθ

∝ θα+
∑
yi−1e−θ(

∑
xi+β)

which is the Gamma distribution

(
α +

n∑
i=1

yi, β +
n∑
i=1

xi

)
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