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Abstract

Four questions in total: One question about Bayesian ANOVA, another with a Poisson-Gamma
Bayesian model, and a last question with a multinomial-dirichlet model.

1 Q1

The following data provides the % silver of Byzantine coins from four different periods of time in the
reign of King Manuel I, Comnenus. We are interested in seeing if there is a significant differneces in the
silver content of coins minted early or later in Manuel’s reign. Use Bayesian methods while specifying
your assumptions, prior distribution, the likelihood, and comparison of silver content in the coins.

Period Measurements
1 5.9,6.8,6.4,7.0,6.6,7.7,7.2,6.9,6.2
2 6.9,9.0,6.6,8.1,9.3,9.2,8.6
3 4.9,5.5,4.6,4.5
4 5.3,5.6,5.5,5.1,6.2,5.8,5.8

Assumptions We start by assuming that each of the observations in the four coin periods follows this
model:

yij ∼ N(µi, σ
2), i = 1, 2, 3, 4

and each observation within a coin period is independent from the others.

Prior A reasonable prior that we have been using for Bayesian ANOVA is

π(µ1, . . . , µ4, σ
2) ∝ 1

σ2

Likelihood The likelihood function is going to be equal to

f(data|µ1, . . . , µ4, σ
2) =

(√
2πσ

)−N
exp

− 1

2σ2

 4∑
i=1

ni∑
j=1

(yij − ȳi)2 +

4∑
i=1

ni∑
j=1

(ȳi − µi)2


where N = 27, the total number of coins, and MSW =

∑4
i=1

∑ni
j=1(yij−ȳi)2

N−4 = .4789.

Posterior Previous work has shown that the posterior µ parameters follow a multivariate t-distribution
and that the individual µ parameters marginal posterior are location-scale t-distribution.

µi ∼ ȳi +

√
MSW

ni

z

V/(N − 4)

where z ∼ N(0, 1) and V ∼ χ2
N−4.
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Conclusion With nsim = 100000, we get the following posterior distributions:

We can see that the coins in period 1 are similar to period 2 and the coins in period 3 are similar
to period 4. However, there is little overlap between the coins in periods and 1 and 2 and the coins in
periods 3 and 4. Taking a numerical summary of period 2 and period 3, we see that there is in fact no
overlap between the ranges of those location-scale t-distributions.

This gives us evidence that there is a difference in µi, i = 1, 2, 3, 4 and furthermore that the percent
silver differs in coins between the beginning and start of Manuel’s reign.

co indata <− l i s t (
s1 = c ( 5 . 9 , 6 . 8 , 6 . 4 , 7 . 0 , 6 . 6 , 7 . 7 , 7 . 2 , 6 . 9 , 6 . 2 ) ,
s2 = c ( 6 . 9 , 9 . 0 , 6 . 6 , 8 . 1 , 9 . 3 , 9 . 2 , 8 . 6 ) ,
s3 = c ( 4 . 9 , 5 . 5 , 4 . 6 , 4 . 5 ) ,
s4 = c ( 5 . 3 , 5 . 6 , 5 . 5 , 5 . 1 , 6 . 2 , 5 . 8 , 5 . 8 )

)

ybars <− unlist ( lapply ( coindata , mean) )
n i <− unlist ( lapply ( coindata , length ) )
N <− 9+7+4+7
ssw <− Reduce ( ”+” , lapply ( coindata , function ( x ) {sum( ( x − mean( x ) ) ˆ2) }) )
msw <− ssw/ (N−4)

nsim <− 100000
post . t <− data . frame ( post1 = vector (mode = ”numeric ” , length = nsim ) ,

post2 = vector (mode = ”numeric ” , length = nsim ) ,
post3 = vector (mode = ”numeric ” , length = nsim ) ,
post4 = vector (mode = ”numeric ” , length = nsim ) )

for ( i in 1 : 4 ) {
post . t [ , i ] <− ybars [ i ] + sqrt (msw/ni [ i ] ) ∗ (rnorm( nsim )/sqrt ( rchisq ( nsim ,

N−4)/ (N−4) ) )
}

boxplot ( post . t ,
main = ” Pos t e r i o r t−d i s t r i b u t i o n s f o r the 4 groups ” ,
xlab = ”Coin Samples” ,
ylab = ”% Ag” )

summary( post . t )
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2 Q2

We have data on 8 plots of 50 cabbage plants, with 4 plots randomly assigned to one of two treatments.
Each data point is the number of loopers in the plot, a kind of pest.

If we denote the first treatment data as X1, . . . , Xn and the second treatment data as Y1, . . . , Yn with
the two samples being treated as independent from each other, suppose that all samples follow a Poisson
distribution with parameters λ1 and λ2 respectively.

Treatment Loopers
1 11, 4, 4, 5
2 6, 4, 3, 6

2.1 part a.

Derive the likelihood function.

answer Since X1, . . . , Xn is independent from Y1, . . . , Yn, we have

f(data|λ1, λ2) =
1∏

xi
∏
yi
exp (−nλ1 − nλ2)λ

∑n
i=1 xi

1 λ
∑n

j=1 yj
2

2.2 part b.

Consider the following prior distribution.

π(λ1, λ2) ∝ λa−1
1 λb−1

2 exp (−cλ1 − dλ2)

a, b, c, d > 0

Find the posterior distribution. Is this a conjugate prior?

answer

f(data|λ1, λ2)π(λ1, λ2) ∝ λ
∑
xi+a−1

1 λ
∑
yj+b−1

2 exp (−λ1(n+ c)− λ2(n+ d))

This is equivalent to a bivariate Gamma distribution, so yes this is a conjugate prior.

2.3 part c.

How would you construct a noninformative prior for λ1 and λ2? Are there any values of a, b, c, d that
would correspond to a noninformative prior?

answer I would use Jeffrey’s prior to construct a noninformative prior. For a single sample with one
λ parameter, we have

lnf(data|λ) = −nλ+ ln(λ)
∑

xi − ln(
∏

xi!)

∂2

∂λ2
f(data|λ) = −

∑
xi

λ2

−E[
∂2

∂λ2
f(data|λ)] =

nλ

λ2
=
n

λ

J(λ) ∝ 1√
λ

Since the two samples are independent, we can then establish the joint Jeffrey’s prior of λ1 and λ2

as 1√
λ1

1√
λ2

. This is equivalent to a = b = .5, c = d = 0, although since c and d must be positive, we can

instead make c and d very small values.
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2.4 part d.

Take a = b = 1 and c = d = .001. Use the data given above to compute the posterior mean and variance
λ1 and λ2.

answer By generating 100000 gamma random variables for each treatment group, I get the following
histograms.

The posterior means and variances are

Treatment Mean Variance
1 6.243 1.55
2 4.998 1.245

2.5 part e.

Compute P (λ1 > λ2|data)

answer For this problem, I calculated the equivalent P (λ1 − λ2 > 0|data).
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Calculating which of these differences is greater than 0 gives .7736

2.6 part f.

Provide a 95% Bayesian interval for θ = λ1

λ2
.

answer Here is the posterior distribution:

The 2.5% and 97.5% quantiles of this posterior distribution are (.695, 2.299)
All the code used for this problem is provided below:

treatment1 <− c (11 , 4 , 4 , 5)
treatment2 <− c (6 , 4 , 3 , 6)
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post1 <− rgamma( nsim , shape = sum( treatment1 ) + 1 , scale = (4 + .001 ) ˆ(−1) )
post2 <− rgamma( nsim , shape = sum( treatment2 ) + 1 , scale = (4 + .001 ) ˆ(−1) )

mean( post1 ) ; mean( post2 )
var ( post1 ) ; var ( post2 )

par (mfrow = c (2 , 1) )
hist ( post1 , main = ” Pos t e r i o r o f treatment 1” , breaks = seq (0 , 13 . 5 , . 5 ) )
hist ( post2 , main = ” Pos t e r i o r o f treatment 2” , breaks = seq (0 , 13 . 5 , . 5 ) )
par (mfrow = c (1 , 1) )

hist ( post1 − post2 , main = expression ( lambda∗”1 − ”∗lambda∗”2” ) )
sum( post1 − post2 > 0)/nsim

hist ( post1/post2 , main = expression ( lambda∗”1/”∗lambda∗”2” ) )
quantile ( post1/post2 , c ( . 0 2 5 , . 9 75 ) )

3 Q3

Derive a noninformative prior for the ratio parameter θ.

answer I did this by reparameterizing the likelihood by θ = λ1

λ2
→ θλ2 = λ1. This gives us the following

likelihood function and the partial derivatives to put into the Fisher information matrix.

f(data|λ1, λ2) =
1∏

xi!
∏
yj !

exp (−nλ2(θ + 1)) θ
∑
xiλ

∑
xi+

∑
yj

2

∂2

∂θ2
`(θ, λ2) = −

∑
xi
θ2

∂2

∂λ2
2

`(θ, λ2) = −
∑
xi +

∑
yj

λ2
2

∂2

∂θλ2
`(θ, λ2) = −n

∂2

∂λ2
2

`(θ, λ2) = −n

I(θ, λ2) =

(
nλ2

θ n

n n(θ+1)
λ2

)

The determinant of the Fisher information matrix is then n2

θ . We then take the square root of this
value to get J(θ) ∝ n√

θ
.

If we plug in our known value of n = 4, we get J(θ) ∝ 4√
θ
. This is technically the joint noninformative

prior for θ, λ2, but this noninformative prior only depends on θ.

4 Q4

Do animals bite more during a full moon? The lunar cycle was divided into 10 periods, and the number
of bites in four periods is shown in the following tables.

Lunar Day 28,29,1 2,3,4 5,6,7 8,9,10
Bite cases 269 155 142 146

If we let n1, . . . , n4 denote the nuumber of admissions to the medical facility in the four periods with
n1 + . . .+ n4 = 712, then n1, . . . , n4 follows a multinomial distribution

p(n1, . . . , n4) =

(
712

n1, . . . , n4

)
θn1

1 . . . θn4
4
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Furthermore, suppose that the prior distribution for (θ1, . . . , θ4) is a Dirichlet distribution with density
π(θ1, . . . , θ4) ∝ θ2

1θ2θ3θ4

4.1 part a.

Find the prior mean and prior variances of θ1, . . . , θ4

answer We are given a Dirichlet distribution with α = (3, 2, 2, 2). Simulating 100000 random draws
from this distribution, we get the following means and variances:

1 2 3 4
Mean .333 .221 .223 222

Variance .022 .017 .017 .017

4.2 part b.

Find the posterior distribution

answer We know that the Dirichlet distribution is a conjugate prior with the multinomial distribution.
Therefore, the posterior distribution is also going to be Dirichlet.

P (p1, . . . , p4|data) ∝ P (data|p1, . . . , p4)π(p1, . . . , p4)

∝ px1+a1−1
1 . . . px4+a1−1

4

With our data and prior, the posterior is going to be Dirichlet(271, 156, 143, 147).

4.3 part c.

Find the posterior means and variances of θ1, . . . , θ4. What conclusions can you draw?

answer Generating 100000 random draws from our posterior, we get the following means and variances:

1 2 3 4
Mean .377 .218 .199 .205

Variance .0003 .0002 .0002 .0002

We notice that the mean of p1 posterior distribution is much larger than the other p parameters.
Additionally, the variances of these marginal posterior distributions are very small so there is almost no
overlap between the posterior of p1 and the other marginal posterior distributions. This gives us evidence
that p1 is higher from the other parameters and there are more bites on lunar days 28, 29, 1.
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4.4 part d.

Find a 95% Bayesian interval for θ1

answer Using our marginal posterior, we get (.342, .413).

4.5 part e.

Consider the quantity of interest µ = θ1 − (θ2 + θ3 + θ4)/3. Find the posterior mean and variance of µ.

answer Calculating this using the posteriors we simulated, I arrived at a mean of .170 and the variance
of .00058

4.6 part f.

Compute P (µ > 0|data)

answer I calculated a probability of 1. An accompanying histogram shows that no random samples
from the posterior was lower than .069
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All the code used for this question is provided here:

l ibrary ( g t o o l s )
b i t e s <− c (269 , 155 , 142 , 146)

p r i o r <− r d i r i c h l e t ( nsim , alpha = c (3 , 2 , 2 , 2) )
apply ( pr io r , 2 , mean)
apply ( pr io r , 2 , var )

p o s t e r i o r <− r d i r i c h l e t ( nsim , alpha = b i t e s + c (3 , 2 , 2 , 2) − rep (1 , 4) )
apply ( po s t e r i o r , 2 , mean)
apply ( po s t e r i o r , 2 , var )

par (mfrow=c ( 4 , 1 ) )
hist ( p o s t e r i o r [ , 1 ] , breaks = seq ( . 1 0 , max( p o s t e r i o r [ , 1 ] ) +.01 , . 0 1 ) )
hist ( p o s t e r i o r [ , 2 ] , breaks = seq ( . 1 0 , max( p o s t e r i o r [ , 1 ] ) +.01 , . 0 1 ) )
hist ( p o s t e r i o r [ , 3 ] , breaks = seq ( . 1 0 , max( p o s t e r i o r [ , 1 ] ) +.01 , . 0 1 ) )
hist ( p o s t e r i o r [ , 4 ] , breaks = seq ( . 1 0 , max( p o s t e r i o r [ , 1 ] ) +.01 , . 0 1 ) )
par (mfrow=c ( 1 , 1 ) )

quantile ( p o s t e r i o r [ , 1 ] , c ( . 0 2 5 , . 9 75 ) )

mu <− po s t e r i o r [ , 1 ] − apply ( p o s t e r i o r [ , c (2 , 3 , 4) ] , 1 , sum)/3
mean(mu) ; var (mu)

hist (mu, main = expression (mu) )
sum(mu > 0)/nsim
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