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Question 1

Part a.

The binomial pmf can be factored into

f(y) = exp

[
yln

(
p

1− p

)
+ nln(1− p) + ln

((
n

y

))]
This can be rewritten into:

f(y) = exp

[
yln

(
p

1− p

)
+ nln(1− p)− nln

(
1
2

)
+ ln

((
n

y

)(
1
2

)n)]
This gives us the following:

• θ = ln
(

p
1−p

)
• b(θ) = nln(1− p)− nln

( 1
2
)

• f0(y) = ln
((
n
y

) ( 1
2
)n) which is the Binomial(n, 1

2 ) pmf

Part b.

The Poisson pmf can be factored into

f(y) = exp [yln(λ)− λ− ln(y!)]

This can be rewritten into:

f(y) = exp
[
yln(λ)− (λ− 1) + ln((y!)−1e−1)

]
This gives us the following:

• θ = ln(λ)
• b(θ) = (λ− 1)
• f0(y) = e−1y−1 which is the Poisson(1) pmf

Part c.

The Exponential pdf can be factored into

f(y) = exp [−λy + ln(λ)]

This can be rewritten into:
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f(y) = exp
[
−λy + ln(λ)− ln(e−y) + ln(e−y)

]
This gives us the following:

• θ = −λ
• b(θ) = ln(λ)− ln(e−1)
• f0(y) = e−y which is the Exponential(1) pmf

Part d.

The Geometric pmf can be factored into

f(y) = exp [(y − 1)ln(1− p) + ln(p)]

This can be rewritten into:

f(y) = exp

[
(y − 1)ln(1− p) + ln(p)− ln

(
1
2

)y
+ ln

(
1
2

)y]
= exp

[
yln(1− p)− ln((1− p)p)− yln

(
1
2

)
+ ln

(
1
2

)y]
This gives us the following:

• θ = ln(1− p)
• b(θ) = ln((1− p)p)− yln

( 1
2
)

• f0(y) =
( 1

2
)y which is the geometric(1/2) pmf

Part e.

If we fit the model

yi ∼ exp [θiyi − b(θi) + ln(f0(yi))]

this allows us to specify the mean response µ = b′(θ). If we have θi = xTi β, then consider µi = b′(xTi β).
Assuming the mean function b′(θi) is an invertible function, then we have xTi β = b−1′(µ). If β increases
then the function b−1′(µ) increases. If β decreases then the function b−1′(µ) decreases. Therefore we can
interpret β as having a direct impact on the inverse of the mean function of y.

The mean function in the case of OLS is just the identity, so that allows us to interpret β as being composed
of individual coefficients βi where each βi is the change in mean response if the associated variable xi is
changed by one unit and all other variables xj , i 6= j remain the same.

Question 2

Here we assume the following model:

yij = ln(rij) = ln(wi)− ln(wj) = αi − αj + εij
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Part a.

Estimating αi and αi + c are equivalent in this model because the model definition effectively remains
unchanged:

yij = (αi + c)− (αj + c) + εij = αi − αj + εij

This however tells us that we cannot estimate αi directly since if we are able to offset the parameter estimates
by a constant and have the model unchanged, then we can have no reliable estimate for the αis themselves.

However, we should still be able to estimate the weights since the ratio of the weights is captured in this
model. Consider that

yij = ln(wi)− ln(wj) = αi − αj + εij

ln

(
wi
wj

)
= αi − αj + εij

wi = exp(αi − αj)wj

If we use the following as our parameter vector, we can estimate the weights:

β =



α1 − α8
α2 − α8
α3 − α8
α4 − α8
α5 − α8
α6 − α8
α7 − α8


This model is not overparameterized, and we can estimate all of the weights using the relationship we
illustrated above:

w1 = exp(α1−α8)w8w2 = exp(α2−α8)w8w3 = exp(α3−α8)w8w4 = exp(α4−α8)w8w5 = exp(α5−α8)w8w6 = exp(α6−α8)w8w7 = exp(α7−α8)w8

where

w8 = 1−
7∑
i=1

wi

w8 = 1− w8

7∑
i=1

(αi − α8)

w8 + w8

7∑
i=1

(αi − α8) = 1

w8 = 1
1 +

∑7
i=1(αi − α8)
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Part b.

To fit the model, we first have to define the appropriate model matrix.

observed_pairwise_log_ratios <- c(5, 3, 7, 6, 6, 1/3, 1/4,
1/3, 5, 3, 3, 1/5, 1/7,
6, 3, 4, 6, 1/5,
1/3, 1/4, 1/7, 1/8,
1/2, 1/5, 1/6,
1/5, 1/6,
1/2)

model_matrix <- rbind(
rbind(cbind(rep(1,6),-1*diag(6)),

c(1,0,0,0,0,0,0)),
rbind(cbind(rep(0,5), rep(1,5), -1*diag(5)),

c(0,1,0,0,0,0,0)),
rbind(cbind(rep(0,4), rep(0,4), rep(0,4), -1*diag(4)),

c(0,0,1,0,0,0,0)),
rbind(cbind(rep(0,3), rep(0,3), rep(0,3), rep(0,3), -1*diag(3)),

c(0,0,0,1,0,0,0)),
rbind(cbind(rep(0,2), rep(0,2), rep(0,2), rep(0,2), rep(0,2), -1*diag(2)),

c(0,0,0,0,1,0,0)),
rbind(cbind(rep(0,1), rep(0,1), rep(0,1), rep(0,1), rep(0,1), rep(0,1), -1*diag(1)),

c(0,0,0,0,0,1,0)),
c(0,0,0,0,0,0,1)

)
# model_matrix

model0 <- lm(observed_pairwise_log_ratios ~ model_matrix - 1)
summary(model0)

##
## Call:
## lm(formula = observed_pairwise_log_ratios ~ model_matrix - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0326 -0.3058 0.6867 1.5152 5.5085
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## model_matrix1 2.8744577 0.9624006 2.987 0.00703 **
## model_matrix2 0.2610649 0.9624006 0.271 0.78884
## model_matrix3 0.0007297 1.3687895 0.001 0.99958
## model_matrix4 -3.6848694 1.1631523 -3.168 0.00463 **
## model_matrix5 -1.8062288 1.0282273 -1.757 0.09355 .
## model_matrix6 -1.7413018 0.9311849 -1.870 0.07549 .
## model_matrix7 -0.4915240 0.8571465 -0.573 0.57244
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.187 on 21 degrees of freedom
## Multiple R-squared: 0.6608, Adjusted R-squared: 0.5478
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## F-statistic: 5.845 on 7 and 21 DF, p-value: 0.0007337

Part c.

Let’s plug our estimated values into the formulas we derived above!

estimates <- summary(model0)$coef[,1]
w8 <- 1/(1+sum(exp(estimates)))

weights = exp(estimates)*w8
weight_df <- data.frame(weights = c(weights, w8))
rownames(weight_df) <- (paste0("w", 1:8))
pander(weight_df,

caption = "Estimated Weights")

Table 1: Estimated Weights

weights
w1 0.8056
w2 0.05904
w3 0.04551
w4 0.001141
w5 0.00747
w6 0.007971
w7 0.02782
w8 0.04547

Part d.

In the case where all 8 criterion are equally important, then we have a scenario where each wi = 1
8 . From

here, we can assume that all of the αi will also be equal. If this is the case, then yij = αi − αj + εij = εij

In other words, we want to see if at least one of our (αi − αj) 6= 0. This can be done using the omnibus
F-statistic provided in the summary() function.

## value
## TRUE

Our F-statistic is greater than the critical F-statistic in the omnibus F-test so we have significant evidence
against the hypothesis that there are equal weights on all 8 variables.

Part e.

While the QQ plot seems to be roughly in line with what we expected, the residual plot should give us some
concern. There appears to be a distinct pattern in the residuals, indicating that our model is probably not
a great fit for the data. We might be better off using a different model, perhaps even a nonlinear model.

This is further confirmed by also looking at the studentized residuals which pinpoint 5 log(ratio) points that
have unusually high residual values.

5



−4 −2 0 2 4 6

−
2

0
2

4

Residual Plot of Pairwise Log(ratio) model

Fitted values

R
es

id
ua

ls

−2 −1 0 1 2

−
2

0
2

4

Normal Q−Q Plot

Theoretical Quantiles
S

am
pl

e 
Q

ua
nt

ile
s

Figure 1: The residuals are not great.

res.studentized= model0$resid/sqrt( 1-influence(model0)$hat)
res.studentized[res.studentized > qt(.95, 28-1)]

## 1 14 16 17 22 25 27
## 2.755817 2.733674 2.496190 5.987326 4.498641 2.235260 2.108583

Question 3

The first part of this question is inputting the dataset. We should have a data.frame that looks something
like:

toes_removed returned size captured not_captured
1 0.75 < 15 mm 3 1
2 0.6842 < 15 mm 26 12
3 0.6557 < 15 mm 80 42
4 0.6044 < 15 mm 110 72
5 0.544 < 15 mm 68 57
6 0.5263 < 15 mm 20 18

Part a.

Fitting a logistic regression to check the effect on size of the return rate is straightforward.

##
## Call:
## glm(formula = cbind(captured, not_captured) ~ as.factor(size) +
## toes_removed, family = binomial(link = "logit"), data = dtf)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.72846 -0.38050 -0.01561 0.06506 1.54708
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.37455 0.29872 4.602 4.19e-06 ***
## as.factor(size)>= 15 mm -1.28091 0.17925 -7.146 8.95e-13 ***
## toes_removed -0.23978 0.07004 -3.424 0.000618 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 84.3276 on 13 degrees of freedom
## Residual deviance: 4.3687 on 11 degrees of freedom
## AIC: 58.876
##
## Number of Fisher Scoring iterations: 3

The p-value associated with the factor variable for size is highly significant, indicating that there is an effect
of size on return rate.
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More specifically, a frog that is larger than 15mm has on average lower odds of returning than a frog that is
smaller than 15mm.

Part b.

Return rate does decrease with the number of toes removed.

We can tell this via the estimated coefficients for the toes removed variable. Notice that the estimate is
negative, so as the number of toes removed increases, the odds of returning is multiplied by a value that
is less than 1, specifically ≈ e−.24 = .7866. Therefore, the return odds decrease with the number of toes
removed.

Part c.

For this question, we want to fit a model with a constant multiplicative effect m such that for every additional
toe removed, return rate are multiplied by (1+m).

We know for a log link function, we have the following setup:

ln(y) = β0 + β1X

y = exp(β0 + β1X)

Therefore, if we increase X by 1, we have

y = exp(β0 + β1(X + 1))
y = exp(β0 + β1X)exp(β1)

If we set this multiplicative factor eβ1 = (1 +m), we get that the constant factor m = eβ1 − 1

From here, I think there are two things you could possibly do:

• Poisson regression
• Binomial regression with a log-link function

The Poisson regression model uses a log link function, so if we assume that the rate of frogs returning is
Poisson distributed, we can model this relationship. We have to make sure to use an offset however, since
the rate of frog return is influenced by how many frogs were initially released. The issue with this approach
is that in our data there were occasionally no frogs released in a toe removal category and taking the log of
0 in the offset leads to −∞.

For binomial regression with a log-link function, we only have to respecify the link function in the glm()
function.

Part d.

Here we fit the Poisson regression model.
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dtf$total <- dtf$captured + dtf$not_captured

pois_model <- glm(captured ~ toes_removed + as.factor(size) + offset(log(total)),
data = dtf[dtf$total != 0,],
family = poisson(link = "log"),
control = list(maxit = 50))

summary(pois_model)

##
## Call:
## glm(formula = captured ~ toes_removed + as.factor(size) + offset(log(total)),
## family = poisson(link = "log"), data = dtf[dtf$total != 0,
## ], control = list(maxit = 50))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.60957 -0.37876 -0.15027 0.08789 1.39276
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.08062 0.18903 -0.427 0.6697
## toes_removed -0.10903 0.04653 -2.343 0.0191 *
## as.factor(size)>= 15 mm -0.73024 0.14322 -5.099 3.42e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 45.9758 on 13 degrees of freedom
## Residual deviance: 3.5175 on 11 degrees of freedom
## AIC: 66.552
##
## Number of Fisher Scoring iterations: 4

The unfortunate part of using this method is that we have to filter our data to remove the cells where there
were no frogs released. This is not good, especially if we are interested in comparing different modelling
approaches using the same data. Still it might be interesting to see what the results are of this model.

For every toe removed, the expected multiplicative effect on the rate of return is e round(exp(summary(pois_model)$coe[2]),
4). Similar to the logistic model, we see that for every additional toe removed the average rate of return
decreases.

Now let’s fit a binomial regression modle with a log link function.

log_model <- glm(cbind(captured, not_captured) ~ as.factor(size) + toes_removed,
data = dtf,
family = binomial(link = "log"))

summary(log_model)

##
## Call:
## glm(formula = cbind(captured, not_captured) ~ as.factor(size) +
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## toes_removed, family = binomial(link = "log"), data = dtf)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.81320 -0.36622 -0.16519 0.01792 1.93735
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.13343 0.11505 -1.160 0.24615
## as.factor(size)>= 15 mm -0.72708 0.11646 -6.243 4.28e-10 ***
## toes_removed -0.09621 0.02965 -3.245 0.00117 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 84.3276 on 13 degrees of freedom
## Residual deviance: 6.0471 on 11 degrees of freedom
## AIC: 60.554
##
## Number of Fisher Scoring iterations: 5

Here we calculate that the multiplicative effect of having an addition toe removed on the return rate is
0.9083.

Part e.

To compare the models, we will be interested in comparing their relative AIC values since that is the only
metric that is available for this cross-model comparison.

Logit link Log link (binomial) Poisson
58.88 60.55 66.55

The original model with a logit link function has the lowest AIC, and by that criterion it is the “best” model.

Question 4

We are analyzing the effects of the metabolite I3C and tumors on the rainbow trout.

Part a.

Here we are going to visualize the tumor incidence rate as a function of AFB1 dosage.
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Part b.

0.0

0.2

0.4

0.6

0.8

50 100 150 200 250

Dose

R
at

e

IC3 ppm

0

250

500

750

1000

1250

Dosage of AFB1 vs Rate of Tumors

If we consider this graph, it appears that across all OTD diets, the higher the dosage of AFB1, the higher
the rate of liver tumors. The relationship within each OTD diet group appears pretty linear and the lines
do not appear to be parallel - they each have a different slope.

Part c.

First, we fit a model where there is an interaction term for each of the six IC3 dosage groups. Note that the
dosage used in the model is actually the log(dosage).

nonparallel_model <- glm(cbind(Presence, Absence) ~ log(Dose)*OTD,
data = fish,
family = binomial(link = "logit"))

pander(summary(nonparallel_model))

Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.105 0.6811 -10.43 1.775e-25
log(Dose) 1.045 0.1338 7.805 5.948e-15
OTD250 -1.097 0.9753 -1.125 0.2606
OTD500 -1.582 0.9763 -1.621 0.1051
OTD750 -0.04393 0.9139 -0.04807 0.9617

OTD1000 -1.164 0.9185 -1.268 0.2049
OTD1250 -2.311 0.8718 -2.651 0.008033
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Estimate Std. Error z value Pr(>|z|)
log(Dose):OTD250 0.2547 0.1908 1.335 0.182
log(Dose):OTD500 0.3757 0.1908 1.969 0.04895
log(Dose):OTD750 0.141 0.1802 0.7825 0.4339

log(Dose):OTD1000 0.4082 0.1814 2.251 0.0244
log(Dose):OTD1250 0.8611 0.1745 4.934 8.058e-07

(Dispersion parameter for binomial family taken to be 1 )

Null deviance: 1568.05 on 29 degrees of freedom
Residual deviance: 85.04 on 18 degrees of freedom

Then we fit a parallel lines model where there is only a single slope parameter for dosage. In the model
formula, this is just not specifying an interaction term between OTD and log(dosage).

parallel_model <- glm(cbind(Presence, Absence) ~ log(Dose)+OTD,
data = fish,
family = binomial(link = "logit"))

pander(summary(parallel_model))

Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.15 0.2795 -32.73 5.256e-235
log(Dose) 1.445 0.05194 27.82 2.674e-170
OTD250 0.2023 0.1099 1.84 0.06576
OTD500 0.3368 0.1078 3.125 0.001775
OTD750 0.6924 0.1107 6.254 4.003e-10

OTD1000 0.9196 0.1104 8.327 8.284e-17
OTD1250 1.94 0.1065 18.22 3.813e-74

(Dispersion parameter for binomial family taken to be 1 )

Null deviance: 1568.1 on 29 degrees of freedom
Residual deviance: 117.3 on 23 degrees of freedom

To asses which model is better, we can use a Chi-squared test.

Table 8: Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
23 117.3 NA NA NA
18 85.04 5 32.28 5.231e-06

Our low p-value indicates that we can reject the null hypothesis that the simpler model (aka the parallel
lines model) sufficiently describes the data. We should instead opt to use the nonparallel lines model.
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Part d.

Let’s fit the model with some alternative link functions.

The probit, complementary-loglog, and loglog link functions can be specified in the glm() function.

Table 9: AIC with different link functions

logit probit cloglog loglog
245.8 233.2 249.5 227.5

The model with the lowest AIC should be the model with the best fit. Here we observe that the log-log link
function creates the model with the best fit, so we should opt to use that model.

Part e.

Here we want to estimate the relative potencies and 95% confidence intervals for the ratio of AFB1 doses
required to get the same tumor incidence between different levels of I3C.

That means for each pair of I3C treatments i,j, we want to calculate the ratio xi

xj
of AFB1 that will ensure

that

αi + βi log(xi) = αj + βj log(xj)

We are assuming here that our model of choice has separate intercepts αi and separate slopes βi. Furthermore,
we are also assuming a logit link function.

In office hours, we discussed using something like the following formula:

αi + βi log(xi) = αj + βj log(xj)
αi + βi log(xi) = αj + βi log(xj) + (βj − βi) log(xj)

αi − αj − (βj − βi) log(xj) = βi log
(
xj
xi

)
log
(
xj
xi

)
= αi − αj − (βj − βi) log(xj)

βi

where we can eventually figure out an estimate for xj

xi
by plugging in the respective estimated values for

αi, αj , βi, βj . However, I don’t really understand this formula and it’s pretty late so I’m just going to take
this fat L, Arpita.
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