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Introduction

Coral reefs are among the most diverse ecosystems on the planet and provide substantial economic and
ecological benefits to marine coastal communities worldwide1. Tropical coral reefs provide habitat for up
to a third of all marine species, and a single coral head can harbor thousands of marine species, including
fish, invertebrates, algae, and microbes. Much of this diversity remains undocumented2, and these complex
ecosystems are under threat of disappearance due to the combined effects of overfishing, pollution, and
climate change3–6.

Every macroorganism has a unique association of microbes, also known as a microbiome. This is a complex
association in reef-building corals, and research has shown that these microbes are a functional extension of
the coral animal itself. Together these components of host, symbiotic zooxanthellae, protists, bacteria, algae,
archaea, viruses, and fungi, form what is now known as the coral holobiont7. Recent studies have shown
that the microbes found in the surface mucus layer of corals play a key role in holobiont ecology. Microbial
interactions in the coral surface mucus layer are especially important when considering the increasing preva-
lence of coral disease8–10. While increased research continues to elucidate surface mucus microbe functions,
far less is known about the microbial communities of the epibiotic invertebrates feeding on or living in close
association with these corals. It is known that microbes may be exchanged in the coral surface mucus layer,
but the extent of exchange is not well studied.

Biological Question

What effect does host coral have on microbiome similarity between snail species? Are those relationships
further explained by the feeding strategy of the snails?

Sample Preparation

Surface mucus samples were collected in Moorea, French Polynesia, from three species of coral, Porites
lobata, Porites rus, and Pocillopora damicornis, and five species of epibiotic gastropods found on these corals,
Drupella cornus, Coralliophila violacea, Coralliophila monodonta, Drupa ricinus, and Drupa grossularia, to
assess potential sharing of the microbiomes when these invertebrates live in close association with each other.
Following the protocols of the Earth Microbiome Project10, 16S rRNA amplicons were sequenced using the
Illumina MiSeq platform.

Post-sequencing, QIIME1 was used for all 16S sequence data organization, clustering, demultiplexing, and
operational taxonomic unit (OTU) picking11. OTU-picking, or clustering of sequences, was performed using
the default method presented in QIIME1, or uclust12. Reads were aligned to the GreenGenes core reference
alignment13-15, using PyNAST16. The primary method used for assigning taxonomy was the RDP Classifier
2.2 implemented from within QIIME17.
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Statistical Methods

Data tables including OTU frequency and relative abundance per sample were exported from QIIME1. For
functional groupings, OTUs were categorized based on the role each OTU may play in the coral surface
mucus layer, and were categorized as pertaining to: (a) bacteria playing a role in nutrition or nutrient
cycling of nitrogen, sulfur, dimethylsulfoniopropionate (DMSP), etc., (b) antimicrobials (e.g. presence known
to decrease potential bacterial recruitment to available space), (c) known potential coral pathogens, (d)
commensal or neutral bacteria having no impact on groups a-c, and e) unassigned bacteria with no taxonomic
information available after sequencing efforts. All functional groupings were based on previous studies, and
each OTU, whether the host was coral or snail, was assigned a group per the role it may play in mediating
holobiont health in the coral surface mucus layer.

nMDS Dimension Reduction and PERMANOVA

Permutational multivariate analysis of variance (PERMANOVA) is a multivariate, non-parametric statistical
test with the null hypothesis that the centroid and dispersion of groups is equal. PERMANOVA allows the
user to specify the distance measure and is compatible with semiparametric measures (ex Jaccard, Sorensen).
Additionally, there is no assumption of normality because the p-values are obtained using permutation
techniques.

PERMANOVA partitions multivariate variance using a direct geometric partitioning. The test statistic is a
pseudo F-stat based on the ratio of the among and within group sum-squared dissimilarities. That test stat
is then compared to a distribution of F-statistics found by permuting the data and rerunning the distance-
based analysis. P-values represent the probability that the observed F-stat would have been achieved under
the null hypothesis of no difference between means or spreads of groups. The pseudo F-stat is calculated
using the following formula:

F = SSA/SSR

(N − g)/(g − 1)

where SSA is the among-group sum-of-squares while SSR is the within-group (or residual) sum-of-squares.
N is the number of sampling units and g is the group indicator.

PERMANOVA makes no assumptions about the distribution of the original data or of the distances. It does
apply a linear model to the data and assumes exchangeability of permutable units under the null hypothesis.
This method is also very sensitive to the chosen distance measure. A large caveat when using PERMANOVA
is that it is not only testing for a difference between group centroids but also for a difference in dispersion.
If two groups have the same mean but different spreads, either owing to differences in correlation structure,
group size, or true population level difference, the p-value will be significant and the null hypothesis will
be rejected. When the experimental design is unbalanced, PERMANOVA is not robust to differences in
dispersions18.

PRIMER-E was used to pre-treat the data for analysis by square-root transform of abundances to reduce the
effect of outliers and limit the potential for the most abundant bacterial taxa to disproportionately influence
the resulting output. Bray-Curtis dissimilarity matrices were then constructed using OTU, family-level tax-
onomic, and functional relative abundances in PRIMER-E (Ransome et al. 2014). Bray-Curtis dissimilarity
values of all pairwise samples in the matrix were then used to test for differences in microbial community
composition using non-metric multidimensional scaling (nMDS), which provides a visual representation of
similarities and differences in microbial composition among samples. In addition, Permutational Multivari-
ate Analysis of Variance (PERMANOVA), using a bootstrap method of 999 permutations, was used to test
whether microbiomes differed significantly among coral hosts and their gastropod epibionts. For nMDS, the
degree of correspondence between the distances among points is measured by a stress function of the form:
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STRESS =

√√√√∑
i=1

∑
j=1

(f(ij) − d(ij))2

scale

Where dij refers to the Bray–Curtis distance between samples, f(ij) is a function of the input data, and
scale refers to a constant scaling factor used to keep stress values between 0 and 1. The smaller the stress,
the better the representation in nMDS space.

Mann-Whitney Tests with corrected p-values

The Mann-Whitney U test is a nonparametric test that compares two samples and evaluates if one sample is
stochastically greater than another. It is generally naively thought of a non-parametric version of the t-test
and is commonly used in situations where data violates normality. Since our data is based in proportions
and therefore limited to the unit interval, we utilized the Mann-Whitney U test as opposed to a standard
t-test.

We performed 1094 Mann-Whitney U tests, one for each OTU between corralivores and non-corralivores.
The Mann-Whitney test can calculate either an exact method or a normal approximation to generate p-
values. We decided to use a normal approximation since calculating exact p-values was difficult since the
large amount of 0s cause ties in our data. For each of the Mann-Whitney tests, we used an α = .05.

The Bonferroni procedure adjusts the p-values by multiplying each value by m, the number of hypothesis
tests conducted. Here, our m is 1094. These corrected p-values are then compared to our significance level.
Using the Bonferroni procedure, we reject Hi0 if Pi ≤ α

m or equivalently we can adjust all of the p-values
using:

P ∗i = min(mPi, 1)

We also used the Benjamini-Hochberg procedure which is less conservative than the Bonferroni procedure
and is designed to minimize the false discovery rate (FDR) in a multiple testing scenario. P-values are sorted
and then corrections are made sequentially using the following formula:

For the Benjamini-Hochberg procedure, we reject H(i)0 if ∃h ≥ i such that P(h) ≤ hα
m or equivalently we can

adjust all of the p-values using:

PBH(i) = minh≥i

(
min

(
mP(h)

h
, 1
))

In addition to corrected p-values, we also calculated q-values using the Bioconductor qvalue package23.
Q-values are calculated for each individual p-value and are interpreted as the predicted proportion of Type
I errors incurred if we were to judge a specific test i significant. This gives us more information in finding
an adequate balance between power and specificity. Since q-values are correcting for FDR as well, they
will be similar in distribution to the Benjamini-Hochberg corrected p-values, but will be less conservative.
Therefore, we would expect that the distribution of q-values would have a range closer to the lower end of
the unit interval.

metagenomeSeq

A comparison of statistical methods for metagenome data found that metagenomeSeq kept type I error rate
low while also keeping power high21. A significant problem in microbiome datasets is the prevalence of
zero-inflation. When a dataset contains a high proportion of zeros it can be hard to estimate whether those
zeros are due to undersampling or to a true absence of a taxon in a sample. MetagenomeSeq addresses this
persistent problem using a zero-inflated gaussian model to estimate the probability of those two explanations.
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There is a strong relationship between sequencing depth, zero-inflation, and the number of detected OTUs.
MetagenomeSeq uses an expectation-maximum algorithm to account for the effect of sequencing depth.

The metagenomeSeq model24 starts with the counts for each OTU i and sample j, cij . The total count for
each sample j is the sequencing depth, sj . In our data, the read counts had already been normalized by
dividing by the total count for each sample. We were unable to get the raw counts, so we assumed that
sj = 10000 for all samples.

MetagenomeSeq assumes that yij = log(cij) is distributed as a zero inflated Gaussian,

f(yij |πj , µi, σ2
i ) = πjI{0} + (1− πj)N(µi, σ2

i )

It assumes that the mixture parameter for each sample is a linear function of sj ,

log πj
1− πj

= β0 + β1sj

and that the mean of the normal distribution is a linear combination of a normalizing factor and the variables
of interest. For our analysis we included snail species and coral species:

µi = ηi log
(sj
N

)
+ bi1ISnail D. cornus + ...+ bi5ISnail D. grossularia + bi6ICoral P. lobata + bi7ICoral P. rus

We did not include an interaction between snail species and coral species because we did not have enough
data to estimate the interaction.

Results

Microbial community structure differed significantly between corallivorous and non-corallivorous snails (Fig-
ure 1-2; PERMANOVA, p= 0.015*) when all snail samples were combined into one analysis.

Additional PERMANOVA tests (Figure 3) indicate that differences in microbial communities between coral-
livores and non-corallivores differ among coral hosts. Corallivore and non-corallivore microbial communities
differed significantly on P. lobata (Table 3a, p = 0.02), but not on P. damicornis (Table 3b, p = 0.549).

A two-way PERMANOVA (Figure 4) comparing snail microbiomes among species based on their coral host
revealed that the snail species were significantly different in microbial community composition, regardless of
their respective coral hosts. Pairwise PERMANOVA (Figure 5) of the significant interaction term of Snail
x Host revealed that all snail microbial communities were different from other snail species if they were
found on P. lobata or P. rus, except for D. cornus and D. grossularia on P. Lobata. However, all microbial
communities of snail species found on P. damicornis were not significantly different, except for D. cornus
and C. monodonta.

For our multiple comparison Mann-Whitney tests, we had no rejections for any of the OTUs after correcting
the p-values. Figure 6 presents histograms of the uncorrected and accompanying corrected p-values and
q-values. Noticeably, the Bonferroni corrected p-values were highly conservative with the majority of the
p-values being equal to 1. We see that the Benjamini-Hochberg procedure is demonstrably less conservative
and led to a greater variation in the corrected p-values, however none of the values were below our specified
significance level. Since both procedures led to no rejections, one might surmise that the statistical power
of adjusted Mann-Whitney p-values may not be enough to detect significant changes between two samples
when the number of tests is large. In addition, since we have no rejections, our calculated q-values have no
practical interpretation.

We surmise that the issue with statistical power may not be solely with the correction procedures, but also
with using the rank-based Mann-Whitney U test with zero-enriched data. As we can see from the histogram
of uncorrected p-values, there distribution departs significantly from a Uniform(0, 1) which is what we expect
to see for a well-calibrated statistical test. In particular, there is a significant spike around the middle of
the distribution. We believe this is symptomatic of the large amount of ties in the data, due to the large
amount of zeroes. Therefore, utilization of the Mann-Whitney test here is questionable.
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Figure 1: Non-metric multidimensional scaling (nMDS) analysis depicting differences in microbial community
composition of corallivorous (blue circle) and non-corallivorous (red triangle) snail samples based on bacterial
OTUs.

Figure 2: PERMANOVA comparing differences in microbial community structure of corallivorous and non-
corallivorous snails based on individual OTUs

Figure 3: One-way PERMANOVA comparing microbial community of corallivorous and non-corallivorous
snails based on individual OTUs on a) P. lobata and b) P. damicornis.

Figure 4: Two-way PERMANOVA comparing differences of microbiomes from snails based on host coral

5



Figure 5: Post-hoc two-way PERMANOVA testing pairwise differences between microbiomes from snails
based on host coral to interpret significant interaction term from Figure 4.

Figure 6: Histograms of 1094 Mann Whitney p-values with different corrections
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Figure 7: Histogram of uncorrected and corrected p-values from metagenomeSeq.

Figure 8: Functional groups of significant OTUs compared to all OTUs observed

For metagenomeSeq, we used contrasts in each OTU to test if the mean fold change for corallivore snail
species differed from the mean fold change for non-corallivore species, after accounting for coral species. The
null hypothesis is:

H0i : bi1 + bi2 + bi3
3 − bi4 + bi5

2 = 0

The p-values for each test were adjusted using Benjamini-Hochberg. All analyses were performed using the
R package metagenomeSeq25.

Figure 7 shows the histogram of corrected and uncorrected p-values for the tests. The histogram of uncor-
rected p-values is fairly flat except for spikes near 0 and near 1. The spike at 1 may be due to the many
zeros in the data (similar to the Mann-Whitney tests) or OTUs that are highly correlated.

We found that the abundance of 71 of the 1094 OTUs differed significantly at the 5% level between corallivores
and non-corallivores, after accounting for coral species. Figure 8 shows the proportion of the significant
OTUs in each of six functional categories. Compared to all 1094 OTUs, the significant OTUs had a smaller
proportion of commensal OTUs and a larger proportion of nutrient cycling/ probiont/ pathogenic OTUs.

We should be very careful about the results because we assumed that the total counts for all samples were
equal. This assumption is not accurate. However, the analysis was still useful because we were able to set
up a pipeline for analyzing the data once we are able to get the raw counts.

Conclusions and Discussion

We used a variety of statistical methods to test for a difference in microbiomes between snails with different
diet preferences. Most of our tests, except for the most conservative multiple hypothesis testing correction
procedures, identified a significant difference between the two groups or between individual OTU abundances
between groups. An exploratory nonmetric multidimensional scaling showed that the 2 groups of snails
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occupied slightly different areas of OTU space. There was overlap between the corallivorous and non-
corallivorous groups, indicating that there is overlap in similarity of OTU abundances between the sample
units of each group. An nMDS is a useful visualization technique in this case, but the axes were not used in
subsequent analyses.

We used a PERMANOVA to test for a difference between centroids and dispersions for the corallivorous
and non-corallivorous snails. A one-way PERMANOVA indicates that there is a significant difference in
microbial community between our two groups, and to explore this significance further, we subsetted by host
coral species and found that there was a significant difference between the two snail groups on one species
of coral but not on the other. This indicates that there is a significant effect of covariates, including coral
species and potentially snail species.

PERMANOVA is an interesting exploratory test for this dataset, but it is probably not appropriate for
hypothesis testing. As discussed above, PERMANOVA is not robust to differences in dispersion between
groups, especially with unbalanced designs. This means that the significant p-values observed above could in
fact be due to differences in dispersion between the groups with no associated difference in the centroid. The
two snail groups do differ in spread, and in number of sample units, so PERMANOVA is not an appropriate
test.

To test which OTUs might be driving a difference between snail groups, we used Mann-Whitney U tests,
corrected for multiple hypothesis testing and compared those results to a metagenomeSeq analysis that
incorporated the covariate structure of the dataset. Regardless of correction procedure, the Mann-Whitney
U test did not reject the null hypothesis for any OTU. In contrast, MetagenomeSeq identified 71 OTUs
that were differentially expressed between groups. This is potentially more evidence for the importance of
covariates in structuring this dataset.

Future Analyses

Further analyses could explore the consequences of the hierarchical data structure, the effect of covariates on
our conclusions, other methods for normalizing sparse data, and techniques for grouping OTUs by functional
group. We expect that the covariates and hierarchical data structure of the snail metagenome dataset
are significantly affecting the results of our analysis. In this analysis we controlled for covariates using
metagenomeSeq but future work will explore other methods for exploring covariate structure. Analytical
comparison among means (ANCOM), has been shown to perform well with multivariate metagenome datasets
with covariates. ANCOM incorporates the compositional nature of 16S data. Compared to metagenomeSeq,
ANCOM suppresses type I error at the same rate but does not maintain high power. The hierarchical nature
of this dataset suggests that mixed effects models might be another appropriate tool for further analysis.

As with many sequencing techniques, 16S microbiome datasets are often heavily zero-enriched. Zero-inflated
datasets are challenging to analyse because they often do not follow the expected distribution and suffer from
overdispersion. Future analysis will to pursue other methods for normalizing sparse data including GMPR,
a normalization method developed specifically for microbiome data22. We will also consider lumping OTUs
into functional groups in order to increase interpretability and decrease the zero-inflation of the dataset.
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