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Introduction

Coral reefs are among the most valuable ecosystems on the planet, harboring more than a quarter of marine
biodiversity [1] and supporting coastal communities worldwide by providing both ecological and economic
benefits [2, 3]. However, the combined effects of multiple anthropogenic impacts alter the coral reef envi-
ronment and will contribute to the disappearance of these essential assets within our lifetime [4, 5]. An-
thropogenic changes in the environment, including increased temperature, pH, and pollution, disrupt coral
reefs down to the microbial scale. Thermally stressed corals may bleach by expelling their symbiotic algae,
Symbiodiniaceae, which provide essential nutrients and energy resources to the coral animal [6, 7]. While it
is possible for surviving corals to recover from bleaching with the uptake of new symbionts from the water
column, this recovery process is not well-studied. Furthermore, some species of symbionts have been shown
to be more thermotolerant than others [8].

In addition to the stress of bleaching, nutrient enrichment from natural and anthropogenic sources may play
a role in how coral reef microbial communities change in response to their environment. It has previously
been shown that nitrate (NO3

-) enrichment often impedes coral growth whereas ammonium (NH4
+) does

not [9]. Nitrate is a common nutrient from anthropogenic sources while urea from fish pee is a common
ammonium input. We were afforded the unique opportunity to study the compounding effects of multiple
stressors on bacterial and algal symbiont communities during a coral bleaching event.

To assess the interacting effects of bleaching and nutrient enrichment on the algal symbiont communities, we
sampled and monitored coral colonies in nutrient enriched plots before, during, and after the 2016 bleaching
event on the north shore of the island of Moorea, French Polynesia. This experiment provides important
insight not only into temporal shifts in phylotype species over time, but which phylotype species may be
contributing to a coral’s ability to withstand a bleaching event under increasingly hostile environmental
conditions. Additionally, we demonstrate that many different statistical tests and tools may be necessary for
the analysis of this type of multivariate dataset in order to attempt to answer multiple meaningful biological
questions. Many researchers are beginning to breed corals, purposely selecting for traits that may assist
coral survival in the face of climate change [7]; the results of this study may prove a useful tool for future
projects of this kind.

Biological Question

How does the composition of symbiotic algae, coral species, and nutrient enrichment affect coral bleaching?
Which environmental variables are contributing to bleaching?

Data Structure

The Vega-Thurber lab collected ITS2 data on 67 individual corals over five time points, January 2016, March
2016, May 2016, July 2016, and January 2017. For each coral and time point, the dataset is comprised of
the relative abundances of 76 phylotypes of symbiotic algae in the sample, the species of coral, the nutrient
enrichment plot that the coral was from (urea, nitrate, or control), and whether the coral had any bleaching
(coded as 0 or 1). Many combinations of coral and time point are missing, so in total we have data from 287
samples. Table 1 shows the number of corals that had any bleaching for each of the timepoints. Only 6.6%
of the samples were from corals that bleached and almost all of the bleached samples were from a single time
point, May 2016.
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Date Unbleached Bleached
1 January 2016 36 0
2 July 2016 68 2
3 March 2016 59 0
4 May 2016 52 17
5 January 2017 53 0

Table 1: Number of corals that were bleached at each timepoint in the study.

Sample Preparation

Coral colonies of genera Acropora, Pocillopora, and Porites, some of the most abundant and ecologically
important corals [10] in Moorea, were tagged at 10m depth in January 2016 in one site on the fore reef of the
island. After the initial sampling of 1cm coral nubbins from each tagged colony, we then established control
plots and nutrient enrichment plots using slow-release diffusers filled with nitrate-only or urea-only fertilizer
to mimic anthropogenic and natural nitrogen inputs. Diffusers were replaced as needed. 6 replicates per coral
species were sampled within each of the 27 total nutrient enrichment plots. The bleaching event was expected
to occur in the spring, and coral nubbins were again sampled in the same manner in March, May, and July of
2016, and again in January 2017. Sample sites saw the greatest proportion of bleaching in May 2016. DNA
was extracted from the nubbins using the MoBio PowerSoil kit®, and PCR was used to amplify the ITS2
rRNA gene of the algal symbionts present within each coral sample. Amplicon libraries were then sequenced
using the Illumina MiSeq platform at Oregon State University, and subsequent sequences underwent quality
control, filtering, and taxonomic Symbiodiniaceae phylotype assignment using the SymPortal platform [11].

Statistical Methods

We fit logistic regression models with the lasso penalty to determine which phylotypes, treatments, and coral
genera were predictive of bleaching. We fit two models, one with the data from all five timepoints and one
with just the data from May 2016. The model with all timepoints uses random effects to handle repeated
measures on the same coral. We chose to fit the second model on May 2016 because 17 of the 19 bleached
samples were from that timepoint and focusing on just one timepoint allowed us to fit a simpler model
without random effects. The response for both models is the binary bleaching variable and the potential
predictors are the relative abundances of the phylotypes, coral species, and treatment groups. We did not
include any interaction terms. In our analysis we ignored the fact that the nutrient enrichment treatments
were applied to plots of 18 corals rather than individual corals. Future analyses should take into account
the correlation between corals in the same plot by including a random plot effect.

Model 1: All timepoints

We followed the procedure outlined by [12] to fit a Lasso-penalized generalized linear mixed effects model
using the R package glmmLasso [13]. To account for correlation between measurements on the same coral,
we included individual coral as a random effect. In order to test the prediction capabilities of this model,
we first partitioned the data into a training set and a test set. We selected the training and test sets so that
the proportion of bleaching events was about the same in each.

To reduce the dimensionality of our dataset, we removed phylotypes that were not significantly correlated
with the response using a correlation test with Spearman’s rank based correlation statistic. We did not
adjust for multiple comparisons in our tests since we did additional variable selection later in our model. We
also dropped phylotypes that were present in less than two samples.

To choose the penalty parameter, λ, that minimized the deviance of the model, we used five-fold cross
validation on the training set. Cross-validation is a statistical technique in which the data is split into equal
folds and is trained and tested five times, using a different fold as the test set each time.

2



We fit the model on the training set using the chosen λ and then tested the model on the test set. Given
our original small data set, we did not have enough final test data to get a large confusion matrix, but we
should still be able to get some intuition for how our final model predicts new observations.

Model 2: May 2016 only

We used the R package glmnet [14] to fit a lasso-penalized logistic regression model on just the data from
May 2016. Before fitting, we removed the 24 phylotypes that were present in less than two samples, leaving
52 phylotypes.

The logistic regression model is:

yi =
{

1 coral i is bleached
0 otherwise

yi ∼ Bernoulli(pi)

log pi
1− pi

= β0 + βTxi

Lasso shrinks many of the coefficients to 0 by estimating (β0,β) that minimize the negative penalized log-
likelihood of y1, ..., yn,

−

(
1
n

n∑
i=1

yi

(
β0 + βTxi

)
− log

(
1 + eβ0+βT xi

))
+ λ‖β‖1

The R package glmnet uses cyclic coordinate descent to estimate (β0,β) for many values of λ. For a
given value of λ, the algorithm starts with initial values for the coefficients and calculates a quadratic
approximation of the negative penalized log-likelihood by taking the 2nd order Taylor expansion around the
initial values. The quadratic approximation is then minimized by minimizing for one parameter at a time
until the parameters do not change. To estimate (β0,β) for a range of values, glmnet starts with the smallest
value of λ for which all the coefficients (β0,β) are estimated to be 0. At each step, the algorithm decreases λ
and minimizes the negative penalized log-likelihood using the estimated values of (β0,β) from the previous
step as the initial values.

We used ten-fold cross validation to choose the value of λ that minimized the deviance of the model. We then
fit a regular logistic regression model in R [15] using just the explanatory variables with non-zero coefficients.

Results

Model 1: All time points

After filtering the 76 phylotypes using Spearman’s Rho correlation with our bleaching response, we were left
with 12 significant phylotypes. Through 5 fold cross validation on our training data set, we found that the
optimal penalty parameter was 1.3. We finally refit the model using our entire training set with this penalty
parameter. The estimated coefficients for the phylotypes, timepoints, and treatments are in Table 2. One
phylotype, C120b, was shrunk to zero.

The factor variable for the time point May 2016 has a positive coefficient, indicating that it increases the
probability of bleaching. In addition, both the nitrate and urea treatments have positive relationships to
bleaching. Some of the phylotypes such as C3au have large correlations with bleaching.

To check for collinearity in our model, we calculated the correlation between relative abundances of the
phylotypes in the model (Figure 1). Unsurprisingly, there are some phylotypes that are correlated such as
all of the C42 phylotypes. However, there is nothing overly concerning with this correlation matrix. Upon
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Variable Estimated Coefficient
(Intercept) -5.86

C3 -1.88
C1 -0.09
C15 -1.65

C42.2 -0.03
C120b 0.00
C15ae -8.30
C1h -100.31
C42i 46.34
C42j -2.53
C42l 41.87
C3au 1030.53
C15i -27.96

as.factor(Timepoint)16-Jul 0.85
as.factor(Timepoint)16-Mar 0.28
as.factor(Timepoint)16-May 4.19
as.factor(Timepoint)17-Jan -0.28

as.factor(Coral)poc -0.36
as.factor(Coral)por -0.64

as.factor(Treatment)N 1.06
as.factor(Treatment)U 0.78

Table 2: Estimated coefficients for the model including all time points.

closer inspection of our training data, C3au was found to be a relatively rare phylotype and only present in
5 samples, 2 of which bleached. This proportion is the probable cause of this large coefficient.

The test set we partitioned before creating our model contains 53 non-bleaching events and 3 bleaching
events. Using our final glmmLasso model, we predicted whether or not each coral in the test set bleached
using a cutoff of predicted probability greater than 0.5 (Table 3). We were able to correctly predict 2 of 3
bleaching events and 52 of 53 non-bleaching events, giving us an approximate accuracy of 96%.

Observed 0 Observed 1
Predicted 0 52 1
Predicted 1 1 2

Table 3: Confusion Matrix for our final model on withheld data

Model 2: May 2016

Table 4 shows the results of the model fit on samples from May 2016. Six phylotypes and treatment had
non-zero coefficients. We found that both urea and nitrate treatment increased the probability that a coral
bleached compared to the control. We found that increasing the relative abundance of the phylotypes C42.2,
C1d, C3f, C3bj, C42i, or C3au increased the probability that a coral bleached. One phylotype, C3au, had a
very large coefficient. C3au was in 3 bleached and 2 unbleached corals. The very large coefficient is probably
because the relative abundance of C3au was 0.001 in all five corals, so a very low relative abundance was
associated with increased probability of bleaching.

To evaluate the fit of the model, we plotted the change in deviance if each observation was removed (∆Di)
vs fitted values (Figure 2). The observations seem to fit the model well except for one coral sample with very
high ∆Di. The sample was from a bleached coral given the nitrogen treatment with relative abundances of
0 for C42.2, C1d, C3f, C3bj, C42i, and C3au.
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Figure 1: Correlation between relative abundances of phylotypes with non-zero coefficients in the model with
all time points.

Figure 2: Plot of change in deviance vs fitted probabilities for the May 2016 model.
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Variable Estimated Coefficient
1 C42.2 5.11
2 C1d 4.15
3 C3f 17.87
4 C3bj 27.52
5 C42i 153.30
6 C3au 2035.45
7 TreatmentN 2.25
8 TreatmentU 2.22

Table 4: Estimated coefficients for the May 2016 model.

Conclusions and Discussion

Both the full and May 2016 models found that nutrient enrichment will positively impact the probability of a
coral bleaching during increased temperature anomalies. Both the nitrate and the urea nutrient treatments
were found to be predictive of higher bleaching probabilities, an interesting result given that only the nitrate
treatment has been previously shown to negatively affect coral growth over time [9].

The reduced, single time-point model identified higher relative abundances of C42.2, C1d, C3f, C3bj, C42i,
and C3au phylotypes as predictive of bleaching probability. There are two possible explanations for the
association of these symbiodinia with coral bleaching. Either a) they could be indicators of a thermal stress
response in their coral host or b) they may be filling niche space previously occupied by other phylotypes
prior to bleaching. The C1 and C3 phylotypes have both previously identified as thermosensitive [16].
Additionally the C42.2 phylotype is usually present in samples with low variants of C1 and C3.

A few statistical caveats limit our interpretation of these models. It is generally difficult to test the predictive
power of logistic regression models because the model predicts probabilities but our observed data is binary
and consists only of 0s and 1s. These two metrics are not directly comparable and therefore further tests
are needed to validate logistic regression models. Coral bleaching events are relatively rare in our data set,
which additionally compounds the difficulty of getting a good estimate of prediction error. A larger dataset
with a higher proportion of bleached to unbleached corals would greatly improve the prediction power of this
model. The usual method of validating a model of this type by dividing it into test and training datasets is
not ideal in this situation because the test and training sets are not independent. Ideally, we would be able
to test the model on a completely new data set, made up of the same variables but conducted by different
researchers.

Future Analyses

A model capable of predicting which corals will bleach during a temperature anomaly would be of profound
scientific and management utility. A predictive model of that kind could be used to set management priorities,
define scientific study areas, and better prepare local communities for the effect of global climate change. To
further refine this model, we suggest using more extensive, long term ecological datasets. It would potentially
be more advantageous to build different models for each coral species. More testing and validation would be
needed to understand the prediction error rates of any model.
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