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Question 1

Here we are doing a test on a sample of 66 students where each student takes 2 reading tests before and
after a reading instruction program. Each student produces 4 scores, 2 scores for before and after the first
exam and 2 scores for before and after the second exam.

Let pq be the population mean vector for the scores before the training and let po be the population mean
vector for the scores after the training.

Part a.

A paired test is appropriate for testing Hy : 3 = ps since each experimental unit is being measured before
and after some treatment, in this case the reading instruction program.

The data can be thought of as being composed of pairs of observations where each pair is correlated somehow.

Part b.

Performing a level o = .05 test of this null hypothesis means performing a paired Hotelling’s 72 test.

The test statistic will have the form T2 = nDTZng.
n <- nrow(reading.data)

<- cbind(reading.data$PREl-reading.data$P0ST1, reading.data$PRE2-reading.data$P0ST2)
<- ncol(D)

.bar <- colMeans(D)

.sd <- cov(D)
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reading.stat <- n*t(D.bar)’*%solve(D.sd)’*/%D.bar
reading.crit <- p*(n-1)/(n-p)*qf(0.95, dfl = p, df2 = (n-p))

reading.stat > reading.crit

## [,1]
## [1,] TRUE

Our test statistic is much larger than our critical scaled F-statistic so we have evidence to say that the
reading instruction program produces a difference in the scores of the two exams.



Part c.

Performing simultaneous Bonferroni tests on the same data can be done with the t.test function or directly
using linear algebra in R.

Here we are performing 2 simultaneous tests, one for the paired scores of exam 1 and another for the paired
scores of exam 2.

Either method will produce the following:

## [1] 0.8629862 2.5612562

This is the simulatenous Bonferroni confidence interval for paired scores in the first exam.
## [1] -2.4739413 -0.7381799

This is the simulatenous Bonferroni confidence interval for paired scores in the second exam.

Part d.
Constructing a Hotelling’s T2 confidence region is fairly straightforward with the code from the supplements.

plot(D, xlab = "Test 1 differences", ylab ="Test 2 differences")

points(0, 0, pch=16, col="red")

contour (muTest.testl, muTest.test2, reading.tstats, levels = (n-1)*p/(n-p)*
qf(0.95,p,n-p), drawlabels = F, add = T)
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The red dot on the contour plot represents the point (0,0). Notice that it is outside the confidence region,
meaning that we reject Hotelling’s T2 with uo = (0,0).

Question 2

Here we are interested in monthly temperature data taken across multiple decades from 20 weather stations
positioned around Corvallis.

Part a.
Our null hypothesis is Hg : 1 = p2 = ... = ug where p; is the average temperature across all stations in
decade 1.

Our test here will be a repeated measures Hotelling’s 72. It is repeated measures since it is logical to assume
that the recordings taken at the same weather station might be related and we should capture that covariance
structure in our test.

Our test statistic will have the form 72 = nY 7S, Y.

Our contrast matrix will be:

Temp.C <- cbind(rep(1,5), diag(x = -1, nrow = 5, ncol = 5))

Temp.C

## [,11 [,21 [,3] [,4] [,5]1 [,6]
## [1,] 1 -1 0 0 0 0
# [2,] 1 0o -1 0 0 0
## [3,] 1 0 o -1 0 0
## [4,] 1 0 0 0o -1 0
## [5,] 1 0 0 0 o -1
Temp.tstat

#i [,1]

## [1,] 394.2733

Temp.crit

## [1] 18.37487

Temp.tstat > Temp.crit

## [,1]
## [1,]1 TRUE

Our T2 statistic is greater than our critcal scaled F-statistic so we have statistically significant evidence to
say that the temperature means between the different decades are not equal.



Part b.

Let’s construct some simultaneous Bonferroni confidence intervals for the differences in these ps.

We can use the t.test function to create these confidence intervals since we have a few intervals to make.

Lower Bound | Upper Bound
mu2-mul 0.0915605 0.2296395
mud-mul -0.0698622 0.1172622
mu4-mul 0.1690805 0.4350195
mub-mul 0.5837893 0.8764107
mu6-mul 0.4298272 0.7907728

One of these intervals contains 0, the difference between 19705 — ft1950s- This gives us evidence to say that
these means are not signifcantly different from each other and this matches the outcome of the hypothesis

test - most of the means between the decades are statistically different!

Question 3

For this question, we are interested in the performance of non-pitchers in the MLB during years just before

free agency.

Part a.

No, a paired structure is not needed here. The experimental units are the players, however a players cannot
be both a free agent and a non-free agent in this dataset so there is not covariance structure to capture here
betweent the free agents and non-free agents.

Part b.
BatAvg OBP Runs Hits Doubles Triples HRs
BatAvg 0.0013847 | 0.0013284 0.6062737 1.222733 0.2119166 | 0.0322690 0.0833346 0.4641
OBP 0.0013284 | 0.0019948 0.7503599 1.101477 0.1869919 | 0.0255388 0.1257932 0.502¢
Runs 0.6062737 | 0.7503599 | 755.9731231 | 1109.447368 | 205.1219280 | 30.8140501 | 183.9135338 | 601.770"
Hits 1.2227331 | 1.1014774 | 1109.4473684 | 2057.424812 | 377.8157895 | 47.7142857 | 261.8233083 | 1007.864¢
Doubles 0.2119166 | 0.1869919 | 205.1219280 | 377.815789 | 97.8272360 | 7.1415105 | 58.8984962 | 211.408
Triples 0.0322690 | 0.0255388 30.8140501 47.714286 7.1415105 | 5.9806980 1.3233083 11.671¢
HRs 0.0833346 | 0.1257932 | 183.9135338 | 261.823308 | 58.8984962 | 1.3233083 | 106.3120301 | 262.939¢
RBI 0.4641271 | 0.5029809 | 601.7707328 | 1007.864662 | 211.4084839 | 11.6719785 | 262.9398496 | 824.181!
Walks 0.2831319 | 0.7180618 | 510.8568062 | 622.917293 | 111.4513523 | 10.2764000 | 130.8646617 | 410.1511
StrikeOuts | 0.0186002 | 0.2720562 | 504.1301201 | 646.537594 | 126.0598698 | 11.3481091 | 252.3796992 | 609.286¢
SB 0.1240902 | 0.1621579 | 158.3909774 | 175.037594 | 15.3007519 | 9.7142857 | -1.0601504 6.894"
Errors 0.0450634 | 0.0287639 28.0742902 67.233083 8.3514757 | 0.8874425 6.4436090 29.282




BatAvg OBP Runs Hits Doubles Triples HRs |
BatAvg 0.0016813 | 0.0015939 0.4020978 0.871891 0.1622746 | 0.0223295 0.0648282 0.379(
OBP 0.0015939 | 0.0022721 0.5567157 0.927463 0.1762044 | 0.0207519 0.1064637 0.471¢
Runs 0.4020978 | 0.5567157 | 776.7007267 | 1361.935326 | 250.7841779 | 44.9676877 | 144.1820221 | 661.055¢
Hits 0.8718910 | 0.9274630 | 1361.9353265 | 2741.478808 | 494.2825684 | 84.2943472 | 250.0661854 | 1279.440]
Doubles 0.1622746 | 0.1762044 | 250.7841779 | 494.282568 | 108.1292982 | 13.1296396 | 52.9903673 | 249.405:
Triples 0.0223295 | 0.0207519 44.9676877 84.294347 | 13.1296396 | 6.7844706 3.3391211 31.460¢
HRs 0.0648282 | 0.1064637 | 144.1820221 | 250.066185 | 52.9903673 | 3.3391211 | 60.8097352 | 185.718!
RBI 0.3790779 | 0.4715535 | 661.0559186 | 1279.440155 | 249.4052822 | 31.4605911 | 185.7181388 | 772.876:
Walks 0.2384808 | 0.5593518 | 530.4561040 | 919.795347 | 169.0643077 | 23.4000878 | 113.5597961 | 485.832¢
StrikeOuts | 0.1290740 | 0.2703929 | 676.0398966 | 1269.080110 | 240.5384822 | 37.7119202 | 190.1970931 | 723.405¢
SB 0.0701659 | 0.0953606 | 183.0638931 | 301.258060 | 46.8771887 | 19.5448227 | 11.9329854 | 104.299(
Errors 0.0273579 | 0.0266983 80.7989806 | 170.895454 | 29.8011023 | 4.4045506 | 10.1456372 67.543(

One thing that I notice is that the covariance of the number of Errors seems much different between the
eligible and noneligible players. It appears that the noneligible players have a much higher covariance on
average in this row.

Let’s see how this affects the determinants.

det.eligible <- det(eligible.cov)

det.noneligible <- det(noneligible.cov)

det.eligible/det.noneligible

## [1] 2.303601

The determinant of the covariance matrix for eligible players is over twice as large as the determinant for
the noneligible players. I think that this is evidence to say these covariance matrices are different.

Part c.

Using the equal covariance assumption for the Hotelling’s T2 test, we get the following test statistic and
critical scaled F statistic:

Baseball.eq.tstat

#i# [,1]
## [1,] 82.92731

Baseball.eq.crit

## [1] 22.11154

Baseball.eq.tstat > Baseball.eq.crit

## [,1]
## [1,] TRUE

Our calculated Hotelling’s T2 is much larger than our critical F statistic so we have significant evidence to
say that there is a difference between the performance of eligible and non eligible MLB players.



Part d.

Let’s retry this hypothesis test except with an unequal covariance assumption and a x? critical statistic
instead of the scaled F statistic.

Notice that here instead of computing a pooled covariance estimate we simply calculate a weighted average
of the two covariance estimates.

Baseball.neq.tstat

#i# [,1]
## [1,] 85.04061

Baseball.neq.crit

## [1] 21.02607

Baseball.neq.tstat>Baseball.neq.crit

## [,1]
## [1,] TRUE

Similar with the equal covariance Hotelling’s 72, we have a calculated Hotelling statistic that is greater than
our critical statistic so we have statistically significant evidence to reject the null hypothesis. There is some
difference between the eligible and noneligible MLB players.

Part e.

No, running both tests without considering the covariance structure beforehand is not good statistical prac-
tice. We are basically increasing our probability of Type I error and also likely trying to find a significant
result where one might not exist.

This is a reprehensible statistical practice and pretty unprofessional. We should analyze the covariance
beforehand and then decide which of the two tests to do.

Part f.

Let’s take a look at the scaled F statistics vs the x2 statistics. After generating a bunch of different scaled
F-statistics for different sample sizes, we get the following minimum and maximum critical F statistics (all
with the same p, «):

v <- seq(min(eligible.n, noneligible.n), eligible.n + noneligible.n, 0.1)
crits <- rep(0, length(v))

for (i in 1:length(v)) {
crits[i] <- v[i]l*Baseball.p/(v[i]-Baseball.p+1)*qf(0.95, Baseball.p, v[i]-Baseball.p+1)
}

min(crits)

## [1] 22.1048



max (crits)

## [1] 23.94589

Compare these values with the value from the x? distribution: 21.026. So it will be slightly easier to reject
the test if we use the x? test statistic, but the difference is not especially large.

Question 4

For this question we are analyzing skull data between different periods of ancient Egyptian history. Each
skull has 4 distinct measurements taken and we are interested in seeing if the measurements change over
time.

Part a.

Let’s compare the covariance matrices between different time periods and see if they are similar. Doing this
visually between 5 covariance matrices is fairly difficult, so we will just analyze the determinants of these
matrices.

## Min. 1st Qu. Median Mean 3rd Qu. Max.
#i#t 35212 61828 T4729 91573 96431 189667

We can see that there is a surprisingly large range between the determinants. The largest determinant is
almost 6 times larger than the smallest determinant.

I would say this is evidence that the covariance matrices are not similar between these time periods.

Part b.

Here we want to perform a MANOVA test using Wilks A statistic. Following the supplemental code, we get
the following statistic and critical values:

## [1] 59.25903
## [1] 26.29623
## [1] TRUE

Here our reference distribution is the x? distribution and we see that our test statistic which comes from the

Wilks A = % is larger than our critical test statistic.

Therefore, we have statistically significant evidence to say that there is a difference in the population mean
vectors between the different time periods.



Part c.

Let’s perform a bunch of individual o* ANOVA tests.

stats | greater than_ crit
MB | 5.954613 | TRUE

BH | 2.447420 | FALSE

BL 8.305665 | TRUE

NH | 1.506997 | FALSE

In the table above, the second column indicates whether or not the individual ANOVA statistic was larger
than our critical F statistic with our adjusted a*. The statistics for MB and BL are both larger than the
critical F, indicating that on an individual variable level, the MB and BL measurements are different between
the different time periods.

Now we are curious to see if we replace our MANOVA test with these individual simulataneous ANOVA

tests where we reject the overall null hypothesis that the skull measurements are different if we reject any
of the ANOVAs.

Doing some quick algebra, we see that

P(Reject any of the ANOVAs) =1 — P(Reject none of the ANOVAS)
=1— (1 —U; P(Reject the ith ANOVA))
<1-(1-)_ P(Reject the ith ANOVA))

o
=1-(1-p—)=«
(1=p2)

Note that we had to make use of the Bonferroni inequality here. But this shows that we are at least
controlling the probability of type I error at «, although if there is any covariance between the ANOVA
tests, we will probably not have a Type I error of exactly a.

Question 5

For this last question, we are interesting in modelling a multivariate response (NOy and Oj3) air pollution
with two covariates (wind and solar radiation).

Part a.

Let’s fit a multivariate linear regression.

We'll fit a full model and a reduced model with the constraint S5 = 0 enforced and perform an ANOVA test
to see if the model’s performance suffers significantly.

mod.full <-1m(cbind(NO2, 03) ~ Wind + SolarRad, data = pollution.data)
mod_wind <- 1lm(cbind(NO2, 03) ~ Wind, data = pollution.data)
anova(mod.full, mod_wind)

## Analysis of Variance Table

#t

## Model 1: cbind(NO2, 03) ~ Wind + SolarRad
## Model 2: cbind(NO2, 03) ~ Wind



## Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
## 1 39 17.834
## 2 40 1 18.297 0.096851 2.0375 2 38 0.1444

The high p-value of .144 means that we do not have significant evidence to say that the full model, that is
B2 # 0 performs significantly better than the reduced model.

Part b.

Now we want to test whether 57 = 0, aka the only covariate is Solar radiation. We can do this using the
ANOVA test again.

mod_solar <- 1lm(cbind(NO2, 03) ~ SolarRad, data = pollution.data)
anova(mod.full, mod_solar)

## Analysis of Variance Table

##

## Model 1: cbind(NO2, 03) ~ Wind + SolarRad

## Model 2: cbind(NO2, 03) ~ SolarRad

## Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
## 1 39 17.834

## 2 40 1 17.931 0.05962  1.2046 2 38 0.311

Here we have another large p-value of .311 which tells us that the full model does not perform signficantly
better than the reduced model with only solar radiation. Interesting result, considering we also had the same
result for the wind variable.

Part c.

Now we want to test the null hypothesis that 5; = B3 = 0. This is the same thing as fitting a model with
only an intercept term.

mod_intercept <- 1m(cbind(NO2, 03) ~ 1, data = pollution.data)
anova(mod.full, mod_intercept)

## Analysis of Variance Table

##

## Model 1: cbind(NO2, 03) ~ Wind + SolarRad

## Model 2: cbind(NO2, 03) ~ 1

## Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
# 1 39 17.834

## 2 41 2 18.500 0.15921  1.6865 4 78 0.1615

Again we get a p-value that is not significant, indicating that the reduced model i.e. the intercept model
sufficiently describes the data. This is unexpected, considering the other ANOVA tests maybe suggested
that the individual covariates could describe the data adequately.

In fact, if we compare the intercept model to the models with just the individual covariates, we see that
we get high p-values yet again. Therefore, perhaps neither solar radiation nor wind are actually useful in
modelling air pollution.



The reason we got high p-values in the previous two tests may be that while neither covariate produces
a decent model individually, when we add the covariates into the same model, the result is a model that
performs even worse. This would explain the results from (a) and (b), given what we have seen from (c).

A matrix scatterplot further confirms our suspicions - there appears to be no linear relationship between
wind, solar radiation, and either of the air pollution indicators.
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anova(mod_solar, mod_intercept)

## Analysis of Variance Table

#it

## Model 1: cbind(NO2, 03) ~ SolarRad

## Model 2: cbind(NO2, 03) ~ 1

## Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
## 1 40 17.931

## 2 41 1 18.500 0.10587  2.3088 2 39 0.1128

anova(mod_wind, mod_intercept)

## Analysis of Variance Table

##

## Model 1: cbind(NO2, 03) ~ Wind

## Model 2: cbind(NO2, 03) ~ 1

##  Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
##H 1 40 18.297

## 2 41 1 18.500 0.069005  1.4453 2 39 0.248
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