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Question 1

Here we are doing a test on a sample of 66 students where each student takes 2 reading tests before and
after a reading instruction program. Each student produces 4 scores, 2 scores for before and after the first
exam and 2 scores for before and after the second exam.

Let µ1 be the population mean vector for the scores before the training and let µ2 be the population mean
vector for the scores after the training.

Part a.

A paired test is appropriate for testing H0 : µ1 = µ2 since each experimental unit is being measured before
and after some treatment, in this case the reading instruction program.

The data can be thought of as being composed of pairs of observations where each pair is correlated somehow.

Part b.

Performing a level α = .05 test of this null hypothesis means performing a paired Hotelling’s T 2 test.

The test statistic will have the form T 2 = nD̄T Σ−1
D D̄.

n <- nrow(reading.data)

D <- cbind(reading.data$PRE1-reading.data$POST1, reading.data$PRE2-reading.data$POST2)
p <- ncol(D)
D.bar <- colMeans(D)
D.sd <- cov(D)

reading.stat <- n*t(D.bar)%*%solve(D.sd)%*%D.bar
reading.crit <- p*(n-1)/(n-p)*qf(0.95, df1 = p, df2 = (n-p))

reading.stat > reading.crit

## [,1]
## [1,] TRUE

Our test statistic is much larger than our critical scaled F-statistic so we have evidence to say that the
reading instruction program produces a difference in the scores of the two exams.
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Part c.

Performing simultaneous Bonferroni tests on the same data can be done with the t.test function or directly
using linear algebra in R.

Here we are performing 2 simultaneous tests, one for the paired scores of exam 1 and another for the paired
scores of exam 2.

Either method will produce the following:

## [1] 0.8629862 2.5612562

This is the simulatenous Bonferroni confidence interval for paired scores in the first exam.

## [1] -2.4739413 -0.7381799

This is the simulatenous Bonferroni confidence interval for paired scores in the second exam.

Part d.

Constructing a Hotelling’s T 2 confidence region is fairly straightforward with the code from the supplements.

plot(D, xlab = "Test 1 differences", ylab ="Test 2 differences")
points(0, 0, pch=16, col="red")
contour(muTest.test1, muTest.test2, reading.tstats, levels = (n-1)*p/(n-p)*

qf(0.95,p,n-p), drawlabels = F, add = T)
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The red dot on the contour plot represents the point (0,0). Notice that it is outside the confidence region,
meaning that we reject Hotelling’s T 2 with µ0 = (0, 0).

Question 2

Here we are interested in monthly temperature data taken across multiple decades from 20 weather stations
positioned around Corvallis.

Part a.

Our null hypothesis is H0 : µ1 = µ2 = . . . = µ6 where µi is the average temperature across all stations in
decade i.

Our test here will be a repeated measures Hotelling’s T 2. It is repeated measures since it is logical to assume
that the recordings taken at the same weather station might be related and we should capture that covariance
structure in our test.

Our test statistic will have the form T 2 = nȲ TS−1
Y Ȳ .

Our contrast matrix will be:

Temp.C <- cbind(rep(1,5), diag(x = -1, nrow = 5, ncol = 5))
Temp.C

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 -1 0 0 0 0
## [2,] 1 0 -1 0 0 0
## [3,] 1 0 0 -1 0 0
## [4,] 1 0 0 0 -1 0
## [5,] 1 0 0 0 0 -1

Temp.tstat

## [,1]
## [1,] 394.2733

Temp.crit

## [1] 18.37487

Temp.tstat > Temp.crit

## [,1]
## [1,] TRUE

Our T 2 statistic is greater than our critcal scaled F-statistic so we have statistically significant evidence to
say that the temperature means between the different decades are not equal.
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Part b.

Let’s construct some simultaneous Bonferroni confidence intervals for the differences in these µs.

We can use the t.test function to create these confidence intervals since we have a few intervals to make.
Lower Bound Upper Bound

mu2-mu1 0.0915605 0.2296395
mu3-mu1 -0.0698622 0.1172622
mu4-mu1 0.1690805 0.4350195
mu5-mu1 0.5837893 0.8764107
mu6-mu1 0.4298272 0.7907728

One of these intervals contains 0, the difference between µ1970s − µ1950s. This gives us evidence to say that
these means are not signifcantly different from each other and this matches the outcome of the hypothesis
test - most of the means between the decades are statistically different!

Question 3

For this question, we are interested in the performance of non-pitchers in the MLB during years just before
free agency.

Part a.

No, a paired structure is not needed here. The experimental units are the players, however a players cannot
be both a free agent and a non-free agent in this dataset so there is not covariance structure to capture here
betweent the free agents and non-free agents.

Part b.

BatAvg OBP Runs Hits Doubles Triples HRs RBI Walks StrikeOuts SB Errors
BatAvg 0.0013847 0.0013284 0.6062737 1.222733 0.2119166 0.0322690 0.0833346 0.4641271 0.2831319 0.0186002 0.1240902 0.0450634
OBP 0.0013284 0.0019948 0.7503599 1.101477 0.1869919 0.0255388 0.1257932 0.5029809 0.7180618 0.2720562 0.1621579 0.0287639
Runs 0.6062737 0.7503599 755.9731231 1109.447368 205.1219280 30.8140501 183.9135338 601.7707328 510.8568062 504.1301201 158.3909774 28.0742902
Hits 1.2227331 1.1014774 1109.4473684 2057.424812 377.8157895 47.7142857 261.8233083 1007.8646617 622.9172932 646.5375940 175.0375940 67.2330827
Doubles 0.2119166 0.1869919 205.1219280 377.815789 97.8272360 7.1415105 58.8984962 211.4084839 111.4513523 126.0598698 15.3007519 8.3514757
Triples 0.0322690 0.0255388 30.8140501 47.714286 7.1415105 5.9806980 1.3233083 11.6719785 10.2764000 11.3481091 9.7142857 0.8874425
HRs 0.0833346 0.1257932 183.9135338 261.823308 58.8984962 1.3233083 106.3120301 262.9398496 130.8646617 252.3796992 -1.0601504 6.4436090
RBI 0.4641271 0.5029809 601.7707328 1007.864662 211.4084839 11.6719785 262.9398496 824.1815733 410.1511615 609.2866121 6.8947368 29.2827965
Walks 0.2831319 0.7180618 510.8568062 622.917293 111.4513523 10.2764000 130.8646617 410.1511615 585.0178431 469.0096510 84.2706767 9.9573561
StrikeOuts 0.0186002 0.2720562 504.1301201 646.537594 126.0598698 11.3481091 252.3796992 609.2866121 469.0096510 1129.4315453 47.1428571 14.5645831
SB 0.1240902 0.1621579 158.3909774 175.037594 15.3007519 9.7142857 -1.0601504 6.8947368 84.2706767 47.1428571 146.1654135 6.1503759
Errors 0.0450634 0.0287639 28.0742902 67.233083 8.3514757 0.8874425 6.4436090 29.2827965 9.9573561 14.5645831 6.1503759 30.3173606
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BatAvg OBP Runs Hits Doubles Triples HRs RBI Walks StrikeOuts SB Errors
BatAvg 0.0016813 0.0015939 0.4020978 0.871891 0.1622746 0.0223295 0.0648282 0.3790779 0.2384808 0.1290740 0.0701659 0.0273579
OBP 0.0015939 0.0022721 0.5567157 0.927463 0.1762044 0.0207519 0.1064637 0.4715535 0.5593518 0.2703929 0.0953606 0.0266983
Runs 0.4020978 0.5567157 776.7007267 1361.935326 250.7841779 44.9676877 144.1820221 661.0559186 530.4561040 676.0398966 183.0638931 80.7989806
Hits 0.8718910 0.9274630 1361.9353265 2741.478808 494.2825684 84.2943472 250.0661854 1279.4401551 919.7953470 1269.0801102 301.2580598 170.8954543
Doubles 0.1622746 0.1762044 250.7841779 494.282568 108.1292982 13.1296396 52.9903673 249.4052822 169.0643077 240.5384822 46.8771887 29.8011023
Triples 0.0223295 0.0207519 44.9676877 84.294347 13.1296396 6.7844706 3.3391211 31.4605911 23.4000878 37.7119202 19.5448227 4.4045506
HRs 0.0648282 0.1064637 144.1820221 250.066185 52.9903673 3.3391211 60.8097352 185.7181388 113.5597961 190.1970931 11.9329854 10.1456372
RBI 0.3790779 0.4715535 661.0559186 1279.440155 249.4052822 31.4605911 185.7181388 772.8763596 485.8329757 723.4059650 104.2990538 67.5430669
Walks 0.2384808 0.5593518 530.4561040 919.795347 169.0643077 23.4000878 113.5597961 485.8329757 514.6047895 512.0438229 106.6422475 54.3218553
StrikeOuts 0.1290740 0.2703929 676.0398966 1269.080110 240.5384822 37.7119202 190.1970931 723.4059650 512.0438229 1063.3990148 144.0885236 92.1848510
SB 0.0701659 0.0953606 183.0638931 301.258060 46.8771887 19.5448227 11.9329854 104.2990538 106.6422475 144.0885236 129.4662732 15.6297615
Errors 0.0273579 0.0266983 80.7989806 170.895454 29.8011023 4.4045506 10.1456372 67.5430669 54.3218553 92.1848510 15.6297615 38.4666634

One thing that I notice is that the covariance of the number of Errors seems much different between the
eligible and noneligible players. It appears that the noneligible players have a much higher covariance on
average in this row.

Let’s see how this affects the determinants.

det.eligible <- det(eligible.cov)
det.noneligible <- det(noneligible.cov)

det.eligible/det.noneligible

## [1] 2.303601

The determinant of the covariance matrix for eligible players is over twice as large as the determinant for
the noneligible players. I think that this is evidence to say these covariance matrices are different.

Part c.

Using the equal covariance assumption for the Hotelling’s T 2 test, we get the following test statistic and
critical scaled F statistic:

Baseball.eq.tstat

## [,1]
## [1,] 82.92731

Baseball.eq.crit

## [1] 22.11154

Baseball.eq.tstat > Baseball.eq.crit

## [,1]
## [1,] TRUE

Our calculated Hotelling’s T 2 is much larger than our critical F statistic so we have significant evidence to
say that there is a difference between the performance of eligible and non eligible MLB players.
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Part d.

Let’s retry this hypothesis test except with an unequal covariance assumption and a χ2 critical statistic
instead of the scaled F statistic.

Notice that here instead of computing a pooled covariance estimate we simply calculate a weighted average
of the two covariance estimates.

Baseball.neq.tstat

## [,1]
## [1,] 85.04061

Baseball.neq.crit

## [1] 21.02607

Baseball.neq.tstat>Baseball.neq.crit

## [,1]
## [1,] TRUE

Similar with the equal covariance Hotelling’s T 2, we have a calculated Hotelling statistic that is greater than
our critical statistic so we have statistically significant evidence to reject the null hypothesis. There is some
difference between the eligible and noneligible MLB players.

Part e.

No, running both tests without considering the covariance structure beforehand is not good statistical prac-
tice. We are basically increasing our probability of Type I error and also likely trying to find a significant
result where one might not exist.

This is a reprehensible statistical practice and pretty unprofessional. We should analyze the covariance
beforehand and then decide which of the two tests to do.

Part f.

Let’s take a look at the scaled F statistics vs the χ2 statistics. After generating a bunch of different scaled
F-statistics for different sample sizes, we get the following minimum and maximum critical F statistics (all
with the same p, α):

v <- seq(min(eligible.n, noneligible.n), eligible.n + noneligible.n, 0.1)
crits <- rep(0, length(v))

for (i in 1:length(v)) {
crits[i] <- v[i]*Baseball.p/(v[i]-Baseball.p+1)*qf(0.95, Baseball.p, v[i]-Baseball.p+1)

}

min(crits)

## [1] 22.1048
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max(crits)

## [1] 23.94589

Compare these values with the value from the χ2 distribution: 21.026. So it will be slightly easier to reject
the test if we use the χ2 test statistic, but the difference is not especially large.

Question 4

For this question we are analyzing skull data between different periods of ancient Egyptian history. Each
skull has 4 distinct measurements taken and we are interested in seeing if the measurements change over
time.

Part a.

Let’s compare the covariance matrices between different time periods and see if they are similar. Doing this
visually between 5 covariance matrices is fairly difficult, so we will just analyze the determinants of these
matrices.

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 35212 61828 74729 91573 96431 189667

We can see that there is a surprisingly large range between the determinants. The largest determinant is
almost 6 times larger than the smallest determinant.

I would say this is evidence that the covariance matrices are not similar between these time periods.

Part b.

Here we want to perform a MANOVA test using Wilks Λ statistic. Following the supplemental code, we get
the following statistic and critical values:

## [1] 59.25903

## [1] 26.29623

## [1] TRUE

Here our reference distribution is the χ2 distribution and we see that our test statistic which comes from the
Wilks Λ = |W |

|T | is larger than our critical test statistic.

Therefore, we have statistically significant evidence to say that there is a difference in the population mean
vectors between the different time periods.
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Part c.

Let’s perform a bunch of individual α∗ ANOVA tests.

stats greater_than_crit
MB 5.954613 TRUE
BH 2.447420 FALSE
BL 8.305665 TRUE
NH 1.506997 FALSE

In the table above, the second column indicates whether or not the individual ANOVA statistic was larger
than our critical F statistic with our adjusted α∗. The statistics for MB and BL are both larger than the
critical F, indicating that on an individual variable level, the MB and BL measurements are different between
the different time periods.

Now we are curious to see if we replace our MANOVA test with these individual simulataneous ANOVA
tests where we reject the overall null hypothesis that the skull measurements are different if we reject any
of the ANOVAs.

Doing some quick algebra, we see that

P (Reject any of the ANOVAs) = 1− P (Reject none of the ANOVAs)
= 1− (1− ∪iP (Reject the ith ANOVA))

≤ 1− (1−
∑

i

P (Reject the ith ANOVA))

= 1− (1− pα
p

) = α

Note that we had to make use of the Bonferroni inequality here. But this shows that we are at least
controlling the probability of type I error at α, although if there is any covariance between the ANOVA
tests, we will probably not have a Type I error of exactly α.

Question 5

For this last question, we are interesting in modelling a multivariate response (NO2 and O3) air pollution
with two covariates (wind and solar radiation).

Part a.

Let’s fit a multivariate linear regression.

We’ll fit a full model and a reduced model with the constraint β2 = 0 enforced and perform an ANOVA test
to see if the model’s performance suffers significantly.

mod.full <-lm(cbind(NO2, O3) ~ Wind + SolarRad, data = pollution.data)
mod_wind <- lm(cbind(NO2, O3) ~ Wind, data = pollution.data)
anova(mod.full, mod_wind)

## Analysis of Variance Table
##
## Model 1: cbind(NO2, O3) ~ Wind + SolarRad
## Model 2: cbind(NO2, O3) ~ Wind
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## Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
## 1 39 17.834
## 2 40 1 18.297 0.096851 2.0375 2 38 0.1444

The high p-value of .144 means that we do not have significant evidence to say that the full model, that is
β2 6= 0 performs significantly better than the reduced model.

Part b.

Now we want to test whether β1 = 0, aka the only covariate is Solar radiation. We can do this using the
ANOVA test again.

mod_solar <- lm(cbind(NO2, O3) ~ SolarRad, data = pollution.data)
anova(mod.full, mod_solar)

## Analysis of Variance Table
##
## Model 1: cbind(NO2, O3) ~ Wind + SolarRad
## Model 2: cbind(NO2, O3) ~ SolarRad
## Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
## 1 39 17.834
## 2 40 1 17.931 0.05962 1.2046 2 38 0.311

Here we have another large p-value of .311 which tells us that the full model does not perform signficantly
better than the reduced model with only solar radiation. Interesting result, considering we also had the same
result for the wind variable.

Part c.

Now we want to test the null hypothesis that β1 = β2 = 0. This is the same thing as fitting a model with
only an intercept term.

mod_intercept <- lm(cbind(NO2, O3) ~ 1, data = pollution.data)
anova(mod.full, mod_intercept)

## Analysis of Variance Table
##
## Model 1: cbind(NO2, O3) ~ Wind + SolarRad
## Model 2: cbind(NO2, O3) ~ 1
## Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
## 1 39 17.834
## 2 41 2 18.500 0.15921 1.6865 4 78 0.1615

Again we get a p-value that is not significant, indicating that the reduced model i.e. the intercept model
sufficiently describes the data. This is unexpected, considering the other ANOVA tests maybe suggested
that the individual covariates could describe the data adequately.

In fact, if we compare the intercept model to the models with just the individual covariates, we see that
we get high p-values yet again. Therefore, perhaps neither solar radiation nor wind are actually useful in
modelling air pollution.
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The reason we got high p-values in the previous two tests may be that while neither covariate produces
a decent model individually, when we add the covariates into the same model, the result is a model that
performs even worse. This would explain the results from (a) and (b), given what we have seen from (c).

A matrix scatterplot further confirms our suspicions - there appears to be no linear relationship between
wind, solar radiation, and either of the air pollution indicators.
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anova(mod_solar, mod_intercept)

## Analysis of Variance Table
##
## Model 1: cbind(NO2, O3) ~ SolarRad
## Model 2: cbind(NO2, O3) ~ 1
## Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
## 1 40 17.931
## 2 41 1 18.500 0.10587 2.3088 2 39 0.1128

anova(mod_wind, mod_intercept)

## Analysis of Variance Table
##
## Model 1: cbind(NO2, O3) ~ Wind
## Model 2: cbind(NO2, O3) ~ 1
## Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
## 1 40 18.297
## 2 41 1 18.500 0.069005 1.4453 2 39 0.248
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