
Homework 2
ST557

Nick Sun
October 16, 2019

Question 1

X1 and X2 are not independent since they have nonzero covariance.

X2 and X3 are independent since they have zero covariance and are multivariate normal. They are also not
functions of each other.

Y = [X1, X2] and X3 are independent since Y is a function of X1 and X2 which are both independent from
X3.

Y = X1+X2
2 and X3 are independent since Y is a function of X1 and X2 which are both independent from

X3.

X2 and Y = X2 − 5
2X1 −X3 are not independent since knowing about X2 tells us something about Y .

Question 2

The EuclideanDistance() function in R can calculate the Euclidean distance.

mu_1 <- c(0, 0 ,0)
mu_2 <- c(3, 4, -3.5)
EuclideanDistance(c(1, 2, -2), mu_1)

[1] 3

EuclideanDistance(c(1, 2, -2), mu_2)

[1] 3.201562

The mahalanobis() function computes the squared Mahalanobis distance between X and µ with covariance
matrix Σ

Sigma <- matrix(c(9.0, 8.1, -3.6, 8.1, 9.0, -4.8, -3.6, -4.8, 4.0), nrow=3, ncol=3)

sqrt(mahalanobis(c(1, 2, -2), mu_1, Sigma))

[1] 1.063808

sqrt(mahalanobis(c(1, 2, -2), mu_2, Sigma))

[1] 0.8387172

1

part c.

If X̄ is the sample of n multivariate normal random vectors, then X̄ ∼ MVN(µ, Σ
n) Then n(X̄−µ)T Σ−1(X̄−

µ) = (X̄ −µ)T
(Σ

n

)−1 (X̄ −µ) ∼ χ2
p. This quantity is also the squared Mahalanobis distance between X̄ and

µ

part d.

µ2 has a small Mahalanobis distance from X̄, so it would be more plausible of a population mean than µ2.
While µ1 has a smaller Euclidean distance, it does not factor in the covariance of the data so we should opt
to use Mahalanobis distance instead.

Question 3

Y1 = 1
5X1 + 1

5X2 + 1
5X3 + 1

5X4 + 1
5X5 is equivalent to X̄. As we discussed above, X̄ ∼ MVN(µ, Σ

n)

Y2 = X1 −X2 +X3 −X4 +X5 ∼ MVN(µ, 5Σ) since
∑n

i=1 ciXi ∼ MVN(
∑
ciµi,

(∑
c2i
)

Σ)

Question 4

The MLE for the mean vector is just the sample mean vector

(
4
6

)
mean(c(3, 4, 5, 4))

[1] 4

mean(c(6, 4, 7, 7))

[1] 6

The MLE for the covariance matrix is n−1
n S. We can calculate this in R using a few different methods, one

of which is inputting the data vectors as a list and then performing matrix multiplication and summation
over that list.

mat <- list(c(3,6),
c(4,4),
c(5,7),
c(4,7))

(1/4) * Reduce('+', lapply(mat, function(x) (x - c(4,6)) %*% t(x - c(4, 6))))

[,1] [,2]
[1,] 0.50 0.25
[2,] 0.25 1.50

Question 5

Testing performance of the correlation normality test

2

Part a.

For data drawn from a standard Uniform distribution, we get the following simulation:

corr_stat <- function(n) {

data <- runif(n)
sample_quantiles <- sort(data)
theoretical_quantiles <- qnorm(c(1:n - .5)/n)
xbar <- mean(sample_quantiles)
qbar <- mean(theoretical_quantiles)

numerator <- sum((sample_quantiles - xbar)*(theoretical_quantiles - qbar))
sample_denom <- sqrt(sum((sample_quantiles - xbar)^2))
theory_denom <- sqrt(sum((theoretical_quantiles - qbar)^2))
r_Q <- numerator/(sample_denom * theory_denom)
return(r_Q)

}

pvals <- vector(length = 10000, mode = "numeric")
start <- Sys.time()
for (i in 1:10000) {

pvals[i] <- corr_stat(10)
}
end <- Sys.time()
end - start

Time difference of 0.899482 secs

sum(pvals < .9198)/10000

[1] 0.058

This is an awful level of rejection! For this sample size, the power of the test is quite low.

Part b.

corr_stat_chisq <- function(n, df) {

data <- rchisq(n, df = df)
sample_quantiles <- sort(data)
theoretical_quantiles <- qnorm(c(1:n - .5)/n)
xbar <- mean(sample_quantiles)
qbar <- mean(theoretical_quantiles)

numerator <- sum((sample_quantiles - xbar)*(theoretical_quantiles - qbar))
sample_denom <- sqrt(sum((sample_quantiles - xbar)^2))
theory_denom <- sqrt(sum((theoretical_quantiles - qbar)^2))
r_Q <- numerator/(sample_denom * theory_denom)
return(r_Q)

3

}

pvals <- vector(length = 10000, mode = "numeric")
start <- Sys.time()
for (i in 1:10000) {

pvals[i] <- corr_stat_chisq(5, 5)
}
end <- Sys.time()

sum(pvals < .8788)/10000

[1] 0.086

This is still a pretty poor level of rejection!

Part c.

pvals <- vector(length = 10000, mode = "numeric")
start <- Sys.time()
for (i in 1:10000) {

pvals[i] <- corr_stat_chisq(20, 2)
}
end <- Sys.time()

sum(pvals < .9508)/10000

[1] 0.8008

This level of rejection is somewhat decent. I would say this test is basically powerless unless there is a decent
sample size of approximately 20 observations.

4

	Question 1
	Question 2
	Question 3
	Question 4
	Question 5

