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Question 1

data1 <- read_csv("HW1-1.csv")
sampvector <- apply(data1, 2, mean)

plot(data1$X,
data1$Y,
xlab = "X",
ylab = "Y",
main = "Scatterplot of X vs Y")

points(sampvector[1], sampvector[2], col = 2, cex = 2, pch = 19)
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## X Y
## X 10.140227 2.852078
## Y 2.852078 1.668133

eigen(cov(data1))

## eigen() decomposition
## $values
## [1] 11.0108859 0.7974741
##
## $vectors
## [,1] [,2]
## [1,] -0.9564274 0.2919702
## [2,] -0.2919702 -0.9564274

eigenvectors <- eigen(cov(data1))$vectors
samp_plus_eig <- sampvector + eigenvectors[c(1, 2)]

plot(data1$X,
data1$Y,
xlab = "X",
ylab = "Y",
main = "Scatterplot of X vs Y")

points(sampvector[1], sampvector[2], col = 2, cex = 2, pch = 19)
points(samp_plus_eig[1], samp_plus_eig[2], col = 2, cex = 2, pch = 19)
lines(rbind(sampvector,

samp_plus_eig),
col = 2)
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# lines(list(x = c(sampvector[1],
# samp_plus_eig[1]),
# y = c(sampvector[2],
# samp_plus_eig[2])),
# col = 2
# )

This eigenvector describes the axis of largest variance in our dataset. In fact, it can be shown that in principal
component analysis, the direction first principal component is the first eigenvector of the covariance matrix
which is what we have displayed here!

Question 2

data2 <- read_csv("HW1-2.csv")
sampvector <- apply(data2, 2, mean)

plot(data2$X,
data2$Y,
xlab = "X",
ylab = "Y",
main = "Scatterplot of X vs Y")

points(sampvector[1], sampvector[2], col = 2, cex = 2, pch = 19)
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## X Y
## X 10.140227 -9.983968
## Y -9.983968 10.046978

eigen(cov(data2))

## eigen() decomposition
## $values
## [1] 20.0776798 0.1095252
##
## $vectors
## [,1] [,2]
## [1,] -0.7087559 -0.7054538
## [2,] 0.7054538 -0.7087559

eigenvectors <- eigen(cov(data2))$vectors
samp_plus_eig <- sampvector + eigenvectors[c(1, 2)]

plot(data2$X,
data2$Y,
xlab = "X",
ylab = "Y",
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main = "Scatterplot of X vs Y")
points(sampvector[1], sampvector[2], col = 2, cex = 2, pch = 19)
points(samp_plus_eig[1], samp_plus_eig[2], col = 2, cex = 2, pch = 19)
lines(rbind(sampvector,

samp_plus_eig),
col = 2)
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Again, not that the eigenvector describes the “direction” of the axis with the greatest variance in the dataset!
In this problem, this relationship is even more clear than in the first problem.

Question 3

Part a.

A = cbind(
c(5.125, 3.875, 2.125, -1.125, 0),
c(3.875, 5.125, -1.125, 2.125, 0),
c(2.125, -1.125, 5.125, 3.875, 0),
c(-1.125, 2.125, 3.875, 5.125, 0),
c(0, 0, 0, 0, -3)

)

eigen(A)

## eigen() decomposition
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## $values
## [1] 10.0 8.0 4.5 -2.0 -3.0
##
## $vectors
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.5 -0.5 0.5 0.5 0
## [2,] 0.5 -0.5 -0.5 -0.5 0
## [3,] 0.5 0.5 0.5 -0.5 0
## [4,] 0.5 0.5 -0.5 0.5 0
## [5,] 0.0 0.0 0.0 0.0 1

Part b.

Not positive definite since there are negative eigenvalues.

An example of a vector that x such that xTAx < 0 is one of the eigenvectors that correspond to a negative
eigenvalue. For example, we can take the fourth eigenvector above which corresponds with an eigenvalue of
-2:

x <- eigen(A)$vectors[,4]
t(x)%*%A%*%x

## [,1]
## [1,] -2

Part c.

Let x = 4v1 + 2v5. Find Ax in terms of v1, v5, λ1, λ5.

Then

Ax = A(4v1 + 2v5)
= 4Av1 + 2Av5

= 4λ1v1 + 2λ5v5

Question 4

Part a.

Here is the sample mean vector.

iris <- read_csv("IrisData.csv")
apply(iris, 2, mean)[-5]

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.843333 3.057333 3.758000 1.199333

Part b.

Here is the sample mean vector for each individual species.
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aggregate(iris[1:4], by = list(iris$Species), mean, na.rm = TRUE)

## Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 1 5.006 3.428 1.462 0.246
## 2 2 5.936 2.770 4.260 1.326
## 3 3 6.588 2.974 5.552 2.026

Part c.

Here is the sample covariance matrix.

cor(iris[,-5])

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
## Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
## Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
## Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000

Petal length and width are highly correlated with each other . Petal length and width are also highly
correlated with sepal length.

Part d.

Here are the sample covariance matrices for the 3 species.

cor(subset(iris, Species == "1")[,-5])

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 1.0000000 0.7425467 0.2671758 0.2780984
## Sepal.Width 0.7425467 1.0000000 0.1777000 0.2327520
## Petal.Length 0.2671758 0.1777000 1.0000000 0.3316300
## Petal.Width 0.2780984 0.2327520 0.3316300 1.0000000

In species 1, sepal length is correlated with sepal width but that is about it.

cor(subset(iris, Species == "2")[,-5])

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 1.0000000 0.5259107 0.7540490 0.5464611
## Sepal.Width 0.5259107 1.0000000 0.5605221 0.6639987
## Petal.Length 0.7540490 0.5605221 1.0000000 0.7866681
## Petal.Width 0.5464611 0.6639987 0.7866681 1.0000000

In species 2, petal length is correlated with sepal length and petal length is correlated with petal width.

cor(subset(iris, Species == "3")[,-5])
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## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 1.0000000 0.4572278 0.8642247 0.2811077
## Sepal.Width 0.4572278 1.0000000 0.4010446 0.5377280
## Petal.Length 0.8642247 0.4010446 1.0000000 0.3221082
## Petal.Width 0.2811077 0.5377280 0.3221082 1.0000000

In species 3, petal length is highly corelated with sepal length but that is about it

The distinguishing characteristics: + In species 2 the petal length is highly correlated with sepal length,
which is different than in the other two species. + In species 1, sepal length and width are highly correlated
which is different than the two other species.

Part e.

pairs(iris[,1:5],
col = c("red", "green", "blue")[unclass(iris$Species)])
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# legend(x= "bottomright",
# legend = as.vector(unique(iris$Species)),
# fill=c("red", "green3", "blue"),
# title = "Flower Species",
# bty='L',
# xpd = TRUE)
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There appears to be distinct point clusters which relate to each of the three flower species. If we were given
information on petal width, we may be able to distinguish which flower the species originated from - for
example, if the petal width is very small, we would have reason to believe that the flower is from species 1.

If we were to pick two variables to receive information on in order to distinguish the flower species, I would
probably go with petal length and petal width. In the scatterplot of these two variables, there appears to
be the most clear clustering of the three species. High length and width correspond to species 3, low length
and width corresponds to species 1, and lengths and widths in the middle correspond to species 2.

Question 5

Part a.

B is a symmetric matrix since as the product ATA, for each element in B bij , it is both the product of the
ith row of AT and the jth column of A and the product of the jth column of AT and the ith row of A.

Part b.

Since B is a symmetric matrix, we can use spectral decomposition. Spectral decomposition of B gives us
B = V T ΛV where V is a matrix composed of eigenvectors and Λ is a diagonal matrix of corresponding
eigenvalues.

Since B is also the product ATA and A can be rewritten using singular value decomposition as A = UDV T ,
we get another decomposition of B where B = V D2V T where V is a matrix of eigenvectors and D is a
diagonal matrix.

Now note that B = V D2V T = V ΛV T . For this to be true, Λ = D2. Since the diagonal elements of D2 are
nonnegative, the eigenvalues of B are nonnegative. Therefore, B is semi-positive definite.

Part c.

Note that (X − X̄)T (X − X̄) is just a symmetric matrix and multiplying by the scalar 1
n−1 doesn’t change

the sign of any eigenvalues.

By our previous result then, S has no negative eigenvalues and is semi-positive definite.
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