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Chapter 3: Completely Randomized Design

An experiment has 4 main components:

• Experimental unit: smallest unit to which a treatment is applied
• Treatments
• Design (How EUs are allocated to treatments)
• Measurement on experimental units

Typical research questions involve:

• Comparing treatments
• Estimating the treatment effects

It is usually better to use balanced designs instead of unbalanced designs.

• The estimates of the treatments means in each group has the same precision
• We need to choose N large enough to get reasonable precision and power
• Given N experimental units, allocation to groups is sampling without replacement, so experimental

units aren’t quite independent

Model for the CRD looks like:
yij = µi + εij

with the assumption that εij ∼ N(0, σ2).

Inference in CRD:

Defining some notation first: we have

• A total sample size of N
• g treatment groups
• ni = sample size for treatment group i

We have a point estimate µ̂i and an estimate for the variance:

µ̂i = ȳi

σ̂2 = MSE =
∑
i

∑
j(yij − ȳi.)2

N − g

where

ȳi. ∼ N(µi,
σ2

ni
)
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so SE(ȳi.) = s√
ni

The test statistic for testing H0 : µi = µ0

ȳi − µ0

s/
√
ni
∼ tN−g if H0 true

and the (1− α)100% for µi is

ȳi. ± tα/2,N−g
s
√
ni

Fun math-stats facts from 552:

s2 = (N − g)s2

σ2 =
∑n1
j=1(yij − ȳ1.)2

σ2 + . . .+
∑ng
j=1(yij − ȳg.)2

σ2

∼ χ2
(n1−1) + . . .+ χ2

(ng−1) = χ2
N−g

The terms that constitute the χ2
N−g are independent because of our independence assumption.

Note another fun math-stats fact:

ȳi − µi
σ2 ⊥ (N − g)s2

σ2

which gives us the beautiful and ugly pivotal quantity

ȳi.−µi
σ/
√
ni√

s2(N−g)
σ2 /(N − g)

∼ tN−g

Parameterizing the CRD model

Recall the matrix formulation of the linear model:

Y = Xβ + ε

and the least squares estimate of β is β̂ = (X ′X)−1X ′Y

The cell means parameterization with g = 3, ni = 2:


y11
y12
y21
y22
y31
y32

 =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


µ1
µ2
µ3

+


ε11
ε12
ε21
ε22
ε31
ε32


The regression parameterization yij = β0 + β1X1,ij + β2X2,ij + εij
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
y11
y12
y21
y22
y31
y32

 =


1 1 0
1 1 0
1 0 1
1 0 1
1 0 0
1 0 0


β1
β2
β3

+


ε11
ε12
ε21
ε22
ε31
ε32


where group 3 is the reference group.
The factor effects parameterization is most useful with multiple factors:

yij = µ+ αi + εij

where µi = µ+ αi


y11
y12
y21
y22
y31
y32

 =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1



µ
α1
α2
α3

+


ε11
ε12
ε21
ε22
ε31
ε32


However there is a problem here. The columns of X are not linearly independent so (X ′X)−1 doesn’t
exist, therefore we can’t estimate the parameters uniquely. This model is overparameterized.
αis are deviations from µ, so

∑g
i=1 αi = 0, so αg = −α1 − . . .− αg−1


y11
y12
y21
y22
y31
y32

 =


1 1 0
1 1 0
1 0 1
1 0 1
1 −1 −1
1 −1 −1


 µ
α1
α2

+


ε11
ε12
ε21
ε22
ε31
ε32


So to recap the three parameterizations of the same model are:

• Cell means yij = µi + εij
• Regression yij = β0 + β1X1,ij + β2X2,ij + εij
• Factor effects yij = µ+ αi + εij ,

∑
i αi = 0
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F-test as a General Linear test

F statistic = (SSEreduced − SSEfull)/(dfreduced − dffull)
SSEfull/dffull

The numerator is the reduction in unexplained variance due to going to the more complicated model. The
statistc itself measure improvement in model fit per unit of model complexity.

We can use the F-test to test for differences among the population means. The cell means parameterization
is the most useful for one-factor CRD.

Some general facts:

• The SSEmodel =
∑n
i=1(yi − ŷi)2

• degrees of freedom = sample size - number of mean parameters

– df(full) = N - g
– df(reduced) = N - 1

The error row refers to the full model yij = µi + εij , total row refers to the reduced model yij = µ+ εij , and
the treatments row refers to the difference between the total and error rows.

Cochran’s Theorem: Suppose Z1, . . . , Zη ∼ N(0, 1) and
∑η
i=1 Z

2
i = Q1 + . . . + Qs where each Qi is

a sum of squares with ηi degrees of freedom. Then Q1, . . . , Qs are independent χ2 random variables iff
η1 + . . .+ ηs = η.

SStotal = SStreatments + SSE

SStotal/σ
2 = SStreatments/σ

2 + SSE/σ2

where the degrees of freedom on the RHS is N-1 and the degrees of freedom on the LHS is g-1+N-g.

Then by Cochran’s Theorem, SStreatment/σ2 and SSE/σ2 are independent χ2 random variables.

So
SStreatment/σ

2(1/(g − 1))
SStreatment/σ2(1/(N − g)) = MStreatment

MSE
∼ Fg−1,N−g

Expected value of Mean Squares:

• E(MSE) = σ2

• E(MStreatment) = σ2 +
∑g
i=1 ni(µi − µ)2 =

∑g
i=1 ni(αi)2

If H0 : µ1 = . . . = µg is true, then E(MStreatment) = σ2 If at least one of the pairs of µs are different, then
E(MStreatment) > E(MSE)

In more complex designs, the denominator of the F-statistic may not be the MSE! The numerator will be
MS for the effect we are testing and the denominator will be the MS whose expected value will be the same
as the expected value for the numerator when the null hypothesis is true.
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Contrast Sum of Squares

In experimental design framework, sums of squares quantify variability due to different factors.

We have already gone over SStreatment = SSEreduced − SSEfull, but we can also define a contrast sum of
squares.

A contrast sum of squares also has a full and reduced model where the full model is yij = µi + εij and the
full model is the same but with H0 : C = 0 e.g. H0 : C = µ1 − µ4 = 0 imposed.

In the above example, the reduced model would have µ1 = µ4. The degrees of freedom for the full model
would be N-g, the reduced model would be N-g-1 and the contrast df would be 1. The contrast df will be
1 for any contrast since we should be able to write the last mean in terms of the others.

The F-test for H0 : C = 0 is

F-statistic = SSconstrast/1
MSEfull

where sum of squares contrast is found using the formula:

(
∑g
i=1 wiȳi)2∑
i w

2
i /ni

F-statistic ∼ F1,N−g if the null is true and since the numerator degrees of freedom is 1, F-statistc =
(tstatistic)2

Contrast sum of squares quantifies variation in the data due to that comparison.

Orthogonal Contrasts

Contrasts C1 =
∑g
i=1 wiµi and C2 =

∑g
i=1 w

∗
i µi are orthogonal if

∑g
i=1

wiw
∗
i

ni
= 0

We usually only consider orthogonal constrasts with balanced data so in this case we can get rid of the ni
in the denominator.

With g treatments, we can have at most g-1 mutually orthogonal contrasts.

Why are orthogonal contrasts nice? We can partition variability due to treatments into variation due to
specific comparisons.
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We can find lots of complete sets of orthogonal contrasts. Most will make no sense for the experiment design.
Contrasts should be decided at the design phase to reflect research questions.

Polynomial regression

In this hypothetical example, we have an ordinal predictor variable. With g sample means, we can find a
g-1 degree polynomial containing them.

For the above model, we could have two different parameterizations:

• Cell means

yij = µi + εij
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• and polynomial parameterization

yij = β0 + β1Xi + β2X
2
i + β3X

3
i + εij

Cell means and g-1 degree polynomials are two parameterizations of the same model. The ANOVA table
between the two models should be identical. However, the interpretation is different. Polynomial models
allow for interpolation and extrapolation.

Type I SS are sequential: full model includes all predictors up to and including that row. Reduced model
includes all predictors up to the row before.

Type III SS are parial: full model includes all variables. Reduced model includes all predictors except
that on that row. Sometimes the Type I and Type III sum of squares will be the same because they are
examining the same models.

Lack of Fit F-tests

Lack of fit linear fit test:

• Full model: saturated model
• Reduced model: simple linear regression

Lack of quadratic fit test:

• Full model: saturated model
• Reduced model: Quadratic regression

Orthogonal Polynomial Contrasts

If X,X2 are collinear or nearly collinear, then a good remedy will be centering X to remove multicollinearity.
With higher order terms, you might to do more than just center (Gram-Schmidt orthogonalization).

Type I and III sum of squares are the same because the columns of X are orthogonal.

Orthogonal polynomial contrasts are just tidy polynomial regression. Need balanced data and incremental,
equally spaced treatments.

Multiple Comparisons/Simultaneous Inference

Simultaneous inference problem: Suppose we want to do 100 independent hypothesis tests at α = .05 and
all 100 null hypotheses are true. We would expect to reject about 5 true null hypotheses.

We have some notation to consider:

• Per comparison type I error rate: reject H0i when H0i is true (our usual α)
• Experimentwise type I error rate: αE = probability we reject at least one H0i when all H0i are

true.
• False Discovery Rate: 0 if there are no rejections and the proportion of false rejections over the

total rejections otherwise.
• Strong familywise error rate: Probability of at least one false rejection, or probability that FDR

> 0
• Simultaneous confidence intervals: probability that all confidence intervals cover their respective

true parameters.
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Data snooping is deciding what comparisons to make after looking at the data. Type I error rate is not
preserved if you pick out signficant comparisons unless you use Scheffes method.

Scheffe’s Method: Reject H0i : Ci = 0 if SSCi/(g−1)
MSE > FαF ,g−1,N−g Scheffe’s method works because it

tests all possible contrasts, so it doesn’t matter if we snooped the data. This F-statistic is the ANOVA
F-statistic to test H0 : µ1 = . . . = µg but with SSCi substituted in for SStreatment.

We can find simultaneous (1− αF )100% confidence intervals using

Ĉi ±
√

(g − 1)FαF ,g−1,N−gSE(Ci)

P-value corrections

• Bonferroni: reject H0i if pi < αF /k where k is the number of comparisons, αF is the strong family
wise error rate

• Holm: reject H0i if pi < αF
k−i+1 . This is a little more powerful than Bonferroni

• FDR method: p1, . . . , pk are sorted p-values. Reject H0i if pi < iFDR
k . Requires the tests to be

independent

Bonferroni and Holm are both very conservative procedures. FDR method controls FDR only, not αF

Multiple Pairwise Comparisons

• Tukey’s Honestly Significant Differences: Method to create simultaneous (1− αF )100%

ȳi. − ȳj. ± qαF ,g,N−g

√
MSE

n

and reject H0 = µi = µj if
ȳi. − ȳj.√
MSE/n

> qαF ,g,N−g

where q is the studentized range quantile which can be found using qtukey in R.

• Tukey-Kramer for slightly unbalanced data is similar to Tukey’s HSD

MSE/n

→

√
MSE

ni + nj
2ninj

• In SAS, Tukey’s HSD is often accompanied by some underline diagrams:
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• Additionally, you are also given a table where the t-statistics and accompanying p-values for H0 : µA =
µAB are given.

– You can use this table to figure out which pairs are signifcantly different according to the t-
statistics.

• Ryan-Einot-Gabriel-Welsch Range Test: step-down procedure where we

1. Order sampel means from small to large ȳ1, . . . , ȳg
2. Test ranges starting with the largest H0 : µ1 = µg
3. If we fail to reject, stop. None of the means differ.
4. If we do reject, step down and test the next smallest range.
5. Continue recursively. If we fail to reject, don’t test the subranges.

In SAS, the output appears like:
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• Dunnett’s Procedure: Used for when we want to compare all means to a single mean, for example,
a control.

– The inner workings of this procedure aren’t really touched on here, but the SAS output will contain
p-values for H0 : µi = µcontrol, individual confidence intervals, and simultaneous confidence
intervals.
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In the above example, treatment 2 (A+B) was seen to be significantly different from the control. The
corresponding simultaneous confidence interval does not contain 0 and the chart above has the line associated
with A+B extending being the upper difference limit.

• Multiple Comparisons with the Best/Worst (MCB, MCW): identifies either the max or min
µi, creates simultaneous confidence intervals for µi − µworst.

– These intervals either properly contain 0 indicating that µi is not significantly different from the
best/worst or 0 is an endpoint, indicating that µi is statistically different.

Diagnostics (April 22nd)

Residuals are useful for checking model assumptions. Residuals are defined in CRD as

rij = yij − ȳi.

and more generally:

rij = yij − ŷij

Residuals are our best guess of the errors εij
There are two other kinds of residuals:

• Internally studentized residuals rij√
MSE(1−Hkk)

where Hkk reers to the diagonal element of the Hat
matrix related to yij

• Externally studentized residuals rij√
MSE(ij)(1−Hkk)

with yij removed.
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We usually use diagnostic plots instead of formal hypothesis tests to check assumptions. Hypothesis tests
are generally low power.

Effects of nonnormality on σ2:

• Long tails mean too many extreme observations. Our ˆsigma
2 will be bigger than it should be, thus we

don’t reject as often as we should (lose power)
• Short tails mean too many type I errors (reject too often). In most settings this is the worse of the

two errors.

For reasonable sample sizes and symmetric distributions, our procedures that we have discussed produce
reliable inferences.

Remedies for nonnormality:

• Transformations
• Larger sample
• Different models, such as Poisson regression

Checking equal variance can either be done with Levene’s test on the residuals minus the medians or
using residual plots.

The effects of nonconstant variance:

• Balanced data and not-too-different variances don’t affect the t and F tests that much - they are still
reliable

• Unbalanced data with large ni and large variance mean that σ̂2 is too large so inference will be
conservative
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• Unbalanced data with small ni and large variance mean that σ̂2 is too small so inference will be
anti-conservative

Remedies for Non-constant variance include:

• log transformations
• Welch’s ANOVA
• Weighted least squares
• More data or a more balanced design

Independence

We have several methods to check independence of different kinds

• Durbin-Watson statistic for checking serial dependence
• Residual plot vs time for serial dependence (clusters of positive and negative residuals suggest time

dependence)
• Variogram plot for checking spatial dependence

Effect of non independence:

First, recall that var(yi + yj) = var(yi) + var(yj) + 2cov(yi, yj)

• Positive dependence means that σ̂2 is too small. There will be too many type I errors and inference is
anti-conservative

• Negative dependence means that σ̂2 is too large. There will be too many type II errors and inference
is conservative

Be careful of confounding treatments and dependence mechanisms (e.g. having two treatments administered
by two different lab techs - can’t separate the effect of the tech from the effect of the treatment)

Remedies of non-independence:

• Generalized least squares
• Incorporate the dependence into the model (for example, random effects)

We can us R-F plots to diagnose model fit
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Power and sample size

The sample size for a two sample t-test HA : µ1 6= µ2 can be found using this formula:

n ≥ 2(Zα/2 + Zβ)2σ
2

δ2

where

• n = sample size in each group
• α = Type I error rate (goes up, n goes down)
• β = Type II error rate (goes up, n goes down)
• Zα/2 = standard normal quantile related to rejection rate
• Zβ = standard normal quantile related to type II error
• σ2 = Common variance (goes up, n goes up)
• δ = effect size (µ1 − µ2) (goes down, n goes up)

Note that this depends on the distribution of ȳ1. − ȳ2. when HA : δ > 0 is true
The sample size for a one-way ANOVA depends on the distribution of the test statistic:
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• when H0 : µ1 = . . . = µg is true, Fstat ∼ Fg−1,N−g
• when HA : µ1 = . . . = µg is false, Fstat ∼ Fζ,g−1,N−g

where the non-centrality parameter ζ is found using:

ζ =
∑g
i=1 ni(µi − µ)2

σ2 where µ =
∑g
i=1 µi
g

This non-central F-distribution helps quantify how false H0 is.

To find the sample size, we can write power as the probability we reject a false null hypothesis: 1 − β =
P (Fstat > Fα,g−1,N−g) where Fstat is the formula for the noncentral F statistic and then we solve for N by
multiplying n by g

Usually for more complicated tests we have to simulate under different sample sizes and check the type I
and type II error.

Factorial Designs

Suppose we have the following data from a 2x2 factorial design (with two factors, two levels apiece):

Since we have 4 total treatments, we can start off by using a standard ANOVA F test to see if there is an
overall difference

We see that there is in fact at least one treatment that is different

We can now use contrasts to answer research questions. Given that we have the following from the LSMEANS
statement, we can make these contrasts:
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We can see that we are interested in testing fine and coarse as well as low vs high. The resulting p-values
for these F tests are:

So we can say that we have strong evidence that mean palatability is related to screen size and no evidence
liquid level is associated with mean palatability. Note that there is no Bonferroni correction here, but we
could use one!

Can we make one more contrast that is orthogonal to the others?

Yes, we can compare the effect of liquid in coarse to the effect of liquid in fine. This can be notated as
C3 = (µCL − µCH)− (µFL − µFH). This contrast is looking at the interaction of screen and liquid (effect of
liquid depends on screen)

This can be coded in SAS as:

We can see that we have no evidence to say that the effect of liquid on mean palatability depends on level
of screen (no interaction).

We can see this visually with an interaction plot:
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What if we had unbalanced data?

• When data are not balanced, type I and III sums of squares differ (except for the last row, which
relates to the highest degree interaction term)

• Things are tidier when data is balanced
• Now contrasts are orthogonal if

∑g
i=1

wiw
∗
i

ni
= 0

– Contrast Sum of squares agree with type III sum of squares since the same pairs of models are
being compared. See below:

compared with
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Factor effects parameterization for factorial designs

Note that as is with every other parameterization, yijk, εijk must be the same for both parameterizations
and both parameterizations must have the same number of mean parameteres.

If we wanted to make a factor effects parameterization for our 2x2 design, we have to make sure it has
the same number of parameters as the cell means parameterization. We can do this with the following
parameterization:

Important note! We can only have four parameters, so how are we going to incorporate the different factor
levels in our new parameterizaiton? We can do so with a sum to zero constraint:

0 =
2∑
i=1

αi =
2∑
j=1

βj =
2∑
i=1

(αβ)ij =
2∑
j=1

(αβ)ij

These constraints give us

Which allows us to calculate the estimated cell means!

µ11 = µ+ α1 + β1 + (αβ)11

µ12 = µ+ α1 + β2 + (αβ)12 = µ+ α1 − β1 − (αβ)11

µ21 = µ+ α2 + β1 + (αβ)21 = µ− α1 + β1 − (αβ)11

µ22 = µ+ α2 + β2 + (αβ)22 = µ− α1 − β1 + (αβ)11

This can be represented as a design matrix where all of the entries are either ±1, 0 and the parameter vector
is [µ, α1, β1, (αβ)11]. The rows will repeat depending upon the number of replicates for each treatment group.

More generally, suppose factor A has a levels and factor B has b levels. Then the cell means parameterization
has ab parameters, therefore our factor effects parameterization will have the following form:
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Parameter estimates in factor effects parameters

µ̂ = ȳ...

α̂i = µ̂i. − µ̂ = ȳi.. − ȳ...
β̂j = µ̂.j − µ̂ = ȳ.j. − ȳ...

ˆ(αβ)ij = µ̂ij − α̂i − β̂j − µ̂ = ȳij. − ȳi.. − ȳ.j. + ȳ...

More on Factorial Designs (May 1)

In this example, we have three factors: analysis temperature (8 levels), growth temperature (2 levels), and
variety (2 levels).

Our data is balanced so the type I and type III SS agree.

We get the following table:

There is a complication here. There is a significant two way interaction term between growth temperature
and variety. We can examine these interaction terms using interaction plots:
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In this plot, the observed means are plotted with the combinations of v + gt listed at the x-axis and sliced by
at. Notice here that the lines are approximately parallel, consistent with our large 3 way interaction term’s
p-value. The interpretation here is that all 2 way interactions are the same for all levels of the third factor.

If we examine the other interaction plots, they all also look pretty parallel, but there is one that stands out
as being kind of interesting (and funnily enough, it corresponds to a low p-value)

Our two variables here are growth temperature (x axis) and sliced by variety. Here we can interpret this as
variety 1 having a larger mean amylase activity than variety 2 for both growth temperatures, but at 13C
the difference in mean amylase activity is larger than at 25C.

Note that if we were to average over variety, the means for the two growth temperatures would be in bout
the same place (340ish). We should be careful of interpreting main effects if interactions exist.

We should formalize the model and the notation. Our parameterization will be:

yijkl = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijkl

where:

• µ is the overall mean

20



• αi is the effect of the ith level of analysis temperature
• βj is the effect of the jth level of variety
• γk is the effect of the kth level of growth temperature
• (αβ)ij is the interaction effect of the ith level of at and jth level of v
• (αγ)ik is the interaction effect of the ith level of at and kth level of gt
• (βγ)jk is the interaction effect of the jth variety and kth level of gt
• (αβγ)ijk is the three way interaction effect of the ith at, jth v, and kth gt
• yijkl is the amylase activity for the lth replicate at the ith level of at, the jth level of v, and the kth

level of gt
• εijkl is the random error associated with the ijklth replicate

The normal assumptions of iid normal errors carries over. Note that for the constraints, we have to make
sure all of the interaction terms sum to 0 no matter which indices sum over!

For testing the interactions:

• For H0 : (αβγ)ijk = 0, the full model will be the saturated model above and the reduced model will
be the same only with the three way interaction model taken out.
– In this example, we get F = 1.39, p = .2241 so there is no evidence of 3 way interactions

• For H0 : (βγ)jk = 0, we typically do Type III SS tests so we only remove this particular term in the
reduced model. The full model remains the saturated model.
– In this example, we get an F-statistic of 16.58, pvalue of .0001 so we conclude that the effect of

variety is different at the two growth temperatures (alternative phrasing: effect of gt is different
for different varieties)

Modeling response as a linear or quadratic function of analysis temperature
This is usually for reducing the model degrees of freedom and adding error degrees of freedom. This usually
gives us a lower MSE which is a good thing. However, in our example, since the linear model doesn’t fit very
well, we end up having a much larger MSE than we did in the previous factor effects model.

We could in this scenario do a lack of linear fit test to compare to the previous model.

We might hypothesize that quadratic fit might be better, especially after we see this plot:

We can fit this in SAS. Using this model adds a bunch of extra parameters, but if the fit is better than we
will reduce our sum of squares overall. We can also choose to use a lack of quadratic fit test in which we use
the initial model to estimate the difference in means between the 2 varieties at each growth temperature.
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Unbalanced data (May 6)

Be careful when averaging across rows and columns with unbalanced data. Weights are different in different
cells. We can still do sum of squares F tests though because SSE is calculated over all observations so the
effect of the different weights doesn’t appear there.

When data are unbalanced, type I and type III sums of squares are different. We can use type II sum of
squares.

Type II sum of squares are hierarchical so the reduced model doesn’t have higher order terms where lower
order terms are missing.

Consider the following table:

Missing cells

Consider the possibilty that in a 2x3 factorial design we have lost all the data in one of our 6 cells.

We have therefore lost the factorial structure, and must use cell means parameterization.

Random Effects

A model with just one random effect will look like

yij = µ+ αi + εij

where εij ∼ N(0, σ2) and αij ∼ N(0, σ2
α) and the ε and α are independent from each other.

Then we have

var(yij) = var(µ+ αi + εij) = σ2
α + σ2

cov(y11, y12) = cov(α1, α1) + cov(α1, ε12) + cov(ε11, α1) + cov(ε11, ε12) = σ2
α

When should we consider using random effects?
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• Need to model dependence among observations from the same level of a factor
– Strength of boxes made by same machine are not independent (note that model only allows

positive dependence)
• Levels of the factor are considered a sample from a larger population

– Machines are random sample from population
• Repeating experiment would use different factor levels

– Doing the experiment again would use different levels for the machine

Inferences for a random effects model

• Our point estimate µ̂ = ȳ..
• Standard error is based on the variance of the point estimate (note that var(ȳ) 6= σ2

N since its not a
mean of independent observations):

var(ȳ..) = var( 1
N

∑
i

∑
j

yij)

= 1
N2 var(

∑
i

∑
j

(αi + εij))

= 1
N2

var(∑
i

∑
k

αi)var(
∑
i

∑
j

εij)


= 1
N2

[
var(

∑
i

nαi)anσ2

]

= 1
N2

[
n2aσ2

α + anσ2]
= nσ2

α + σ2

N

This last point comes from the fact that N = an

The intraclass correlation coefficient is calculated as:

ρ = cov(yij , yij′)√
var(yij)var(yij′)

= σ2
α

σ2
α + σ2

ρ ≈ 0 means the observation nearly independent ρ ≈ 1 means the observation very dependent

How can we predict αi? Note that this is not an “estimate” since αi is random.

Going back to our example, does box strength depend on machine? This is easy to test with a fixed effect,
we just set our null hypothesis H0 : αi = 0

However, in a random effects model, αi is random so this is not an appropriate H0 since our null hypothesis
must be about parameters, not random variables. Instead, we can test the variance of the αi so our null
hypothesis will be H0 : σ2

α = 0 vs HA : σ2
α > 0. If the null is true, then there is no machine variation.

The ANOVA for the random effects is the same as the ANOVA for the one fixed-factor design.

Using A as notation for the model, Sum of squares of A (SSA) is
∑
i

∑
j(ȳi. − ȳ..)2 and dividing this by a

-1 degrees of freedom gives us the mean square of A (MSA). WE then divide MSA by MSE to get our F
statistic. Under H0 : σ2

α = 0, yij ∼ N(µ, σ2) which is the same as under fixed effects.

The expected mean squares (EMS) of these values is:
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• E(MSA) = σ2 + nσ2
α with a - 1 degrees of freedom

• E(MSE) = σ2 with N - a degrees of freedom
• SE(ȳ..) =

√
ˆvar(ȳ..) =

√
MSA
N since MSA

N is an unbiased estiamte of var(ȳ..)

Recall that for one fixed factor and balanced data,

• E(MSE) = σ2

• E(MStreatment) = σ2 + n
g−1

∑g
i=1(µi − µ)2 = σ2 + n

g−1
∑g
i=1(αi)2

If we wanted to test whether or not the αi = 0, we would put the treatment sum of squares over the MSE to
make our F-statistic. Under the null hypothesis, the treatment sum of squares and the MSE have the same
expectation. Under the alternative, E(MStreatment) > E(MSE), so we reject the null if we have a large F
statistic.

The F statistic for one random factor and balanced data is very similar and follows the same logic, only with
MSA instead of MStreatment

Two random factors

We can also create a model with more than one random factor. Going back to our box example, say that
we wanted to also model the machine operators as random effects. We could create a model like

yijk = µ+ αi + βj + (αβ)ij + εijk

where αis represent the machine effect, βjs represent the operator effect, and (αβ)ij represent the interaction
between the machine and the operator.

Our assumptions for this model are that

αi ∼ N(0, σ2
α)

β ∼ N(0, σ2
β)

(αβ)ij ∼ N(0, σ2
αβ)

εijk ∼ N(0, σ2)

where the model parameters are now µ, σ2
α, σ

2
β , σ

2
αβ , σ

2 and the latter four constitute the variance components.

If we further examine the sum of squares, we see that we have

• A with a - 1 degrees of freedom and E(MSA) = σ2 + nσ2
αβ + nbσ2

α

• B with a - 1 degrees of freedom and E(MSB) = σ2 + nσ2
αβ + nbσ2

β

• AB with (a-1)(b-1) degrees of freedom and E(MSAB) = σ2 + nσ2
αβ

• error with ab(n-1) degrees of freedom and E(MSE) = σ2

If we wanted to test whether H0 : σ2
α = 0, then the numerator of the F-statistic would be MSA (mean square

for the effect of interest) and the denominator would be MSAB (since E(MSAB) = E(MSA) under the null
hypothesis).

When estimating variance components, make sure to use REML instead of MOM. REML is the method used
by default in PROC MIXED.
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PROC MIXED data=Exp11_2;
class m o;
model y=;
random m|o;
run;

If we specify method=type3, then we get MOM estimators

PROC MIXED data=Exp11_2 method=type3;
class m o;
model y=;
random m|o;
run;

The issue is that MOM estimators can fall outside of the paramter space whereas REML estimators are
guaranteed to at least be in the parameter space.

DO NOT use PROC GLM for random effects since the F statistics there all use MSE as the denominator.
The df, type I SS, and MS for all the sources will be the same, so be very careful.

Three random effects

Suppose now we have 10 random machines, 10 random operators, and 2 batches of glue. Each operator
produces 4 boxes on each machine with 2 boxes per glue batch.

Our random effects here are the machine, the operator, and the batch of glue.

Our model will look like:

yijkl = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijkl

where αi denotes the machine effect, βj denotes the operator effect, γk denotes the glue effect.

The assumptions are that αi, βj , γk, the 2/3 way interactions, and εijkl are all indepenent and normally
distributed around 0 with variances σ2

α, σ
2
β , . . . (8 variance components all together).

Analyzing this data in SAS can be done using

PROC MIXED data=Exp11_2 method=type3;
class m o g;
model y=;
random m|o|g;
run;

where m|o|g denotes the saturated model that we had above.

To test if the machine effect is nonzero, we need to test the hypothesis

H0 : σ2
α = 0

HA : σ2
α > 0

Our numerator is the MSA, but the denominator has to be an MS where the expected MS is the same as
MSA under the H0.
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There might not be MS with this expected value, so we need to construct an MS with this expected value.
We can do that by making a linear combination of MS:

MSdenominator =
∑
s

gsMSs

E[
∑
s

gsMSs] = EH0 [MS(effect being tested)]

where the denominator df will be

ν∗ =
(
∑
s gsMSs)2∑

s g
2
sMS2

s/ν
2
s

Where νs is the df for MSs.

We can get the interval estimates for the variance components using SAS but keep in mind that this is not
generally a good idea since the CIs are asymptotic so you need a large sample.

PROC MIXED data=Exp11_2 method=type3 cl covtest;
class m o g;
model y=;
random m|o|g;
run;

/* or using the REML estimates */

PROC MIXED data=Exp11_2 cl covtest;
class m o g;
model y=;
random m|o|g;
run;

Crossed and Nested Effects (Chapter 12, Outline 8)

Let’s take the example of machines making boxes again, this time just focusing on the machine and the
operator.

Suppose we have two machines and we want to compare them. A repeat of the experiment would use the
same two machines, but operators are randomly selected.

A crossed design is where each operator sees both machines and each machine sees all operators.
There are 4 operators total. The notation for each of the 8 possible treatments combinations is
A1B1, A1B2, . . . , A2B1, A2B2, . . .

The model for a crossed design has the form

yijk = µ+ αi + βj + (αβ)ij + εijk

where the strength of the kth box from the ith machine made by the jth operator is modeled by the overall
mean, the machine effect which is fixed, the operator effect βj which is random, (αβ)ij the random interaction
between the machine and the operator, and the random error εijk.

As per usual, the assumption is that all of the random effects are indepdent and normally distributed with
their own variance components.
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A nested design is where each machine has its own set of operators. There are 8 operators total. The
notation for each of the 8 possible treatment combinations have the form A1B1(1) which can be thought of
as machine 1 getting the 1st operator nested in the 1st machine.

The model for a nested design has the form

yijk = µ+ αi + βj(i) + εijk

where everything is almost identical to the crossed design except that βj(i) now refers to the random effect
of the jth operator that is nested in the ith machine.

Note that there is also no interaction in this nested design because no operator works on both machines so
we can’t measure the interaction between operator and machine. Nesting has removed an interaction term.

In SAS code, we can represent this as

filename Exp11_2 'exmpl11.2.csv';
data Exp11_2;

infile Exp11_2 firstobs=2 dlm=',';
input m o g y;

run;

data MixBox;
set Exp11_2;
if m <= 2;

run;

\* For A and B being crossed *\

PROC MIXED data=MixBox method=type3;
class m o;
model y=m;
random o m*o;

run;

\* For A and B being nested *\

PROC MIXED data=MixBox method=type3;
class m o;
model y=m;
random o(m);

run;

In the Type 3 Analysis of Variance tables for either of these designs, you will see a term Q(m) in the expected
mean square for some of the sources. This is a quadratic term which shows up when you have a fixed factor.

Q(m) = nb
∑
α2
i

a− 1

To test for the machine effect in the crossed design, we have to use an F statistic where the denominator
is a MS whose expected value is the same as MSA when H0 : αi = 0.

In our caseMSAB fits this criteria, so our F statistic is 91.828
13.457 = 6.824 which we compare to an F distribution

with 1 and 9 df.
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In the nested design, the analysis is very similar. The only differnece is that the MS in the denominator
is now MSB(A) which gives us an F statistic of 91.828

129.458 = .709 which we compare to an F distribution with
1 and 18 df.

Notice that the test statistic in the nested design is smaller than the test statistic in the crossed design. This
won’t always be the case since the denominator degrees of freedom are larger here. Generally speaking larger
denominator degrees of freedom gives us more power. The reason they are different is because we were able
to separate the variability of the operator and the operator/machine interaction in the crossed design but
we were not able to do so in the nested design.

Effectively, we have SSB+SSAB = SSB(A) where the RHS in the crossed design and the LHS is the nested
design.

Final note: we do not get to pick what analysis we do - it must match the experiment.

• Why would we use nesting?

– Feasibility or convenience (operators are in different locations)
– Subsampling (multiple observations on a single unit) causes the obseravations to be ensted in a

single experimental unit and the experimental units are then nested in the treatments.

An example of a study that has multiple levels of nesting could be a genetics study. Suppose we have male
parents (level A), female parents (level B), and our response is the offspring (C) of each male and female
pair. There are multiple measurements per offspring.

The females are nested within males (ex: B1(1)) and the offspring are ensted within each pair of parents (ex:
C1(1,1))

The model for C nested in B nested in A is

yijkl = µ+ αi + βj(i) + γk(ij) + εijkl

where in this case we choose to model all the components as random so

αi ∼ N(0, σ2
α)

βj ∼ N(0, σ2
β(α))

γk ∼ N(0, σ2
γ(αβ))

εijkl ∼ N(0, σ2)

and all of the random terms are independent from one another.

The covariance between two observations on the same offspring is given as: cov(yijkl, yijkl′) = σ2
α + σ2

β(α) +
σ2
γ(αβ).

The covariance between observations of two offpsring is given as: cov(yijkl, yijk′l′) = σ2
α +σ2

β(α). Notice that
these are the variances of the shared random effects.

We can have crossed and nested factors in the same experiment. For example, assume that each machine
has a unique set of four operators (for 8 operators total) and each operator make four boxes, two for each
batch of glue.

• The machine and operator are nested because each operator sees only one machine
• The glue and operator are crossed since each operator sees both batches of glue and each batch of glue

sees all 8 operators.
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• The machine and glue are crossed since each machine sees all batchs of glue

Since operator is our nested factor, we can represent this experiment using the notation B1(1) which denotes
the first operator nested in the first machine. B1(1) will appear in both treatments of glue.

Our model is

yijkl = µ+ αi + βj(i) + γk + (αγ)ik + (βγ)j(i)k + εijkl

where the strenght of the lth box from the kth batch of glue with the jth operator nested in the ith machine,
and the ith machine is a function of an overall mean µ, the machine effect αi , the nested operator effect
βj(i), the glue effect γk, the machine glue interaction and the operator glue interaction.

Include the usual assumptions for random terms and the sum-to-0 constraints for the fixed term αi

Estimating means and contrasts in a mixed model can be done by deriving the variance of the sample means
in the exeperiment.

Consider an experiment with two machines (fixed), ten operators (random), machines and operators are
crossed, and there are n=4 boxes for each operator per machine.

To estimate the mean box strength for machine 1, we simply need to average all observations under machine
1.

To get the standard error though, we will have to derive it.

var( ¯y1..) = var

 1
bn

b∑
j=1

n∑
k=1

(µ+ αi + βj + (αβ)ijεijk)


= 1
b2n2 var

∑
j

∑
k

βj +
∑
j

∑
k

(αβ)ij +
∑
j

∑
k

εijk


= 1
b2n2 var

∑
j

nβj +
∑
j

n(αβ)ij +
∑
j

∑
k

εijk


= 1
b2n2

n2var[
∑
j

βj ] + n2var[
∑
j

(αβ)ij ] + var[
∑
j

∑
k

εijk]


= 1
b2n2

[
n2bσ2

β + n2bσ2
αβ + nbσ2]

=
nσ2

β + nσ2
α + σ2

nb

Standard error is then found by SE(ȳ...) =
√

nσ2
β

+nσ2
α+σ2

nb

In SAS, we can calculate this using the following code:

PROC MIXED data=MixBox;
class m 0;
model y=m;
random o m*o;
lsmeans m;

run;
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This code outputs a covariance parameter estimates table which is used in the standard error formula we
derived above.

Estimating the difference in mean strength between machines involves calculating ¯y2.. − ¯y1...

The variance of the point estimate is var(ȳ2..− ȳ1..) = 2nσ2
αβ+2σ2

nb . We derive it in a similar way to the above
derivation of the standard error of the sample mean for machine 1.

PROC MIXED data=MixBox method=type3;
class m o;
model y=m;
random o m*o;
estimate 'machine' m 1 -1;

run;

Complete Block Designs (Chapter 13, Outline 9)

A block is like a group of experimental units that are linked because of similarity.

Examples can be genetic like a litter of animals, location (like a geographical region), etc.

We should use blocking to control for anything that affects the response but is not of interest. Anything that
affects the response but is not in the model contributes to the random error term so blocking helps reduce
the error variance, giving us more power and precision.

The randomized complete block design or RCBD is a design where experimental units are stratified
into blocks. Within each block, we randomly assign units to treatments.

Note that

• Experimental units are not randomly assigned to blocks
• Complete block designs are those were each block contains at least one replicate of every treatment

combination (for example, Latin Squares)
• In a balanced design, each block will have the same number of replicates for each treatment combination
• There is a different randomization in each block (protects us from situations where the arrangement

of the treatments matter)

The structure when drawn out resembles a factorial experiment.

The model for RCBD is

yij = µ+ αi + βj + εij

where we focus on fixed blocks.

The assumptions are that
∑g
i=1 αi =

∑r
j=1 βj = 0 and εij ∼ N(0, σ2)

The ANOVA table for RCBD is

Source df
Treatments g-1
Blocks r-1
Error (g-1)(r-1)
Total gr-1
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Note that if we only have one replicate in each cell, we can’t include an interaction term since we can’t
distinguish it from εij . (The best way to check when this is the case is to look at the subscripts).
If n ≥ 2, we could calculate (αβ)ij but we probably wouldn’t.

• Note that model includes no block by treatment interaction. +The interaction term implies that
treatment effect varies from block to block. +This is not generally desirable. +We should always try
to select a blocking factor that we can assume doesn’t interact with the treatments.

• Blocks can either be fixed or random

– Since we’re focusing on comparing treatments, so it doesn’t really matter

• For RCB designs, you need at least one replicate per cell

We can compare RCBD designs with other experimental designs using relative efficiency. Relative effi-
ciency is defined as

E1:2 = I1
I2

= σ2
2
σ2

1

where by convention I2 is the simpler design (aka the design with more error degrees of freedom).

Let’s use relative efficiency to compare RCBD with CRD.

Recall that to test H0 : αi = 0, the test statistic is F = MSA
MSE .

Our relative efficiency will be given by ERCBD:CRD = σ2
CRD

σ2
RCBD

.

If we perform an RCBD in SAS, the σ̂RCBD is the MSE of that model.

To get σ̂CRD we need to use this formula:

σ̂CRD = (r − 1)MSblock + [(g − 1) + (g − 1)(r − 1)]MSE

(r − 1) + (g − 1) + (g − 1)(r − 1)

After we compute this, we plug into this corrected relative efficiency:

ÊRCBD:CRD = σ̂2
CRD

σ̂2
RCBD

(
(νRCBD + 1)(νCRD + 3)
(νRCBD + 3)(νCRD + 1)

)
which correct for the number of blocks. Note that if the number of blocks is not large, then the correction
factor will be close to 1.

Suppose we got a relative efficiency of 2. This tells us that the RCBD is twice as efficient as the CRD, hence
we need only half as many experimental units in the RCBD vs the CRD to do inference.

ERCBD:CRD is not a tool to decide on a model, but rather a diagnostic.

Latin Squares Design (Outline 9)

Latin square designs are employed when we have two blocking factors.

A popular type of design in clinical trials is the crossover design where we have subjects that receive all
possible treatments with a washout period in between each treatment period. Crossovers are Latin square
designs where the subjects are the first block and the time periods are the second block.

By definition, a Latin square has g treatments and two blocking factors, each with g levels. When arranging
a Latin square, there is one copy of each treatment level in each row and column.
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Going back to our crossover design example, the subjects can be the columns, the time periods can be the
rows, and the cells can be filled in with the drug treatment for that cell.

The model for the Latin square design is

yijk = µ+ αi + βj + γk + εijk

where αi is the treatment effect, βj is the subject effect, γk is the time period effect.

The constraints are that
∑
i αi =

∑
j βj =

∑
k γk = 0 and that εijk ∼ N(0, σ2).

Latin squares by their nature are incomplete block designs since each block (cell in this case) doesn’t contain
all levels of the treatments.

We can compare Latin squares to RCBDs again using relative efficiency where

ÊLS:RCBD = σ2
RCBD

σ2
LS

(
(νLS + 1)(νRCBD + 3)
(νLS + 3)(νRCBD + 1)

)

and σ̂2
RCBD = (g−1)MSblock+[(g−1)+(g−1)(g−2)]MSE

2(g−1)+(g−1)(g−2)

Lastly, in the ANOVA for Latin square designs, we have

Source df
Treatments g-1
Subject g-1
Treatment Period g-1
Error (g-1)(g-2)
Total g2 − 1

Some notes on the Latin Square design:

• The Latin square design is restrictive because you need the same number of levels in treatments and
both blocking factors.

• If a blocking factor represents a gradient such as time, you can divide that into a convenient number
of levels.

• For a moderately small level g, we can make do with very few experimental units which means we can
use Latin squares for pilot studies to generate hypotheses which can be later explored in larger studies

Split Plot Designs (Outline 10)

We usually employ split-plot designs when we have logical constraints on two variables. Factor A must be
applied to large plots and Factor B must be applied to smaller plots (for example, sprinklers can be factor
A and varieties of corn can be factor B).

The general idea of split plot designs is that we randomly assign levels of factor A to large plots and we split
each of those plots into subplots which are then randomly assigned levels of B.

This is under the assumptions that:

• The whole plots are independent of one another
• Observations within a single plot may not be independent
• Whole pots are nested in treatment A (each whole plot sees one level of A) and factor B are crossed

(each whole plot sees all levels of factor B)

32



• Treatments A and B are crossed (each level of A sees each level of B)

The model for a split plot design is given as

yijk = µ+ αi + ηk(i) + βj + (αβ)ij + εk(i)j

where the response is the yield for the kth whole plot getting sprinkler level i and variety j, µ is the overall
mean, αi is the irrigation level, ηk(i) is the whole plot error, βj is the variety effect, (αβ)ij is the interaction
between irrigation and variety, and εijk is the subplot error.

with the following assumptions:

∑
αi =

∑
βj =

∑
i

(αβ)ij =
∑
j

(αβ)ij = 0

ηk(i) ∼ N(0, σ2
η)

εijk ∼ N(0, σ2)

The accompanying ANOVA table is:

Source df
A a-1
whole plot error (1) na - a
B b - 1
AB (a-1)(b-1)
Subplot error (2) a(n-1)(b-1)

To conduct the proper hypothesis tests for the following, we can use these F statistics:

Test Null F statistic

A H0 : αi = 0 MSA
MSerror(1)

B H0 : βj = 0 MSB
MSerror(2)

AB H0 : (αβ)ij = 0 MSAB
MSerror(2)

Some notes about the split plot design:

• Two levels of randomization are required (whole plot and subplot)
• Degrees of freddom for subplot error is larger than for the whole plot error
• Model allows positive dependence between the subplots and the same whole plot

– cov(yijk, yij′k) = σ2
η

– cov(yijk, yij′k) = σ2
η

σ2
η+σ2

– Model assumes that covariance pairs of subplots of the same whole plot are equal
– Covariance doesn’t decrease with distance (if this is not reasonable, use a different model)

Estimating differences: If we want to make a confidence interval for population differences in mean yield
between variety 1 and variety 2 (subplot factor)

• Our point estimate will be ȳ.1. − ȳ.2.

33



• SE(ȳ.1. − ȳ.2.) =
√

2MSerror(2)
an

• Our 95% CI will be ȳ.1. − ȳ.2. ± t.975,a(n−1)(b−1)

√
2MSerror(2)

an

Repeated Measures (Outline 10)

In this setup, 30 babies are randomly assinged to three infant formula treatments. The response is the baby’s
weight which is recorded at 0 weeks, 1 week, 4 weeks, 2 months, and 6 months.

If we ignore the repeated emasures here and just analyze the gain over 6 months, we would just have a CRD.
If we’re interested in the treatments over time however, we have to look closer at the repeated measures.

The proposed model here is similar to a split-plot design where the baby is the whole plot, the formula is
the whole plot treatment, and time is the subplot factor.

yijk = µ+ αi + εk(i) + βj + (αβ)ij + εk(i)j

where the response is the weight of the kth baby in the ith treatment at the jth time, αi is the treatment
factor, βj is the time effecet, εk(i) is the whole plot error (baby random effect), (αβ)ij is the interaction of
time and treatment, and (εβ)k(i)j is the residual error which is the same as the baby*time interaction (note
that the subscripts help us out here).

Babies are nested within treatments.

with the following assumptions:

∑
αi =

∑
βj =

∑
i

(αβ)ij =
∑
j

(αβ)ij = 0

ηk(i) ∼ N(0, σ2)
εijk ∼ N(0, σ2

αβ)

We can explore the correlation structure by recalling from the split-plot design notes that corr(yijk, yij′k) =
σ2

σ2
η+σ2 = ρ.

The split plot model says that the correlation matrix for the five observations on baby k nested in treatment
i is

Rk(i) =


1 ρ ρ ρ ρ
ρ 1 ρ ρ ρ
ρ ρ 1 ρ ρ
ρ ρ ρ 1 ρ
ρ ρ ρ ρ 1


and the correlation matrix of Y is a matrix where the diagonals are these Rk(i) matrices from R1(1) and
R10(3).

Note that the models do not allow the covariance to decrease over time for the same baby (so the measurement
on week 0 is just as related to week 2 as to 6 months). If this doesn’t seem reasonable, we can use a different
model that allows covariance to decrease over time.

In SAS, there is an option to use “R-side correlation” where ε ∼ N(0, cov(Y ))
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Analysis of Covariance (Outline 11)

In this setup, we are looking at repetitive motion pain related to keyboarding. Our main treatment of interest
is different ergonomic keyboards and the response variable is hours of pain after keyboarding.

We can just model this as a regular CRD if we wanted:

yij = µ+ αi + εij

However, here we are forgetting a covariate xij (hours spent keyboarding by the jth subject on the ith
keyboard type) which potentially affects the response. This can be represented as the following model:

yij = µ+ αi + βxij + εij

where β is the slope parameter corresponding to hours spent keyboarding and represents the change in mean
hours of pain for each hour increase in keyboarding.

The assumptions in this added covariate model is

εij ∼ N(0, σ2)∑
(αi) = 0

In ST552, we generally saw this model in the context of indicator variables to distinguish the treatments.
There were also no interactions between the indicators and the covariates.

In ST553 by converse, we are more interested in treatment means (µi = µ + αi) and differences between
treatment means (αi − α′i).

The observed treatment means ȳi. = 1
n

∑
yij has expected value E[ȳi.|xi1, . . . , x1n] = µ+ αi + βx̄i.

The covariate adjusted means incorporate the average of all xijs, so they are µ+ αi + βx̄...

Furthermore, we can estimate the group differences here as α̂i − α̂i′

Bottom line: we have already seen this shit in 552, in 553 we are just more concerned with estimating and
comparing the treatment means.
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