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Faraway 8.7

Crawling in my skin, these wooooounds they will not heaaaal.

Let’s examine some data of when babies started crawling and the average temperature 6 months after their
birth. We have 12 data points here, one for each month. Each data point is an average of several babies for
that month.
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Looks like tere is some pretty significant changes in the variation of crawling age that is dependent upon the
birth month. This problem is a great candidate for weighted least squares.
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Our goal is to figure out Σ which here is a diagonal matrix where the wii are weights for each observation.
Normally, since our observation Yi are averages of ni observations, then

var(yi) = var(εi) = σ2

ni
→ wi = ni

where ni is the number of babies measured in that month.

However, from the premise of the question we are assuming here that weighti ∝ 1/V ar(yi). Using these
weights:

2 4 6 8 10 12

20
25

30
35

40
45

50

Sample size for each birth month

Index

cr
aw

l$
n

−3

−2

−1

0

1

31 32 33

fits

re
si

ds

Residual Plot of Weighted model

2



When we use these weights, there really isn’t that big of a difference. This is more apparent when you plot
the weighted and unweighted coefficients side by side.
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That being said, if we know that there is a correlation between observations, we should still opt to use the
weighted model for our final interpretations. Here is the summary of the weighted model.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 35.730840 1.271539 28.101 7.567e-11 temperature -0.075522 0.024021 -3.144 0.01044

n = 12, p = 2, Residual SE = 0.17466, R-Squared = 0.5

Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.73 1.272 28.1 7.567e-11

temperature -0.07552 0.02402 -3.144 0.01044

Table 2: Fitting linear model: crawling ~ temperature

Observations Residual Std. Error R2 Adjusted R2

12 0.1747 0.4971 0.4468

Using this model for inference, as temperature increases we see a decrease in the mean time before a baby
starts crawling. The exact estimated effect is every degree increase in average temperature (F) is associated
with a decrease of .07 weeks in mean age that crawling begins.

Faraway 8.4

Checking out the cars data set and using a lack of fit test! We being by fitting a simple regression model
with dist ~ speed.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.58 6.758 -2.601 0.01232

speed 3.932 0.4155 9.464 1.49e-12

Table 4: Fitting linear model: dist ~ speed

Observations Residual Std. Error R2 Adjusted R2

50 15.38 0.6511 0.6438

We also create a saturated model where each level in speed is treated as its own factor. This model essentially
just uses the mean of each speed level as its ŷ.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6 10.45 0.5744 0.5698

factor(speed)7 7 14.77 0.4739 0.6389
factor(speed)8 10 18.09 0.5527 0.5844
factor(speed)9 4 18.09 0.2211 0.8265

factor(speed)10 20 13.49 1.483 0.1481
factor(speed)11 16.5 14.77 1.117 0.2726
factor(speed)12 15.5 12.79 1.212 0.2348
factor(speed)13 29 12.79 2.267 0.03052
factor(speed)14 44.5 12.79 3.478 0.001518
factor(speed)15 27.33 13.49 2.027 0.05134
factor(speed)16 30 14.77 2.031 0.05092
factor(speed)17 34.67 13.49 2.571 0.01517
factor(speed)18 58.5 12.79 4.573 7.28e-05
factor(speed)19 44 13.49 3.263 0.002686
factor(speed)20 44.4 12.36 3.592 0.001117
factor(speed)22 60 18.09 3.316 0.002334
factor(speed)23 48 18.09 2.653 0.01247
factor(speed)24 87.75 12.79 6.859 1.094e-07
factor(speed)25 79 18.09 4.367 0.0001307

Table 6: Fitting linear model: dist ~ factor(speed)

Observations Residual Std. Error R2 Adjusted R2

50 14.77 0.7921 0.6714

We then use an F-test to compare these models. Doing so will help us determine if the estimate of model-free
variance (represented by the saturated model) is significantly less than the regression standard error of our
chosen model. A low p-value will indicate that there is a lack of fit in our chosen model.

Table 7: Analysis of Variance Table

Res.Df RSS Df Sum of Sq F Pr(>F)
48 11354 NA NA NA NA
31 6765 17 4589 1.237 0.2948
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Our p-value is too large to reject the H0 and we have no evidence to say that there is a lack of fit with the
first model.

Faraway 9.8

Using the cars data again! We are graphically comparing a linear fit to a quadratic fit to a backtransformed
square-root!

Then we are comparing all of those fits to spline fit which we get using the smooth.spline() function. Let’s
see what we get.
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The spline is pretty close to the other fitted lines. In fact, If we plot all the lines together, we can see that
the spline fits almost right on top of the linear fit.
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AFQT Analysis

Introduction

The AFQT score is a measure of intelligence derived from the Armed Forces Vocational Aptitude Battery
Test (ASVAB) that is given to all prospective US military members. We will seek to answer if there is any
evidence that the mean salary of males exceeds the mean salary for females after accounting
for education and AFQT scores. The study followed individuals from 1981 when they first took the
ASVAB to 2006 when their salary was recorded.

Our data consists of 2583 individuals: 1278 females and 1306 males. There are 5 total variables: Subject
ID, gender, AFQT score (percentile), years of education, and salary (USD in 2005).

Methods

To answer our question, we will fit the following linear model:

salaryi = β0 + β1genderi + β2afqti + β3educationi + εi

The parameter estimate for β1 should correspond to the mean salary difference between males and females
after accounting for education and AFQT score.

Like with any linear model, inference on this model comes with the following assumptions: a linear relation-
ship between the predictors and the response, independently distributed errors, and normality of those errors.
We will check linearity graphically, and the normality of errors using residual plots and the Shapiro-Wilk
test. If errors are not normal or identically distributed, we may have to use a response transformation.

Results

Let’s first begin with a numerical summary.

Table 8: Income (USD) by Gender

Gender min Q1 median Q3 max mean sd
female 147 16000 29811 45000 253043 35211 28776
male 63 32000 50000 78000 703637 63319 55861

Table 9: Education (Years) by Gender

Gender min Q1 median Q3 max mean sd
female 6 12 13 16 20 13.97 2.412
male 6 12 13 16 20 13.81 2.588

Table 10: AFQT Score by Gender

Gender min Q1 median Q3 max mean sd
female 0 31.59 54.92 76.62 100 53.41 26.89
male 0 31.38 58.99 79.75 100 55.45 28.57

From this numerical summary, we notice that there is income disparity between males and females, even
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though education and AFQT score does not differ dramatically between males and females. Let’s investigate
the linearity assumption for a linear model using scatterplots.
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There does seem to be linearity here, but we also notice that the variability of the data seems to change
along the predictors. When we fit the linear model, we see how this affects our model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -48760 4868 -10.02 3.417e-23

Gendermale 28463 1621 17.56 2.776e-65
Education 5158 402.7 12.81 1.811e-36

AFQT 223 36.32 6.139 9.558e-10

Table 12: Fitting linear model: Income ~ Gender + Education +
AFQT

Observations Residual Std. Error R2 Adjusted R2

2584 41081 0.228 0.2271

While all of our predictors are signifcant and the F statistic for this model has an incredibly small p-value
(< .00001), we see that our R2 is not great. From our graphical displays above, we should investigate the
error assumptions of this model using a residual plot.
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We see a very noticeably funnel shape, which violates our assumption of constant variance. Additionally, our
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Shapiro-Wilk test also reports a very tiny p-value (< .00001) indicating that these errors are not normal. It
would be a good idea to transform this model so that the errors fit our assumptions.

We will use a log transform on the response and recheck the residuals. Our model is now:

log(incomei) = β0 + β1Genderi + β2AFQTi + β3Educationi

After the response transformation and model refit, we now have the following coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.731 0.1026 85.08 0

Gendermale 0.6245 0.03417 18.27 2.986e-70
Education 0.07695 0.008489 9.065 2.403e-19

AFQT 0.005914 0.0007657 7.724 1.602e-14

The R2 values have not changed an appreciable amount from the original model (R2 = .21), but what we
are mainly concerned with are the residuals.
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While t-tests on studentized residuals detected 15 outliers, removing them does not appreciably change
the estimated coefficents of the model. The residual plot of our log transformed model better fits our
assumption of constant variance. The Shapiro-Wilk test still report a small p-value (< .0001), indicating
that our residuals are still not normal.

However being able to deal with at least one of the error assumptions is better than nothing and the
normality of errors is less important than constant variance when the sample size is large. We will now use
the coefficient estimates from this model to answer our question.

Conclusion

An advantage of using the log transform is that we can still obtain an interpretation on the original response
scale by back transforming using exponentiation.

incomei = eβ0eβ1Genderieβ2AFQTieβ3Educationi

Since for each individual i, gender_i is an indicator variable (0 for female, 1 for male), being male adds a
multiplicative effect of eβ1 on income. From our model, we calculated a statistically significant β̂1 = .6245
so the estimated effect of gender on income is that being male multiplies median income by 1.867 after
accounting for education and AFQT score.
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