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Part 1

1) Overall regression F statistic

H0 : β0 = β1 = β2 = β3 = 0

K = 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and m =


0
0
0
0


2)

H0 : β1 = 0

K = 
0
1
0
0


and m = 0

3)

H0 : β1 = 0 in model 2 yi = β0 + β1Acetici + εi

K = (
0
1

)
and m = 0
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4)

H0 : β0 = β1 = 0 in full model

K = (
1 0 0 0
0 1 0 0

)
and m =

(
0
0

)

5)

H0 : β1 = β2 → H0 : β1 − β2 = 0

K = (
0 1 −1 0

)
and m = 0

Question 2

Now we consider the following regression model from teengamb:

gamblei = β0+β1malei+β2statusi+β3incomei+β4verbali+β5statusxmale+β6incomexmale+β7verbalxmale+εi

for i = 1, . . . , 47

Part 1

Since income is a continuous variable, the effect of income can be interpreted as the change in the mean
response given a unit change in income.

In the case of income, the effect can be interpreted as β3 for all females and β3 + β6 for all males.

Part 2

We can answer if the effect of income depends on sex by conducting a t-test on the interaction term between
malei and incomei.

If we reject H0 : maleixincomei, then we have evidence to say that there is some difference between the
effect income has between males and females.

Part 3

If I was interested in seeing if there was a positive or negative relationship between acmount gambled and
income for males, I examine the parameter estimate for incomeixmalei, β6.

If β6 is postive and significant, that tells us that males on average gamble more if their income increases.

If β6 is negative and significant, that tells us that males on average gamble less if their income increases.
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Part 4

Since sex is coded as male and is a categorical variable, the effect of sex can be interpreted as the difference
in average amount gambled between males and females. The parameter estimate corresponding to this
difference in mean amount is β1.

There are also interaction terms that are at play in this model, β5, β6, β7, which involve sex. These effects
are prevalent when there is a unit change in status, income, or verbal score respectively, holding all other
variables constant.

The total effect sex on amount gambled for this model can be written as:

effectsex = β1 + β5(status) + β6(income) + β7(verbal)

Part 5

I would conduct an F-test between a full model containing the sex categorical variable coded as male plus
all the interaction terms against a reduced model with none of these terms present:

Reduced Model: ˆgamblei = β0 + β2statusi + β3incomei + β4verbali

The H0 : β1 = β5 = β6 = β7 = 0 can be tested using this F-test framework.

Part 2

Faraway 3.7

Part a

Here is a summary of the model:

##
## Call:
## lm(formula = Distance ~ RStr + LStr + RFlex + LFlex, data = punting)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.941 -8.958 -4.441 13.523 17.016
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -79.6236 65.5935 -1.214 0.259
## RStr 0.5116 0.4856 1.054 0.323
## LStr -0.1862 0.5130 -0.363 0.726
## RFlex 2.3745 1.4374 1.652 0.137
## LFlex -0.5277 0.8255 -0.639 0.541
##
## Residual standard error: 16.33 on 8 degrees of freedom
## Multiple R-squared: 0.7365, Adjusted R-squared: 0.6047
## F-statistic: 5.59 on 4 and 8 DF, p-value: 0.01902

None of these predictors have a relationship to the response according to the individual t-tests! However, we
notice that the p-value for the F-test is significant, telling us that the model at least performs better than
the null model.
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Part b.

From the above, the F-statistic is 5.59 and the associated p-value against the null distribution is .01902,
thereby rejecting the null hypothesis.

This tells us that at least one of these predictors is significant to the model. Perhaps there are some
interaction terms that are going on here.

Part c.

We can test that the effects of right and left leg strength are equal using the I() function. When the model
is created, only one parameter estimate will be made for RStr and LStr.

## Analysis of Variance Table
##
## Model 1: Distance ~ RStr + LStr + RFlex + LFlex
## Model 2: Distance ~ I(RStr + LStr) + RFlex + LFlex
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 8 2132.6
## 2 9 2287.4 -1 -154.72 0.5804 0.468

The F-test between the full model where RStr and LStr have their own parameter estimates and the reduced
model where they share a parameter estimate produces a p-value of .468, telling us that we cannot reject
H0. According to this F-test,we should prefer to reduced model. This means that using the reduced model
with an effect for RStr and LStr is justifiable.

Part d.

Constructing a 95% Confidence region for (βRStr, βLStr) is related to part (c) since if the confidence region
contains the line where βRStr = βLStr, then we know that we cannot reject the null hypothesis that the
effects are the same.

##
## Attaching package: 'ellipse'

## The following object is masked from 'package:graphics':
##
## pairs
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This is relevant to part c. because if a point falls on the line for βRStr = βLStr and inside this confidence
region, we will fail to reject the null hypothesis that it is equal to 0. In our case, the parameter estimate for
β1 = .1741, which is inside the region. This verifies our result from the F-test in part c.

summary(punt_lm2)

##
## Call:
## lm(formula = Distance ~ I(RStr + LStr) + RFlex + LFlex, data = punting)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.698 -9.494 -5.155 9.081 20.611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -71.2694 63.1447 -1.129 0.288
## I(RStr + LStr) 0.1741 0.1940 0.898 0.393
## RFlex 2.3137 1.4013 1.651 0.133
## LFlex -0.5772 0.8035 -0.718 0.491
##
## Residual standard error: 15.94 on 9 degrees of freedom
## Multiple R-squared: 0.7174, Adjusted R-squared: 0.6232
## F-statistic: 7.615 on 3 and 9 DF, p-value: 0.00769

Part e.
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We can do this using the I() function. This model is similar to part c. but it excludes the variables for
flexibility.

punt_lm3 <- lm(Distance ~ I(RStr + LStr), data = punting)
punt_lm3b <- lm(Distance ~ RStr + LStr, data = punting)
anova(punt_lm3, punt_lm3b)

## Analysis of Variance Table
##
## Model 1: Distance ~ I(RStr + LStr)
## Model 2: Distance ~ RStr + LStr
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 11 3061.3
## 2 10 2973.1 1 88.281 0.2969 0.5978

The F-test output fails to reject the null hypothesis that the reduced model adequately predicts the distance
of punts. Therefore, we are justified in using the reduced model and considering a single parameter esitmate
for the sum of RStr + LStr.

Part f.

anova(punt_lm, punt_lm3)

## Analysis of Variance Table
##
## Model 1: Distance ~ RStr + LStr + RFlex + LFlex
## Model 2: Distance ~ I(RStr + LStr)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 8 2132.6
## 2 11 3061.3 -3 -928.71 1.1613 0.3827

Part g.

Performing the tests from (c) and (f) simultaneously involves checking if the effects of right and left leg
strengths are the same and if the effects of right and left leg flexibility are the same.

##
## Call:
## lm(formula = Distance ~ I(RStr + LStr) + I(RFlex + LFlex), data = punting)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.948 -13.929 1.020 9.795 29.111
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.1525 60.9655 -0.593 0.566
## I(RStr + LStr) 0.3700 0.1430 2.588 0.027 *
## I(RFlex + LFlex) 0.4093 0.4228 0.968 0.356
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## Residual standard error: 16.73 on 10 degrees of freedom
## Multiple R-squared: 0.6541, Adjusted R-squared: 0.585
## F-statistic: 9.457 on 2 and 10 DF, p-value: 0.004948

## Analysis of Variance Table
##
## Model 1: Distance ~ RStr + LStr + RFlex + LFlex
## Model 2: Distance ~ I(RStr + LStr) + I(RFlex + LFlex)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 8 2132.6
## 2 10 2799.1 -2 -666.43 1.25 0.337

We cannot reject the null hypothesis for the F statistics so we have no significant evidence to say that the
full model with separate effects for RStr, LStr, RFlex, LFlex is better than the reduced model. We’re
better off using the model that has a combined estimate for the leg strengths and the leg flexibilities.

Part h.

##
## Call:
## lm(formula = Hang ~ RStr + LStr + RFlex + LFlex, data = punting)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36297 -0.13528 -0.07849 0.09938 0.35893
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.225239 1.032784 -0.218 0.833
## RStr 0.005153 0.007645 0.674 0.519
## LStr 0.007697 0.008077 0.953 0.369
## RFlex 0.019404 0.022631 0.857 0.416
## LFlex 0.004614 0.012998 0.355 0.732
##
## Residual standard error: 0.2571 on 8 degrees of freedom
## Multiple R-squared: 0.8156, Adjusted R-squared: 0.7235
## F-statistic: 8.848 on 4 and 8 DF, p-value: 0.004925

We cannot perform an F-test to compare this model against the model from part a. since these models are
not nested in one another - they model completely different responses.

Part i.

Our goal is to create a plot showing the predicted value when you use different values of RStr.

## [1] 104

## Intercept RStr LStr RFlex LFlex predicted_values
## 1 1 110 170 95.69231 91.23077 124.0784
## 2 1 120 170 95.69231 91.23077 129.1948
## 3 1 130 170 95.69231 91.23077 134.3112
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## 4 1 140 170 95.69231 91.23077 139.4276
## 5 1 150 170 95.69231 91.23077 144.5439
## 6 1 160 170 95.69231 91.23077 149.6603
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PLot of Punting Distance with different values of Right Leg Strength

Neat plot!

Part j.

I am a fan of the model with two parameter estimates, one for the combined leg strengths and another for
the combined leg flexibilities. I think it is parsimonious while still having relatively good performance.

ggplot(aes(x = LStr, y = predicted_values2, color = RStr), data = plot_pred2) + geom_line() + ggtitle("Plot of Punting Distance with different values of Right Leg Strength") +
xlab("Left Leg Strength") +
ylab("Punting Distance (feet)")
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Plot of Punting Distance with different values of Right Leg Strength

Weirdly enough, this plot has punting distance moving in the opposite direction of the previous plot as we
change left leg strength.

Faraway 4.5

Part a.

##
## Call:
## lm(formula = brozek ~ age + weight + height + neck + chest +
## abdom + hip + thigh + knee + ankle + biceps + forearm + wrist,
## data = fat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.264 -2.572 -0.097 2.898 9.327
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15.29255 16.06992 -0.952 0.34225
## age 0.05679 0.02996 1.895 0.05929 .
## weight -0.08031 0.04958 -1.620 0.10660
## height -0.06460 0.08893 -0.726 0.46830
## neck -0.43754 0.21533 -2.032 0.04327 *
## chest -0.02360 0.09184 -0.257 0.79740
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## abdom 0.88543 0.08008 11.057 < 2e-16 ***
## hip -0.19842 0.13516 -1.468 0.14341
## thigh 0.23190 0.13372 1.734 0.08418 .
## knee -0.01168 0.22414 -0.052 0.95850
## ankle 0.16354 0.20514 0.797 0.42614
## biceps 0.15280 0.15851 0.964 0.33605
## forearm 0.43049 0.18445 2.334 0.02044 *
## wrist -1.47654 0.49552 -2.980 0.00318 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.988 on 238 degrees of freedom
## Multiple R-squared: 0.749, Adjusted R-squared: 0.7353
## F-statistic: 54.63 on 13 and 238 DF, p-value: < 2.2e-16

## Analysis of Variance Table
##
## Model 1: brozek ~ age + weight + height + neck + chest + abdom + hip +
## thigh + knee + ankle + biceps + forearm + wrist
## Model 2: brozek ~ age + weight + height + abdom
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 238 3785.1
## 2 247 4205.0 -9 -419.9 2.9336 0.002558 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It is not justifiable to use the smaller model since our p-value from the F-test is below the α = .05 level.
Therefore we reject the H0 that the reduced model is appropriate.

Part b.

Compute a 95% prediction interval for median predictor values and compare to the results to the interval
for the full model.

x0 <- model.matrix(reduced_fat)
x1 <- model.matrix(full_fat)

y0 <- apply(x0, 2, median)
y1 <- apply(x1, 2, median)

predict(reduced_fat, new=data.frame(t(y0)), interval="prediction")

## fit lwr upr
## 1 17.84028 9.696631 25.98392

predict(full_fat, new=data.frame(t(y1)), interval="prediction")

## fit lwr upr
## 1 17.49322 9.61783 25.36861

The intervals are pretty close - they don’t differ by any appreciable amount.
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Part c.

For the reduced model, examine all the observations from case numbers 25 to 50. Which two observations
seem particularly anomalous?

colnames(x0)

## [1] "(Intercept)" "age" "weight" "height" "abdom"

x0 <- as.data.frame(x0[25:50,])
dim(x0)

## [1] 26 5

summary(x0)

## (Intercept) age weight height
## Min. :1 Min. :27.00 Min. :125.2 Min. :29.50
## 1st Qu.:1 1st Qu.:31.25 1st Qu.:148.1 1st Qu.:67.50
## Median :1 Median :40.50 Median :166.1 Median :68.88
## Mean :1 Mean :38.92 Mean :182.6 Mean :67.93
## 3rd Qu.:1 3rd Qu.:45.00 3rd Qu.:204.5 3rd Qu.:71.25
## Max. :1 Max. :50.00 Max. :363.1 Max. :73.75
## abdom
## Min. : 70.40
## 1st Qu.: 79.20
## Median : 86.60
## Mean : 93.25
## 3rd Qu.:104.30
## Max. :148.10

boxplot(x0$weight,
main = "Boxplot of Weight",
xlab = "Weight (lbs)",
horizontal= TRUE)
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From the summary and the boxplot of weight, we see that there are two anomalous points: one outlier for
weight on the far right end of the scale and another outlier for height on the far left.

x0[x0$height == min(x0$height),]

## (Intercept) age weight height abdom
## 42 1 44 205 29.5 104.3

x0[x0$weight == max(x0$weight),]

## (Intercept) age weight height abdom
## 39 1 46 363.15 72.25 148.1

Part d.

Recompute the 95% prediction interval for median predictor values after these two anomalous cases that
have been excluded from the data. Did this make a difference?

new_data <- fat[c(-39, -42),]

new_full_fat <- lm(brozek ~ age + weight + height + neck + chest + abdom + hip + thigh + knee + ankle + biceps + forearm + wrist, data =new_data)

new_reduced_fat <- lm(brozek ~ age + weight + height + abdom, data = new_data)
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x1 <- model.matrix(new_full_fat)
x0 <- model.matrix(new_reduced_fat)

y0 <- apply(x0, 2, median)
y1 <- apply(x1, 2, median)

predict(new_reduced_fat, new=data.frame(t(y0)), interval="prediction")

## fit lwr upr
## 1 17.9033 9.887851 25.91874

predict(new_full_fat, new=data.frame(t(y1)), interval="prediction")

## fit lwr upr
## 1 17.54174 9.754495 25.32898

Even after removing the anomalous cases, the prediction intervals don’t actually change that much!
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