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Part 1

Say we have the following model:

y = Xβ + Zγ + ε

with Xnxp and Znxq are fixed covariate matrices, β and γ are unknown parameter vectors and E[ε] = 0 and
V ar(ε) = σ2I.

If you don’t include Z as a covariate, you fit the following model:

y = Xβ + ε

(a) Find the expected value of your estimates.

E[β̂] = E[(XTX)−1XT y]
= E[(XTX)−1XT (Xβ + Zγ + ε)]
= E[(XTX)−1XTXβ] + (XTX)−1XTZγ + (XTX)−1XTXT ε]
= β + E[(XTX)−1XTZγ] + E[(XTX)−1XT ε]
= β + E[(XTX)−1XTZγ] + (XTX)−1E[ε]
= β + E[(XTX)−1XTZγ]
= β + (XTX)−1XTZ)γ

(b) When is β̂ unbiased?

It is unbiased in two scenarios:

• Trivially, γ = 0
• Or when XTZ = 0 i.e. when the rows and columns of Z and XT are orthogonal.

Part 2

Question 1

A sensible place to being is to investigate wage, education, and experience split amongst our several categor-
ical variables. Note that we have turned region into a single factor variable instead of 4 dummy variables.
Using a function like mosaic::favstats(), we can get a quick summary of our continuous variables, split
by subgroup.

These tables provide us with some interesting information:
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• First, the region of the worker seems to not matter - wages, education, and experience in each of the
four regions seems about the same.

• Second, years of education doesn’t seem to vary between races, metropolitan residence, or full
time/part time workers.

• Third, years of experience doesn’t seem to vary between races, metropolitan residence, but does
seem to vary with part-time/full-time status.

• Fourth, and most notably though, it seems that wage in particular is influenced by race, smsa, and
part time status.

Table 1: Wage vs. Race

race min Q1 median Q3 max mean sd n
white 50.39 315.805 522.32 795.5875 7716.05 620.9838 468.2589 1844
black 52.23 237.420 398.46 641.0300 2374.15 456.0363 307.5330 156

Table 2: Wage vs. SMSA

smsa min Q1 median Q3 max mean sd n
notsmsa 54.61 260.8025 427.35 664.77 2374.15 497.8030 338.5210 488
smsa 50.39 333.2725 547.47 830.96 7716.05 643.7221 487.4445 1512

Table 3: Wage vs Part-time status

pt min Q1 median Q3 max mean sd n
notpt 53.83 356.13 557.93 807.22 5144.03 641.7237 422.5631 1815
pt 50.39 96.23 148.15 259.26 7716.05 278.4176 645.2753 185

Table 4: Experience (in years) vs. Part-time status

pt min Q1 median Q3 max mean sd n
notpt -1 9 16 27 57 18.74325 12.67054 1815
pt -2 0 5 30 59 15.14595 18.68606 185

Now that we have found some interesting paths of exploration, we can generate density curves of the wage
data split up by our categorical variables of interest. We will also generate a density curve of years of
experience split up by part-time status since there also seemed to be a relationship there.
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These charts tell us a few things: first, the distribution of black wages is centered left of the distribution
of white wages. Additionally, the distribution of black workers wages is much less spread out than white
wages. Perhaps a symptom of this is that whites have a lot of outliers towards the extremes of wealth while
blacks do not. We see a similar story with workers in metropolitan areas; while the distribution is quite
similar to works who are not in metropolitan areas but they have several outlier towards to extremes of the
distribution.

There is a clear difference in distribution with part-time vs non part-time workers though. As one might
expect, part-time workers on average earn far less per week than non part time workers. Lastly, there is also
a clear difference in the distribution of years of experience between part time and non part time workers.
Non part time workers on average have more years of experience, but interestingly there are more part time
workers with 50+ years of experience than non part time workers. A possible example for this might be that
non part time workers retire earlier and leave the workforce, or that older folks take part time jobs after
retiring from their careers.

Question 2: Faraway 2.7

We are examining the wafer dataset which contains 4 categorical explanatory variables and a continuous
response variable.

## (Intercept) x1+ x2+ x3+ x4+
## 1 1 0 0 0 0
## 2 1 1 0 0 0
## 3 1 0 1 0 0
## 4 1 1 1 0 0
## 5 1 0 0 1 0
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Using the model.matrix() function, we can see that + is coded as 1 and - is coded as 0.

Compute the correlation in the X matrix

cor(model.matrix(wfmodel))

## Warning in stats::cor(x, y, ...): the standard deviation is zero

## (Intercept) x1+ x2+ x3+ x4+
## (Intercept) 1 NA NA NA NA
## x1+ NA 1 0 0 0
## x2+ NA 0 1 0 0
## x3+ NA 0 0 1 0
## x4+ NA 0 0 0 1

We see here that in the rows and columns associated with the Intercept parameter, R reports a value of NA.
If we recall the formula for correlation:

cor(X,Y ) = cov(X,Y )
σXσY

This value will be undefined if either σX or σY is 0. The output of model.matrix() shows us that the
Intercept variable only ever takes on the number 1, therefore its variance and standard deviation are 0 – it
never varies!

Seeing this, the cor() function reports these undefined values as NA.

What difference in resistance is expected when moving from low to the high level of X1?

summary(wfmodel)

##
## Call:
## lm(formula = resist ~ x1 + x2 + x3 + x4, data = wafer)
##
## Residuals:
## Min 1Q Median 3Q Max
## -43.381 -17.119 4.825 16.644 33.769
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 236.78 14.77 16.032 5.65e-09 ***
## x1+ 25.76 13.21 1.950 0.077085 .
## x2+ -69.89 13.21 -5.291 0.000256 ***
## x3+ 43.59 13.21 3.300 0.007083 **
## x4+ -14.49 13.21 -1.097 0.296193
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 26.42 on 11 degrees of freedom
## Multiple R-squared: 0.7996, Adjusted R-squared: 0.7267
## F-statistic: 10.97 on 4 and 11 DF, p-value: 0.0007815
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If holding all other variables constant, the average expected resistance increase from flipping x1 from “high”
to “low” is 25.76 ohms.

Refit the model without x4 and examine the regression coefficients and standard errors. What
stayed the same? What did not?

wfmodel2 <- lm(resist ~ x1 + x2 + x3, data = wafer)
wfmodel$coefficients; wfmodel2$coefficients

## (Intercept) x1+ x2+ x3+ x4+
## 236.7813 25.7625 -69.8875 43.5875 -14.4875

## (Intercept) x1+ x2+ x3+
## 229.5375 25.7625 -69.8875 43.5875

The parameter estimates for x1, x2, and x3 stayed the same between wfmodel and wfmodel2. The intercepts
however changed, as did the standard error calculations for all of the parameters, the model R2 values,
F-statistic and corresponding p-value, and the calculated σ̂ and residuals.

Explain how the change in the regression coefficients is related to the correlation matrix of X.

cor(model.matrix(wfmodel2))

## Warning in stats::cor(x, y, ...): the standard deviation is zero

## (Intercept) x1+ x2+ x3+
## (Intercept) 1 NA NA NA
## x1+ NA 1 0 0
## x2+ NA 0 1 0
## x3+ NA 0 0 1

From the correlation matrices, we see that the explanatory variables x1, . . ., x4 are not correlated with one
another. This would explain why removing one of the variables does not impact the parameter estimates for
the remaining variables. However, these explanatory variables must have some correlation with the intercept
estimate since the intercept changes as we remove variables.
The vcov() function confirms our suspicions. There is a definite relationship between the intercept and the
explanatory variables in the model which changes when we remove variables from the model

vcov(wfmodel)

## (Intercept) x1+ x2+ x3+
## (Intercept) 218.12520 -8.725008e+01 -8.725008e+01 -8.725008e+01
## x1+ -87.25008 1.745002e+02 -4.843352e-15 9.686705e-15
## x2+ -87.25008 -4.843352e-15 1.745002e+02 4.843352e-15
## x3+ -87.25008 9.686705e-15 4.843352e-15 1.745002e+02
## x4+ -87.25008 9.686705e-15 4.843352e-15 9.686705e-15
## x4+
## (Intercept) -8.725008e+01
## x1+ 9.686705e-15
## x2+ 4.843352e-15
## x3+ 9.686705e-15
## x4+ 1.745002e+02
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vcov(wfmodel2)

## (Intercept) x1+ x2+ x3+
## (Intercept) 177.44911 -8.872456e+01 -8.872456e+01 -8.872456e+01
## x1+ -88.72456 1.774491e+02 -4.925202e-15 9.850405e-15
## x2+ -88.72456 -4.925202e-15 1.774491e+02 4.925202e-15
## x3+ -88.72456 9.850405e-15 4.925202e-15 1.774491e+02

Question 3

From the teengamb dataset from HW2, find the estimate of σ. Interpret this value in context.

data(teengamb)
teenmodel <- lm(gamble ~ sex + status + income + verbal, data = teengamb)
(teensummary <- summary(teenmodel))

##
## Call:
## lm(formula = gamble ~ sex + status + income + verbal, data = teengamb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -51.082 -11.320 -1.451 9.452 94.252
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.55565 17.19680 1.312 0.1968
## sex -22.11833 8.21111 -2.694 0.0101 *
## status 0.05223 0.28111 0.186 0.8535
## income 4.96198 1.02539 4.839 1.79e-05 ***
## verbal -2.95949 2.17215 -1.362 0.1803
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.69 on 42 degrees of freedom
## Multiple R-squared: 0.5267, Adjusted R-squared: 0.4816
## F-statistic: 11.69 on 4 and 42 DF, p-value: 1.815e-06

sigmahat <- teensummary$sigma

In the summary() function, σ̂ is reported as Residual standard error. In the case of the above, σ̂ =
22.69 pounds. σ̂ is interpreted as the variance of our residuals, which is to say under our assumptions,
the residuals of this model εi ∼ N(0, 22.692).

Find the estimated variance-covariance matrix of the coefficient estimates using matrix algebra

The variance-covariance matrix for β̂ can be found as:
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V ar[β̂] = V ar[(XTX)−1XT y]
= (XTX)−1XTV ar[y]((XTX)−1XT )T

= (XTX)−1XT Inσ
2X(XTX)−1

= σ2(XTX)−1

Therefore, an estimate for the variance-covariance matrix can be calculated using σ̂

design_matrix <- cbind(rep(1,47),
teengamb$sex,
teengamb$status,
teengamb$income,
teengamb$verbal)

xtx <- t(design_matrix) %*% design_matrix
inv_xtx <- solve(xtx)
inv_xtx

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.574398624 -0.141267359 -0.0046525629 -0.0192062967 -0.0294922334
## [2,] -0.141267359 0.130955021 0.0024738801 0.0047880694 -0.0068775134
## [3,] -0.004652563 0.002473880 0.0001534883 0.0001877384 -0.0006249466
## [4,] -0.019206297 0.004788069 0.0001877384 0.0020421990 -0.0001052899
## [5,] -0.029492233 -0.006877513 -0.0006249466 -0.0001052899 0.0091642662

(cov_matrix <- (22.69**2) * diag(5) %*% inv_xtx)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 295.721148 -72.729536 -2.39530734 -9.88809489 -15.18366642
## [2,] -72.729536 67.420372 1.27364277 2.46507098 -3.54079217
## [3,] -2.395307 1.273643 0.07902132 0.09665450 -0.32174507
## [4,] -9.888095 2.465071 0.09665450 1.05139774 -0.05420707
## [5,] -15.183666 -3.540792 -0.32174507 -0.05420707 4.71809505

We can double check this variance-covariance matrix by comparing the variance estimates from the summary
of lm() to the diagonal entries in the variance-covariance matrix.

(teensummary$coefficients[,2]**2)

## (Intercept) sex status income verbal
## 295.7300488 67.4224018 0.0790237 1.0514294 4.7182371

(diag(cov_matrix))

## [1] 295.72114758 67.42037245 0.07902132 1.05139774 4.71809505

Looks like we calculated our variance-covariance matrix correctly!
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