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State the assumptions required for making inferences in regression

• Linearity (is the underlying relationship of the model linear? Y = Xβ )
• Constant variance (errors εi all have the same variance σ2)
• Independnece of the errors
• Normality, errors are normally distributed

Also, when dealing with matrix algebra we need our design matrix X to be of rank p

Rank the assumptions in rough order of importance

1) Linearity is the most important.
2) Independece of errors
3) Constant variance
4) Normality

Describe the consequences of violating a particular assumption

1) If linearity is violated, then our entire model might be meaningless! The parameter estimates will
definitely be biased

2) If the errors are not independent, then the parameter estimates are probably fine, but the standard
errors of those estimates are going to be incorrect. You will not be able to do inference on those
estimates.

3) If constant variance if violated, the variance in predictions is probably not going to be correct.
4) If the errors are not normal, for large datasets we usually can get away with it. However, in general

for non normal errors we should avoid making prediction intervals.

Sketch residual plots that should be examined to diagnose problems with regres-
sion assumptions

Residual plots that deviate from being a constant spread based around 0 should be examined. Basically
anything that doesn’t roughly look like this might be problem:

0 10 20 30 40 50

−
2

−
1

0
1

2

Residual Plot

fitted values

re
si

du
al

s

1



Sketch a residual plot that illustrates a violation of a particular assumption
(non-linearity, non-constant variance, non-normality)

Check out fig. 1

A non-normal residual plot might appear skewed (more residuals on one side or more extreme residuals on
one side).

Given a residual plot, describe evidence you see for violations of the regression
assumptions

Should be easy to do, just match with the above.

Suggest a remedy for a particular violation

• For nonlinearity: We might want to try transforming the variables, transform the predictors, use
splines.

• For heteroskedastictiy: You can try transforming the response (log, square root, inverse, Box-Cox,
etc.). You can also try using weighted least squares.

• For nonnormality: Transform the response. We should try using robust regression. OLS estimates
are still BLUE, but they might not be effective.

Describe three ways a point may be considered unusual

• A point can be far away in p-dimensional space from the other data points (high leverage)
• A point can substantially change the model when included or excluded in the model (influential)
• A point can just not fit the model well - their response and predictor variables are really weird (outlier)

Name three case influence statistics and describe conceptually how they can
measure usefulness

Leverage

The leverage of an observation hi = Hii where H is that hat matrix X(XTX)−1XT It’s just the Mahalnobis
distance. If a point has large leverage, it is far away from the mean of all the explanatory variables. Points
with high leverage pull the regression line towards it.
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Outliers

These points do not fit the regression line well, but this does not necessarily mean that they have high
residuals since we try to minimize residuals in OLS regression. We often look at studentized residuals to
find outliers which is calculated around

ˆy(i) − yi

where ˆy(i) is the fitted value for the i-th observation from a model fitted to the data excluding the i-th
observation.

Influence

Infuence tries to measure how much a model fit changes when that observation is excluded. A big change
means big influence. We often measure this using Cook’s distance which is based around this quantity:

(ŷ − ˆy(i))T (ŷ − ˆy(i))

which is essentially squaring the distance between the vector of predicted responses with and without point
i.

Identify from a scatterplot if a point is likely to be high leverage, influential, or
an outlier

We should be able to do this.

Describe a limitation of case influence statistics

Case influence statistics are susceptible to masking effects. There might be groups of points that are badly
behaved, but because they are grouped together, their effects mask one another. Therefore, we might remove
one point thinking we have solved the problem when really we have only removed one of several problematic
points.

Describe what is meant by multicollinearity

Multicollinearity or collinearity is when predictor variables are highly correlated to one another.

Describe how multicollinearity might be detected

We can detect multicollinearity using:

• A correlation matrix of the predictors
• R2

i which is basically regressing the i-th predictor on the rest of the predictors (closely related to this
is VIF which is (1−R2

j )−1)
• Large condition numbers which are calculated from the eigenvalues λi of XTX

κ =

√
λ1

λp
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Discuss the consequences of multicollinearity

While linear combination might make XTX will not be an invertible matrix, closely correlated predictors
might lead to imprecise estimates of β. Standard errrors will be inflated and the fit becomes very senstive
to measurement errors. It is generally a pretty bad thing to have.

However, Faraway says the following about multicollinearity in relation to the goals of our prediction:

• If our goal is explanation and inference, we can drop collinear predictors since this might help us get
better estimates with smaller standard errors for the predictors we actually care about. However we
should be careful not to assume that the variables we drop are not related to the response. If we want
to keep all variables in, we should use regularization techniques like ridge regression.

• If our goal is prediction, we don’t necessarily have to do anything. It depends on if we are predicting
for values of x0 that are far from the rest of our data. In collinear data, this is an especially bad thing
to do compared to data that is not close to singular or is orthogonal.

Describe the assumption that generalized least squares is designed to relax

In OLS, we generally use the assumption that var(ε) = σ2I, but it’s possible that instead we want to have
var(ε) = σ2Σ where Σ is a matrix that could represent some nonconstant variance or correlated errors.

Derive the generalized least squares estimates (for known Σ)

Our assumption here is that var(ε̂) = σ2Σ and that we can decompose Σ into SST where S is an upper
triangular matrix.

Then the derivation for the generalized least squares estimates is just:

y = Xβ + ε

S−1y = S−1Xβ + S−1ε

y′ = X ′β + ε′

Now we see that we can get regular old OLS...
var(ε′) = var(S−1ε)

= S−1(var(ε))S−T

= S−1σ2SSTS−T

= σ2I

Now we can calculate β

β̂ = ((X ′)TX ′)−1(X ′)TY ′

= ((S−1X)TS−1X)−1(S−1X)T (S−1Y )
= (XT (S−1)TS−1X)−1(XT (S−1)T )(S−1Y )

= (XT (SST )−1X)−1(XT (SST )−1Y )
= (XTΣ−1X)−1XTΣ−1y

and variance of β̂ = (XTΣ−1X)−1σ2
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Also notice that var(ε′) = σ2I since:

var(ε′) = var(S−1ε)
= S−1var(ε)(S−1)T

= S−1σ2Σ(S−1)T

= S−1σ2SST (S−1)T

= σ2S−1SST (ST )−1

= σ2I

Give an example of data where using weighted least squares is desirable

For generaled least squares, a good example of correlated errors can arise in time series data. Another
example would be where the observation are grouped in some way - for example, we have spatial data.

Weighted least squares is a special case of generalized least squares where the errors are uncorrelated but
have unequal variance. In this, case Σ is a diagonal matrix of weights. This can happen when the observed
responses are actually averages of a bunch of ni observation (for example, that crawlin’ tots data). Errors
might also be proportional to some predictor value, for example we might see that there is a positive
relationship between εi and some predictor.

Conduct a lack of fit test

A lack of fit test is based on a simple idea: compare σ̂2 to σ2 to see if we are overfitting or underfitting our
model.

Since we usually don’t know σ though, we have to make a model free estimate of it. This is possible if we
have repeated values of the response for one or more values of x. These repeated measures cannot
just be on the same subjects - we need different subjects with the same predictor levels. This would give us
an estimate of the between-subject variability. Values of x with no replication will be fit exactly and will not
contribute to our model free estimate of σ2.

If there are no replicates, we probably just have to resort to using graphical models.

Interpret the result of a lack of fit test

In R we can do a lack of fit test by fitting a model where the predictor is split into a factor variable so
each unique value is treated as one group. In the end, this just boils down to doing an F-test between our
proposed model and the model with the factor variable fit to it.

A low p-value here means that the pure error standard deviation of the factor model is substantially different
than the σ̂2 in our proposed model. Therefore, there is a lack of fit and we should reconsider our model.

Note that if the null hypothesis is accepted here, that does not mean that we have our true model. We can
only say that the data does not contradict our model.

Describe the goal of robust regression techniques

Robust regression is used when the errors fit some distribution that isn’t normal. Short-tailed errors usually
aren’t a big deal, but long-tailed errors can have a big effect on OLS estimates. While it is sometimes fine to
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Figure 1: Box Cox formula

Figure 2: Box cox plot

just remove outliers and the like with Cook’s D or something, robust regression is better if you are dealing
with more than two outliers.

The basic idea of robust regression is that we use M-estimators to choose β. M-estimators are based on
minimizing the sum across all our data points of a function ρ(x) for ρ(yi − xiβ) where:

• ρ(x) = x2 is just OLS
• ρ(x) = |x| is called least absolute deviation regression
• and Huber’s method which is basically a compromise between OLS and LAD

Describe why we might transform the response and/or the explanatory variables

If some of our assumptions like nonconstant error variance and non-linearity are violated, it might be possible
to transform the predictor to make the relationship more linear or better satisfy our assumptions.

Choose a transform based on a Box-Cox plot

The Box-Cox is a popular method of determining which response transformation is best.

We often determine which λ will be best by using a graph where the x axis are various values of λ and the y-
axis are the respective values of the log-likelihood. We want the λ values which maximizes the log-likelihood.
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Interpret a parameter estimate based on a regression with a log transformed
response

When we use a log transformation, the model is now multiplicative. A coefficient βi on the original scale
now means that the predicted response will be multiplied by eβi .

This is easy to see based on the fact that:

ln(y) = β0 + β1x1 + . . .+ βpxpy = eβ0eβ1x1 . . . eβpxp

State the additional assumption required to make inferences about medians in
a regression using a log transformed response

We need to assume that the response is symmetric on the new log-transformed scale.

Give a reason why variable selection might be recommended

If we have a large number of variables, we probably want to remove variables which only add noise to our
model. Our model might perform better with a smaller selection of parameters. Additionally, it might be
expensive to collect all this data - it would be cheaper to only need to collect a subset of that data.

Charlotte thinks of model selection as:

• A tool for finding predictive models
• A tool for exploratory data analysis

Give a reason why variable selection might be avoided

If our goal is prediction and a model with more parameters performs better in prediction, it might be better
to use that model instead of a reduced model.

Also, if we are concerned with finding the explanatory effect of the predictors on the response variable, we
probably not want to use variable selection since it will probably not capture the true relationship in the
data.

Doing valid inference on a model after selection falls into post-selection inference and is an unsolved problem.
Classical statistics doesn’t hold up after we’ve done model selection since the inferences become conditional
on having selected a particular model.

Describe the process of model selection by forward or backward elimination

Forward selection starts at an intercept model then add variables based on the lowest significant p-value.
We continue until no more variables can be added.

Backward selection is the opposite. It starts at the full model and then removes variables based on the
highest p-values. IT continues until we can’t remove anymore variables.

Name and describe four model selection criteria

• Akaike Information Criterion (small is good)
• Bayesian Information Criterion (small is good)
• Mallow’s Cp (small is good)
• Adjusted R2 (large is good)
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Discuss the similarities and differences between model selection criteria

AIC and BIC are both based around the quantity nlog
(
RSS
n

)
. They both have slightly different penalty

parameters which penalize adding variables to the model.

Mallow’s Cp is somewhat similar in that it also uses RSS, but it instead tries to estimate the model with
the lowest mean square prediction error.

Adjusted R2 is similar to regular R2 but it penalizes adding predictors to the model since it is possible to
artificially inflate R2 by just sticking stuff in the model.

Discuss why it is dangerous to use the same data to fit a predictive model and
evaluate a model’s predictive ability

Since the model was trained on that data, it makes sense that it would predict that same data very well. If
we were to calculate a mean square error, it would probably be overinflated.

Describe two regularized regression methods

Regularized regression methods are based around the idea that if we introduce some bias into our estimates,
we can reduce the variance in our model.

Instead of minimizing

n∑
i=1

(yi − ŷi)2

we instead minimize

n∑
i=1

(yi − ŷi)2 + λ

p∑
j=1

f(βj)

There are two main kinds of regularized regression methods: Lasso and Ridge regression.

In Lasso, the second term has f(x) = |x| and in ridge regression the second term has f(x) = x2. Lasso
estimates can be shrunk down to 0, so we can actually do model selection using Lasso regression.

According to Faraway: Ridge regression is useful in collinearity situations where we want to keep all th
predictors we can. Since the typical scenario is that there are a lot of predictors which individually have
a non-zero effect on the response, but not necessarily a large effect, this matches pretty well with ridge
regression regularization method where we believe the regression coefficients will not be large.

Describe why might we prefer biased estimates

The bias-variance tradeoff! A biased estimate might have smaller variance than an unbiased one.

More complex models might decrease bias, but they generally increase variance. Increasing model complexity
only improves performance up to a point.
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Figure 3: High bias, low variance

Describe/sketch an example of a predictive model that would have low/high
variances and low/high bias

Bias captures how far away our prediction are from the true mean over repeated samples. Variance captures
how much our prediction vary, again over repeated samples.

I think Charlotte Wickham’s notes describe it best:

Discuss the differences in goals between explanation and prediction

In explanation, we want to test specific parameters and see if there is an actual relationship between those
predictors and the response. It requires valid inference with all necessary assumptions.

In prediction, we just want to get a good predictive model. We don’t necessarily care about having practically
important or unimportant variables in the model so long as we are able to get a low predictive MSE.

Describe the difference between linear and logistic regression

Logistic regression is using a linear model to model a binary response (represented as either a 0 or 1).

The general model makes use of a logit transformation on the response:

logit(P (y)) = Xβ
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Figure 4: Low Bias Low variance

Figure 5: Low bias, high variance
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Interpretation of logistic regression coefficients

The basic intuition is that a postive coefficient means that the explanatory increases probability and a
negative coefficient decreases probability. To get more precise on the original scale though, we can use a
couple techniques:

• Backtransform at or near the center of the data

Using the inverse logit function 1/(1 + exp(-x)), we can plug our logistic regression output in and get a
predicted probability p̂. We can then substract our backtransformed model output at different values of our
predictor.

• Divide by 4

The logistic function’s derivative at its center is β/4, so we can interpret this as “at most, a one unit change
in X is associated with an increase in probability of β/4”

• Odds Ratio

“A unit increase in x results in a β increase in the log odds ratio of the probability of a success”

This comes from

log

(
P (y = 1|x)
P (y = 0|x)

)
= β0 + β1x

Describe the difference between linear and non-linear regression

Well the big difference is that linear regression is for linear relationships and nonlinear regression can be for
any arbitrary smooth function.

The basic set up is that we have some function η s.t.

yi = η(xi, β) + εiεi ∼ N(0, σ2)

If η = xTβ then we just have OLS. If η is something else, then we can represent it using basis functions.

Under normal errors, the MLE of β minimizes

n∑
i=1

(yi − η(xi, β))2

but there’s no nice closed form solution for this, so we need to use iterative procedures and provide starting
points from the data.

In the example from class, we knew the model was of the form: yt = β0 + β12−t/θ + εt so we had to guess
good starting values for β0, β1, θ.

We did this by figuring out what the practical interpretations were for each parameter and making reasonable
guesses based on the graph that we were given.

We guessed β0 = 100, β1 = 80, θ = 100 and that seemed to work fine. Picking different initial guesses can
change the estimates so this step is pretty important.
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Figure 6: Nonlinear regression class example

Other good tidbits/formulas to know

Derivation of variance of β

var(β̂) = var((XTX)−1XT y)
= (XTX)−1XT var(y)((XTX)−1XT )T

= (XTX)−1XTσ2I((XTX)−1XT )T

= σ2(XTX)−1XT (X(XTX)−1)
= σ2(XTX)−1(XTX)(XTX)−1

= σ2(XTX)−1

Prediction and Confidence intervals

For a particular value of x0, the confidence interval is:

ŷ0 ± tn−pσ̂
√
xT0 (XTX)−1x0

and the prediction interval is:

ŷ0 ± tn−pσ̂
√

1 + xT0 (XTX)−1x0

Since the MSE for a particular point is V ar(f̂(x0)) +Bias(f̂(x0)) + σ2

Also the confidence interval for a linear combination of parameters is

cT β̂ = tn−p

√
σ̂2cT (XTX)−1c
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Standard error of βi

The formula for SE(βi) = σ̂2
√

(XTX)−1
i+1,i+1
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